
A

Partially evaluating finite-state runtime monitors ahead of time

ERIC BODDEN, Technische Universität Darmstadt

PATRICK LAM, University of Waterloo

LAURIE HENDREN, McGill University

Finite-state properties account for an important class of program properties, typically related to the order of

operations invoked on objects. Many library implementations therefore include manually-written finite-state
monitors to detect violations of finite-state properties at runtime. Researchers have recently proposed the

explicit specification of finite-state properties and automatic generation of monitors from the specification.

However, runtime monitoring only shows the presence of violations, and typically cannot prove their absence.
Moreover, inserting a runtime monitor into a program under test can slow down the program by several

orders of magnitude.

In this work, we therefore present a set of four static whole-program analyses that partially evaluate
runtime monitors at compile time, with increasing cost and precision. As we show, ahead-of-time evaluation

can often evaluate the monitor completely statically. This may prove that the program cannot violate

the property on any execution or may prove that violations do exist. In the remaining cases, the partial
evaluation converts the runtime monitor into a residual monitor. This monitor only receives events from

program locations that the analyses failed to prove irrelevant. This makes the residual monitor much more

efficient than a full monitor, while still capturing all property violations at runtime.
We implemented the analyses in Clara, a novel framework for the partial evaluation of AspectJ-based

runtime monitors, and validated our approach by applying Clara to finite-state properties over several
large-scale Java programs. Clara proved that most of the programs never violate our example properties.

Some programs required monitoring, but in those cases Clara could often reduce the monitoring overhead

to below 10%. We observed that several programs did violate the stated properties.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Software/Program Verification—Val-

idation

General Terms: Algorithms, Experimentation, Performance, Verification

Additional Key Words and Phrases: typestate analysis, static analysis, runtime monitoring

1. INTRODUCTION AND CONTRIBUTIONS

Finite-state properties constrain acceptable operations on a single object or a group of inter-
related objects, depending on the object’s or group’s history. Typestate systems [Strom and
Yemini 1986], an instantiation of the idea of finite-state properties, enable the specification
and (potentially static) verification of finite-state properties for program understanding and
verification. One can define type systems [Bierhoff and Aldrich 2007; DeLine and Fähndrich
2004] that prevent programmers from writing code with typestate errors. Unfortunately,
current typestate systems require elaborate program annotations, essentially to identify
statements that may access an object (and hence modify its typestate) and variables that
may or must point to the same objects (i.e., may or must alias). Such annotations are hard
to maintain, possibly explaining in part why such type systems have not been adopted.

Portions of this work were published in [Bodden et al. 2007; Bodden et al. 2008a; Bodden 2010; Bodden
et al. 2010].
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial advantage
and that copies show this notice on the first page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any
component of this work in other works requires prior specific permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA,
fax +1 (212) 869-0481, or permissions@acm.org.
c© YYYY ACM 0164-0925/YYYY/01-ARTA $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 Eric Bodden et al.

connected disconnected error

CLOSE

RECONNECT

CLOSE,
RECONNECT,

WRITE

WRITE

CLOSE WRITE

Fig. 1: “ConnectionClosed” finite-state property: no write after close.

A more pragmatic approach is to instead monitor programs for violations of finite-state
properties at runtime. Several researchers have proposed notations and tools to support
monitoring for finite-state properties expressed using tracematches or other formalisms [Al-
lan et al. 2005; Bodden 2005; Chen and Roşu 2007; Maoz and Harel 2006; Krüger et al.
2006]. The tracematches formalism combines regular expressions with AspectJ [Kiczales
et al. 2001] pointcuts to provide a high-level specification language for runtime monitors.
JavaMOP [Chen and Roşu 2007] is an open framework for notations that can generate
monitors from high-level specifications written in different concrete notations such as lin-
ear temporal logic, regular expressions or context-free grammars. Runtime monitoring is
appealing because monitor specifications can be very expressive: they can reason about
concrete program events and concrete runtime objects, and thus completely avoid false
warnings. However, runtime monitoring basically amounts to testing, where the runtime
monitor merely provides a principled way to insert high-level assertions into the program
under test. Testing, however, has several drawbacks. A suite of sufficiently varying test runs
may be able to identify errors or strengthen a programmer’s confidence in her program by
not identifying errors, but it does not constitute a correctness proof if the test suite is not
complete. Secondly, runtime monitoring requires program instrumentation, and, as we show
in this paper, this instrumentation may slow down the program under test by several orders
of magnitude, making exhaustive testing even less of an option in many cases.

In this work we therefore propose a hybrid approach that starts with a runtime monitor
but then uses static analysis results to convert this monitor into a residual runtime monitor.
The residual monitor captures actual property violations as they occur, but updates its
internal state only at relevant statements, as determined through static analysis. Unlike
static type systems, our approach requires no program annotations; it is fully automatic.
Program annotations for state changes are replaced by non-intrusive AspectJ pointcuts.
Program annotations for aliasing constraints are not necessary in our approach because we
infer aliasing constraints through a combination of precise pointer analyses.

Static analyses for optimizing monitors have different requirements from fully-static ap-
proaches. Consider our running example, in which programmers must not write to a connec-
tion handle that is currently in its “disconnected” state. Figure 1 shows a non-deterministic
finite-state machine for this property. It monitors a connection’s CLOSE, RECONNECT
and WRITE events and signals an error at its accepting state. (The looping transitions on
the initial state implement our matching semantics, where the runtime monitor signals an
error each time it reaches a final state. Because the machine is non-deterministic, the self-
loops shown in the figure enable the monitor to report more than one violation for a single
runtime trace.) A correct runtime monitor must observe events like CLOSE and WRITE
that can cause a property violation, but also events like RECONNECT that may prevent the
violation from occurring. Missing the former causes false negatives while missing the latter
causes false positives, i.e., false warnings. Both are unacceptable, so our approach guarantees
that executions of the generated monitor have no false positives or false negatives—it may

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Partially evaluating finite-state runtime monitors ahead of time A:3

do so by deferring some decisions until runtime. Sound static approaches that only attempt
to prove the absence of property violations but have no runtime monitoring component,
e.g. [Fink et al. 2006], have no such option; deferring decisions is not acceptable. They can
only declare false positives.

We present a set of four static analysis algorithms that evaluate finite-state runtime moni-
tors ahead of time, with increasing precision. All algorithms analyze so-called shadows [Ma-
suhara et al. 2003]. The term “shadows” is popular in the aspect-oriented programming
community and refers to program locations that can trigger runtime events of interest. The
first analysis, the Quick Check, uses simple syntactic checks only. In our example, the Quick
Check may be able to infer that a program opens and closes connections but never writes
to a connection. Such a program cannot violate the property—if there are no writes, then
no write can ever follow a close operation. The second analysis stage, the Orphan-shadows
Analysis, applies a similar check on a per-object basis. If a program opens and closes some
connection c, but never writes to c, then the analysis can rule out violations on c (but not on
other connections, based on this information). This stage uses points-to analysis to handle
aliasing, i.e., to decide whether or not two variables may point to the same runtime connec-
tion object. The third stage, the Nop-shadows Analysis, takes the program’s control-flow
into account. Using a backward analysis, it first computes, for every transition statement s
(e.g. statements causing events of type CLOSE, RECONNECT or WRITE), sets of states
that are, at s, equivalent with respect to all possible continuations of the control flow fol-
lowing s. The analysis then uses a forward pass to find transition statements that only
switch between equivalent states. Switching between equivalent states is unnecessary, and
the analysis removes such transitions.

As we prove, all three analysis stages are sound, i.e., when an analysis asserts that a
program location requires no monitoring, then removing transitions from that location will
never alter the program locations at which the runtime monitor will (or will not) reach its er-
ror state. However, all three analyses are also incomplete: they may fail to identify program
locations that actually require no monitoring. We therefore investigated and developed a
fourth analysis, the Certain-match Analysis, which reports no false positives but may miss
actual violations. This analysis is thus similar in flavour to unsound static checkers as im-
plemented, for instance, in FindBugs [Hovemeyer and Pugh 2004] or PMD [Copeland 2005].
The Certain-match Analysis applies the same forward pass as the Nop-shadows Analysis,
but instead identifies program locations at which the program certainly triggers a prop-
erty violation. Such certain matches help programmers find true positives in a larger set of
potential false positives.

We have implemented our analyses in Clara (CompiLe-time Approximation of Run-
time Analyses), our novel framework for partially evaluating runtime monitors ahead of
time [Bodden et al. 2010; Bodden 2010]. We developed Clara to facilitate the integra-
tion of research results from the static analysis, runtime verification and aspect-oriented-
programming communities. Clara features a formally specified abstraction, Dependency
State Machines, which function as an abstract interface, decoupling runtime monitors from
their static optimizations. The analyses that we present in this paper therefore apply to
any runtime monitor implemented as an AspectJ aspect that uses Dependency State Ma-
chines. Our analyses are therefore compatible with a wide range of state-of-the-art runtime
verification tools [Allan et al. 2005; Bodden 2005; Chen and Roşu 2007; Maoz and Harel
2006; Krüger et al. 2006], if they are extended to produce Dependency State Machines.
We ourselves have successfully used Clara in combination with tracematches and Java-
MOP [Bodden et al. 2009; Bodden 2009].

To evaluate our approach, we applied the analysis to the DaCapo benchmark suite [Black-
burn et al. 2006]. In our experiments, in 68% of all cases Clara’s analyses can prove that
the program is free of program locations that could drive the monitor into an error state.
In these cases, Clara statically guarantees that the program can never violate the stated

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 Eric Bodden et al.

property, eliminating the need for runtime monitoring of that program. In other cases, the
residual runtime monitor will require less instrumentation than the original monitor, there-
fore yielding a reduced runtime overhead. For monitors generated from a tracematch [Allan
et al. 2005] specification, in 65% of all cases that showed overhead originally, no overhead
remains after applying the analyses. The Certain-match Analysis, on the other hand, does
not appear to be very effective: in our benchmark set, it could only identify a single match
as certain, even though our runtime monitors signal several matches at runtime. Due to the
design of our analyses and the Clara framework, our analyses are equally effective on any
runtime monitor for a given property, independent of the source of the monitor.

To summarize, this paper presents the following contributions:

— A set of three static whole-program analyses that can partially evaluate finite-state mon-
itors ahead of time, with increasing precision.

— Soundness proofs for those three analyses.
— A novel Certain-match Analysis that can determine inevitable property violations on an

intra-procedural level.
— A system for presenting analysis results to the user to support manual code inspection in

the Eclipse integrated development environment.
— An open-source implementation of these analyses in the context of the Clara framework

and a large set of experiments that validates the effectiveness of our approach based on
large-scale, real-world benchmarks drawn from the DaCapo benchmark suite.

The relationship of this article to previous publications is as follows. Two of the contri-
butions in this article are entirely novel: the design, implementation, and evaluation of the
Certain-match Analysis (Section 8), and the Eclipse plugin for presenting analysis results to
developers (Section 9). This article also presents improved—more precise or faster—versions
of two previously-presented static analyses for eliminating unnecessary monitoring points
(see Section 11.3 for details), and presents a complete description of the Nop-shadows Anal-
ysis (Section 7), for the first time, including its handling of pointers and inter-procedural
effects. We have also improved the presentation of the soundness proofs for the static analy-
ses from Bodden’s PhD thesis [2009]. In summary, this article presents a consolidated view
of the entire Clara framework, notably including all of its static analyses, the relevant
correctness proofs, and a full evaluation, in a single publication.

2. RUNNING EXAMPLE

We continue by presenting a specification for the ConnectionClosed finite-state property and
explaining how our static analyses can analyze programs for conformance with this property.
In particular, we will demonstrate how our analyses behave on code that always violates
the property, code that sometimes violates the property, and code that never violates the
property.

Recall that the ConnectionClosed property specifies that programs may not write to
closed connections. Figure 2 presents a textual specification of the ConnectionClosed prop-
erty using Dependency State Machines, Clara’s intermediate representation for runtime
monitors. Specifications in Clara consist of an AspectJ aspect (implementing a runtime
monitor for the property), augmented with additional annotations that aid static analysis.
The example aspect consists of three pieces of advice (lines 4–13) which intercept disconnect,
reconnect and write events. When disconnecting a connection, the CLOSE advice places
the closed connection object into the set closed. When the connection is re-connected, the
RECONNECT advice removes it from the set again. Finally, the WRITE advice issues an
error message upon any write to a connection in the closed set. Note that the aspect uses
its own data structure—the set in line 2—to keep track of closed connections. Clara seeks
to be independent of such internal implementation details. The aspect therefore carries an
additional, Clara-specific annotation in lines 15–25: the monitor’s Dependency State Ma-

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Partially evaluating finite-state runtime monitors ahead of time A:5

1 aspect ConnectionClosed {
2 Set closed = new WeakIdentityHashSet();
3

4 dependent after CLOSE(Connection c) returning:
5 call(∗ Connection.disconnect()) && target(c) { closed.add(c); }
6

7 dependent after RECONNECT(Connection c) returning:
8 call(∗ Connection.reconnect()) && target(c) { closed.remove(c); }
9

10 dependent before WRITE(Connection c):
11 call(∗ Connection.write (..)) && target(c) {
12 if (closed .contains(c))
13 error(”May not write to ”+c+”: it is closed !”); }
14

15 dependency {
16 CLOSE, WRITE, RECONNECT;
17 initial connected: CLOSE −> connected,
18 WRITE −> connected,
19 RECONNECT −> connected,
20 CLOSE −> disconnected;
21 disconnected: RECONNECT −> connected,
22 CLOSE −> disconnected,
23 WRITE −> error;
24 final error : WRITE −> error;
25 }
26 }

Fig. 2: “ConnectionClosed” aspect with Dependency State Machine.

chine. This state machine encodes the internal transition structure of the pieces of advice
that implement the monitoring logic. Note that this is a textual representation of the state
machine from Figure 1. We will formally define the semantics of Dependency State Machines
in Section 4. [Bodden 2009] presents the formal syntax for these annotations.

The design of Dependency State Machines in Clara allows them to function as an ab-
stract interface, bridging the efforts of the static analysis community to efforts of the runtime
verification community. Many state-of-the-art runtime verification tools generate monitors
in the form of AspectJ aspects, because such aspects offer a convenient and declarative way
to define the program points which require instrumentation. Figure 3, for example, shows a
high-level tracematch [Allan et al. 2005] specification for ConnectionClosed. Tracematches

1 aspect ConnectionClosed {
2 tracematch(Connection c) {
3 sym CLOSE after returning: call(∗ Connection.disconnect()) && target(c);
4 sym RECONNECT after returning: call(∗ Connection.reconnect()) && target(c);
5 sym WRITE after returning: call(∗ Connection.write(..)) && target(c);
6

7 CLOSE+ WRITE {
8 error(”May not write to ”+c+”, as it is closed !”);
9 }

10 }
11 }

Fig. 3: “ConnectionClosed” tracematch.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 Eric Bodden et al.

allow programmers to match on the execution history via a regular expression over AspectJ
pointcuts. Line 2 states that the tracematch reasons about one connection c at a time.
Lines 3–5 define the set of events that the monitor wishes to process. The events form sym-
bols of an alphabet (hence the keyword sym), and line 7 uses this alphabet to define the
regular expression “CLOSE+ WRITE”. The body (lines 7–9) will therefore execute after
one or more disconnects, followed by a write, as long as there is no intervening reconnect.
The tracematch implementation generates an AspectJ aspect similar to the one we showed
in Figure 2 from this specification. Other runtime verification tools also generate similar
aspects from their specification languages. By augmenting an aspect with a Dependency
State Machine annotation, a tool can easily make its generated aspects available for Clara
to analyze and optimize. In our experiments, we will focus on optimizing runtime moni-
tors from tracematches. However, in previous work [Bodden et al. 2009], we have shown
that our analyses are equally effective on monitors generated from other types of high-level
specifications. The only requirement for Clara’s clients is that the provided Dependency
State Machine annotations must be semantically equivalent to the annotated runtime mon-
itor. In Section 4.1 we provide a full dynamic semantics of Dependency State Machines,
which clients can use to prove that the provided Dependency State Machine annotations
are indeed correct.

1 public static void main(String args[]) {
2 Connection c = new Connection(args[0]);
3 c.disconnect(); // CLOSE(c)
4 c.write(args [0]); // WRITE(c): violation−write after close on c
5 }

(a) Example program which always matches

1 public static void main(String args[]) {
2 Connection c1 = new Connection(args[1]),
3 c2 = new Connection(args[2]);
4 c1.disconnect(); // CLOSE(c1)
5 c2.write(args [0]); // WRITE(c2): write, but on c2, hence independent of 4
6 }

(b) Example program which never matches due to incompatibility of transitions

1 public static void main(String args[]) {
2 Connection c = new Connection(args[0]);
3 c.write(args [0]); // WRITE(c)
4 c.disconnect(); // CLOSE(c): no violation, since it always follows 3
5 }

(c) Example program which never matches due to ordering of transitions

1 public static void main(String args[]) {
2 Connection c = new Connection(args[0]),
3 if (args.length > 1)
4 c.disconnect(); // CLOSE(c)
5 c.write(args [0]); // WRITE(c): violation−write after close possible
6 }

(d) Example program which matches on some inputs

Fig. 4: Example programs

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Partially evaluating finite-state runtime monitors ahead of time A:7

Next, we discuss our analysis of ConnectionClosed on the code in Figure 4. Figure 4a
always triggers the final state of the monitor, since it contains a connection close followed by
a write on the same connection. Our Certain-match Analysis will determine that it always
triggers the final state. It does so by performing a flow-sensitive propagation of possible
states for the connection c; after line 2, the connection is in the initial “connected” state.
Following the CLOSE and WRITE transitions, our analysis can deduce that the connection
is sure to reach the final “error” state.

Our remaining analyses are staged: Clara runs a series of analyses in turn, from least
computationally expensive to most expensive. The idea is to do as little work as possible
to try to guarantee that programs do not violate properties. The first stage, Quick Check,
therefore only collects the labels of transitions in the program, and eliminates the transitions
which never affect whether or not the program triggers a final state. The second stage,
Orphan-shadows Analysis, sharpens this information with pointer information. Finally, the
third stage, Nop-shadows Analysis, is flow-sensitive: it uses information about the ordering
of potential transitions in the program to rule out transitions which can never trigger the
final state. Clara then groups the remaining transitions into potential failure groups, using
points-to information: transitions that can potentially affect the same object appear in the
same group. As we explain in Section 9, this eases manual code inspection.

Figure 4b presents one example of a program which never triggers the final transition. In
this case, the program contains both WRITE and CLOSE transitions, so the Quick Check
cannot remove these transitions. However, our pointer analysis finds that the connection
objects c1 and c2 are distinct, so that no single object executes both the WRITE and
CLOSE transition. The Orphan-shadows Analysis therefore instructs Clara to remove
both transitions in Figure 4b.

Figure 4c also never triggers the final state, even though it contains all of the necessary
transitions on appropriate objects. The analysis must track object abstractions through their
potential states. In particular, our Nop-shadows Analysis establishes that the connection
starts in its initial state after instantiation at line 2. Next, it follows the transitions in lines 3
and lines 4 to reason that these lines never trigger the monitor. Finally, since connection c
does not escape the main method, the analysis can conclude that no other transition in the
program affects c, so that none of the transitions on c in the main method affect a possible
match. Note that it is much harder to prove that transitions are unnecessary than that they
are necessary (as we did for Figure 4a).

Finally, Figure 4d illustrates a program for which no static analysis can determine whether
or not the final state is triggered, in this case because the transitions taken depend on
program input. Each of our analyses would state that each transition could occur and has
a potential effect on the state machine.

Parameterized traces. Every program run generates a parameterized trace [Chen and
Roşu 2009] over the pieces of advice applicable to that run. (The traces are parameterized
by object identities.) We reason about these traces by using abstract parameterized runtime
traces, which are sequences of sets of abstract events. Sets of abstract events enable us to
account for the fact that every concrete program event (e.g. method calls) can potentially
be matched by a number of overlapping pieces of advice. Section 4 formally defines the
semantics of dependency state machines over abstract parameterized runtime traces.

For instance, consider the program from Figure 4b. This program generates the parame-
terized trace “{CLOSE(c 7→ o(c1))}{WRITE(c 7→ o(c2))}”: the “disconnect” method call
is only matched by the CLOSE piece of advice, and this piece of advice binds the aspect’s
variable c to o(c1), the object referenced by c1. Similarly, the “write” method call is only
matched by the WRITE piece of advice and binds c to o(c2). Parameterized traces give rise
to “ground” traces by projection onto compatible variable bindings. In the above example,
we can project onto c 7→o(c1) and c 7→o(c2). Projection onto c 7→o(c1) yields the trace

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 Eric Bodden et al.

“close”, while c 7→ o(c2) yields the trace “write”. Neither projected trace belongs to the
language that the Dependency State Machine in Figure 2 accepts.

The program from Figure 4a yields the trace “{CLOSE(c 7→o(c))} {WRITE(c 7→o(c))}”.
Here, projection onto c 7→o(c) yields the ground trace “close write”, which is in the language
of the Dependency State Machine, indicating that this program may (and indeed will)
violate the property that this Dependency State Machine describes.

3. CLARA FRAMEWORK

Clara (CompiLe-time Approximation of Runtime Analyses) is a novel research framework
for partially evaluating runtime monitors ahead of time. We developed Clara to support
easy implementations of the analyses presented in this paper, and to facilitate the integra-
tion of research results from the static analysis, runtime verification and aspect-oriented
programming community in general. Clara’s major design goal is to decouple code gen-
eration for efficient runtime monitors from the static analyses that convert these monitors
into optimized, residual monitors which are triggered at fewer program locations. In this
work, we provide a brief summary of Clara’s design; previous work [Bodden et al. 2010]
and the first author’s dissertation [Bodden 2009] give a more detailed account. Clara is
available as open-source software at http://bodden.de/clara/.

Figure 5 gives an overview of Clara. At the beginning of the work flow (top right)
stands a component designer who wrote an application interface (API), which comes with
usage requirements expressed as finite-state properties. In our running example, this would
be the programmer who initially provides the “Connection” API. As part of the API,
the designer specifies a runtime monitor which captures property violations at runtime,
for instance as a tracematch. Further, the programmers uses a runtime-verification tool
to automatically translate the high-level specification into an AspectJ aspect, annotated
with a Dependency State Machine. We extended the tracematch implementation so that it
automatically annotates the aspects that it generates. The authors of JavaMOP [Chen and
Roşu 2007] are currently in the process of extending their tool accordingly, and many other
runtime verification tools will likely support Dependency State Machines in the future.

The programmer invokes Clara with the aspect-based monitor definition and a program
as inputs. Clara compiles the code of the runtime monitor and “weaves” the monitor
into the program under test, i.e., instruments the program with code that notifies the
monitor about state transitions that the program performs. (Clara uses the AspectBench
Compiler [Avgustinov et al. 2005] for weaving.) Clara then invokes its static analysis
engine, which may include third-party static analyses. These analyses collect information
about the finite-state property to approximate the set of relevant instrumentation points.
Whenever an analysis declares that an instrumentation point does not affect whether or not
the program violates the property, Clara disables the instrumentation for this property
at this point. The result is an optimized instrumented program that updates the runtime
monitor only at program points at which instrumentation remains enabled.

Our Certain-match Analysis also reports certain matches to the programmer. Such
matches denote program locations that certainly lead to a property violation if executed.

Clara outputs a list of potential failure groups. Each group is a set of shadows containing
a single potential point of failure, i.e. a shadow at which the program may violate the stated
property at runtime, along with a set of context shadows, which trigger events on the same
objects as the potential point of failure, and hence may contribute to the property violation.
This presentation of our analysis results was particularly useful for manual inspection.

4. DEFINITIONS

We now provide a formal description of finite-state runtime monitors. These definitions
allow us to reason formally about the correctness of our static analyses.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

http://bodden.de/clara/

Partially evaluating finite-state runtime monitors ahead of time A:9

Clara

(abc compiler)

compile & weave

program
under test

finite-state moni-
tor specifications

Quick Check

flow-insensitive
Orphan-shadows

Analysis

flow-sensitive Nop-
shadows Analysis

flow-sensitive Certain-
match Analysis

optimized instru-
mented program

potential
failure groups

certain
property violations

programmer

component designer,
QA engineer,

. . .

runtime
monitor

Section (4)

Section (5)

Section (6)

Section (7)

Section (8) Section (8/9)

Section (9)

Section (10)

test run

inspect

inspect and remove

define (with trace-
matches, JavaMOP,

etc.) & compile

Fig. 5: Overview of Clara

4.1. Runtime Monitors

We begin by stating standard definitions from automata theory.

Definition 1 (Finite-state machine). A non-deterministic finite-state machine M is a
tuple (Q,Σ, q0,∆, QF), where Q is a set of states, Σ is a set of input symbols, q0 the initial
state, ∆ ⊆ Q×Σ×Q the transition relation and QF ⊆ Q the set of accepting (final) states.

We will also call final states “error states”. We consider that a finite-state property has
been violated when the state machine associated with the property reaches a final state.
(In that sense, our properties are negative properties which describe forbidden behaviour.)

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 Eric Bodden et al.

Definition 2 (Words, runs and acceptance). A word w = (a1, . . . , an) is an ele-
ment of Σ∗; word w has length |w| = n. We define a run ρ of M on w to be
a sequence (q0, qi1 , . . . , qin) which respects the transition relation ∆; that is, ∀k ∈
[0, n). ∃ak. (qik , ak+1, qik+1

) ∈ ∆, with i0 := 0. A run ρ is accepting if it finishes in an
accepting state, i.e. qin ∈ QF . We say that M accepts w, and write w ∈ L(M), if there
exists an accepting run of M on w.

We further require the notion of a prefix.

Definition 3 (Set of prefixes). Let w ∈ Σ∗ be a Σ-word. We define the set pref(w) as:

pref(w) := {p ∈ Σ∗ | ∃s ∈ Σ∗ such that w = ps}.
Definition 4 (Matching prefixes of a word). Let w ∈ Σ∗ be a Σ-word and L ⊆ Σ a Σ-

language. Then we define the matching prefixes of w (with respect to L) to be the set of
prefixes of w also belonging to L:

matchesL(w) := pref(w) ∩ L.
We write matches(w) instead of matchesL(w) if L is clear from the context.

Clara uses finite-state machines to model and implement runtime monitors. Clara first
generates a finite-state machine from the provided monitor definition. It then instruments
the program under test such that the program will issue a trace (effectively a word in
Σ∗) when executed. The finite-state machine reads this trace as input. The instrumented
program executes the monitor’s associated error handler whenever the machine reaches an
accepting state, i.e., whenever the prefix of the trace read so far is an element of L.

Generalizing to multiple monitor instances. It would be a severe restriction to allow for
only one monitor instance at runtime. Consider ConnectionClosed from Section 1. Programs
typically use many simultaneously-active connection objects, where each connection object
could be in a different state. Modern runtime monitoring systems therefore allow the user to
define parametric runtime monitors [Chen and Roşu 2009]. A parametric monitor effectively
comprises a set of monitors, one monitor for every variable binding. Clara’s semantics is
defined over parametric monitors, which we now define.

Definition 5 (Variable Binding). Let O be the set of all runtime heap objects and V a
set of variables appearing in monitor specifications. Then we define a variable binding β as
a partial function β : V ⇀ O. We call the set of all possible variable bindings B.

Due to variable bindings, runtime monitoring does not operate on a single trace from
Σ∗, but rather on a parametrized trace, consisting of a trace of parametrized events.
Parametrized events associate bindings with events.

Definition 6 (Parametrized event). A parametrized event ê is a set of pairs (a, β) ∈
Σ× B. Σ̂ is the set of all parametrized events. A parametrized trace is a word from Σ̂∗.

We use sets of pairs because one program event can yield multiple monitoring events.
This occurs when multiple monitors listen for the same program events.

Every monitored program will generate a parametrized event trace when it executes. The
instrumentation that Clara inserts into the program notifies the runtime monitor at every
event of interest about the monitor transition symbol a ∈ Σ as well as the variable binding
β ∈ B identifying all monitor instances that need to process the event.

For instance, executing the program from Figure 4b with the ConnectionClosed monitor-
ing aspect from Figure 2 yields the following parametrized trace:

{(CLOSE, c 7→ o(c1))} {(WRITE, c 7→ o(c2))}
Here, o(v) represents the object referred to by program variable v.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Partially evaluating finite-state runtime monitors ahead of time A:11

However, monitor instances are ordinary finite-state machines, which process symbols
from the base alphabet Σ, rather than parametrized events from Σ̂. We therefore project
the unique parametrized program trace that the program generates onto a set of ground
traces—words over Σ. Every ground trace is associated with a binding β and contains all
events whose bindings are compatible with β.

Definition 7 (Compatible bindings). Let β1, β2 ∈ B be two variable bindings. These
bindings are compatible if they agree on the objects that they jointly bind:

compatible(β1, β2) := ∀v ∈ (dom(β1) ∩ dom(β2)). β1(v) = β2(v).

Definition 8 (Projected event). For every parametrized event ê and binding β we define
a projection of ê with respect to β:

ê↓β := {a ∈ Σ | ∃(a, βa) ∈ ê such that compatible(βa, β)}.
Definition 9 (Parametrized and projected event trace). Any finite program run induces

a parametrized event trace t̂ = ê1 . . . ên ∈ Σ̂∗. For any variable binding β we define a
projected trace t̂↓β ⊆ Σ∗ by only keeping events compatible with β. Formally, t̂↓β is the
smallest subset of Σ∗ for which, if ef(i) := êi ↓β for all i ∈ {1, . . . , n}, with f : [1, n]→ [1,m]
order-preserving and m ≤ n, then

e1 . . . em ∈ t̂↓β.
In the following we will call traces like t, which are elements of Σ∗, ground traces, as opposed
to parametrized traces, which are elements of Σ̂∗.

In our semantics, a runtime monitor will execute its error handler whenever the prefix
read so far of one of the ground traces of any variable binding is in the language described by
the state machine. We exclude the empty trace (with no events) because this trace cannot
possibly cause the handler to execute: empty traces contain no events, while we require
handlers to see at least one event before executing. This yields the following definition.

Definition 10 (Set of non-empty ground traces of a run). Let the trace t̂ ∈ Σ̂∗ be the
parametrized event trace of a program run. Then the set groundTraces(t̂) of non-empty
ground traces of t̂ is:

groundTraces(t̂) :=

⋃
β∈B

t̂↓β

 ∩ Σ+.

We intersect with Σ+ to exclude the empty trace.

Definition 11 (Matching semantics of a finite-state runtime monitor). Let M :=

(Q,Σ, q0,∆, QF) be a finite-state machine. Let t̂ ∈ Σ̂∗ be a parametrized event trace
generated by a program execution. We say that t̂ violates the property described by M at
position i when:

∃t ∈ groundTraces(t̂). ∃p ∈ matchesL(M)(t). |p| = i.

By our definition of runtime monitoring, the monitor will execute its error handler at
every position i at which t̂ violates the monitored property.

Correct definitions of Dependency State Machines. In the future we expect runtime verifi-
cation tools that currently generate runtime monitors as AspectJ aspects to instead generate
aspects annotated with Dependency State Machines. That way, the monitors become au-
tomatically analyzable by Clara. The only requirement on Clara’s clients, i.e., on the
runtime verification tools, is that the semantics of the generated Dependency State Machine

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 Eric Bodden et al.

(as defined by Definition 11) must coincide with the semantics of the annotated monitor.
Such proofs are simple to conduct for the two tools we tried, tracematches and JavaMOP,
and we expect them to also be simple for other finite-state runtime monitoring tools.

4.2. Statically optimizing parametrized monitors

Our definition of the matching semantics for finite-state runtime monitors states when a
runtime monitor needs to trigger on an input trace t̂. Any sound static optimization of such
runtime monitors must obey this semantics, i.e., must guarantee that the monitors trigger
(or don’t trigger) exactly at the same times with or without the optimization.

We next define a runtime predicate called mustMonitor that, for every symbol a ∈ Σ,
every parametrized trace t̂, and every position i ∈ N in this trace, returns true when a-
transitions must be monitored at position i of t̂ according to the above semantics and false
when the transition need not be monitored, i.e., when processing of the a-transition may
safely be omitted.

mustMonitor : Σ× (Σ̂)∗ × N → B

mustMonitor(a, t̂, i) := ∃t ∈ groundTraces(t̂) such that necessaryTransition(a, t, i).

The mustMonitor predicate depends on the predicate necessaryTransition(a, t, i). This
predicate is a free parameter to our semantics, enabling the use of any suitable definition
of necessaryTransition. Our semantics demand that necessaryTransition must meet the fol-
lowing soundness condition.

Condition 1 (Soundness condition for necessaryTransition). Any sound implementa-
tion of necessaryTransition must satisfy:

∀a ∈ Σ. ∀t = a1 . . . ai . . . an ∈ Σ+. ∀i ∈ N.
a = ai ∧matchesL(a1 . . . an) 6= matchesL(a1 . . . ai−1ai+1 . . . an)

=⇒ necessaryTransition(a, t, i).

In other words, a transition a must be monitored at position i whenever not monitoring a
at i would change the set of matches for a runtime monitor. Note that it is only possible to
approximate necessaryTransition; the optimal function is uncomputable because it would
require knowledge about future events: the most accurate possible necessaryTransition re-
quires that, while observing the i-th event, one would need to know whether the remainder
of the trace will or will not lead to further matches.

Sections 5 through 7 define three different approximations to necessaryTransition that are
computable at compile-time. We will prove that these approximations imply the soundness
condition.

5. SYNTACTIC QUICK CHECK

The Quick Check is, as the name suggests, a simple analysis that can execute within millisec-
onds. This analysis rules out transitions that have no effect because they are unreachable or
have no effect in the program under analysis. The Quick Check only uses syntactic informa-
tion which is available to the compiler after it inserts runtime monitoring instrumentation;
it runs in time polynomial in runtime monitor size and linear in program size.

Examples and Discussion

As an example, consider again the ConnectionClosed automaton from Figure 1 in combina-
tion with a program that closes and perhaps reconnects connection objects but never writes
to them (for instance, the program from Figure 4a without line 4). In this case, the Quick
Check first removes all WRITE-transitions from the finite-state machine. Next, the algo-

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Partially evaluating finite-state runtime monitors ahead of time A:13

rithm finds that all states have become unproductive.1 This way, the Quick Check correctly
determines that no symbol requires monitoring.

The Quick Check sometimes eliminates only some of the transitions in a finite-state
machine. Consider the automaton in Figure 6. In this example, if the program can produce
all events except b events, then the Quick Check will reduce the state machine to states
0, 2, and 3. Along the remaining acyclic path through the automaton, the symbols c and
d change the machine’s state, and hence require monitoring. The symbol a, however, does
not require monitoring: on the remaining productive states 0, 2, and 3, a-transitions always
loop. The Quick Check would report that b must be monitored, but that is moot, since b
events cannot occur in our program.

Similarly, consider the case where the program can produce all events but d events. The
Quick Check would determine that symbols a, b and c require monitoring: a and b because
they transition from one productive state to another, and c because states 1 and 3 have no
outgoing c-transition and therefore would possibly reject words when reading a c.

To clarify the last point, assume a program that generates a trace “a c b”. The monitor
should not trigger on this trace because “a c b” is not in the language of this finite-state
machine. But if we failed to monitor c, then the state machine would effectively only observe
the partial trace “a b”. This trace would drive the finite-state machine into its final state,
which would be incorrect. This point applies to our subsequent analyses as well.

The Quick Check generally works well in cases where properties do not apply to the
program under test. For instance, in the ConnectionClosed example, the Quick Check would
succeed only if the program either never closes connections or never writes to them. One
may wonder why monitors would track properties which a program can obviously never
violate. We envision a scenario in which monitors and programs are written by different
people. In our example, the monitor for the ConnectionClosed property would be written
by the developers of the Connection interface, and distributed along with that interface.
The library developers cannot know in advance which parts of the distributed properties
actual programs will use.

Algorithm

Algorithm 1 computes a set of symbols that need monitoring, given a set L of labels that
occur. First, the set ∆L filters out transitions from the monitor carrying labels that do not
occur in the program. Next, the set Qp retains only productive states from Q—states that
are reachable through ∆L from the initial state q0 and which can reach some final state
in QF . The set of productive transitions ∆p then retains from ∆L only those transitions
that lead from and to productive states. Finally, the algorithm returns the set of symbols
either appearing in non-looping productive transitions or for which a productive state has

1A productive state is a state that is reachable from an initial state and from which some final state can
be reached.

0

1

2

3

a
b

c d

a

a

a

Fig. 6: Example automaton to illustrate Quick Check.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 Eric Bodden et al.

no outgoing transition at all. The latter class of symbols must remain, as they cause input
words to be rejected.

Algorithm 1 Compute symbols required under Quick Check.

Input: set L of labels of all transition statements in the program
Output: set symbolsThatNeedMonitoring

1: let ∆L = {(qs, a, qt) ∈ ∆ | a ∈ L} in
2: let Qp = {q ∈ Q | ∃ path in ∆L from q0 to q ∧ ∃ path in ∆L from q to qf ∈ QF } in
3: let ∆p = {(qs, a, qt) ∈ ∆L | qs ∈ Qp ∧ qt ∈ Qp} in
4: return {a ∈ Σ | ∃qs ∈ Qp. ((∃qt ∈ Qp. (qs, a, qt) ∈ ∆p ∧ qs 6= qt) ∨

(¬∃qt ∈ Qp. (qs, a, qt) ∈ ∆p))}

To connect the Quick Check to Clara’s optimization engine, we simply define a new
predicate necessaryTransitionQC as an instantiation of the predicate necessaryTransition:

necessaryTransitionQC(a, t, i) := a ∈ symbolsThatNeedMonitoring .

Soundness of the Quick Check

To show that the Quick Check meets the soundness condition from Section 4 we need to
show the following:
∀a ∈ Σ ∀t = a1 . . . ai . . . an ∈ Σ+ ∀i ∈ N :

a = ai ∧matchesL(a1 . . . an) 6= matchesL(a1 . . . ai−1ai+1 . . . an)
=⇒ necessaryTransitionQC(a, t, i)

Proof. Follows immediately from Algorithm 1. Assume matchesL(a1 . . . an) 6=
matchesL(a1 . . . ai−1ai+1 . . . an). Because the matches sets differ, we know that after hav-
ing read the prefix a1 . . . ai−1, the automaton must either move from one productive
state to another (ensured by the first disjunct of the return value and the definition of
∆p) or it must move to no state at all (ensured by the second disjunct). In either case,
a ∈ symbolsThatNeedMonitoring , so necessaryTransitionQC(a, t, i) holds.

6. FLOW-INSENSITIVE ORPHAN-SHADOWS ANALYSIS

The flow-insensitive Orphan-shadows Analysis sharpens the results of the Quick Check by
taking pointer information into account: it removes transitions which are ineffective because
they are bound to objects that never match. The Orphan-shadows Analysis runs in time
polynomial in runtime monitor size and in shadow count; it incurs setup overhead beyond
the Quick Check, though, because it relies on points-to information. In particular, the
Orphan-shadows Analysis models runtime objects using the static abstraction of points-to
sets. For any program variable p, the points-to set pointsTo(p) is the set of all allocation
sites, as represented by new statements, that can reach p through a chain of assignments.

Example and Motivation

Recall the example from Figure 4b, which never matched because the CLOSE and WRITE
events occurred on different objects: the points-to set for variable c1 referenced at line 4
would contain the new statement at line 2, while the points-to set for variable c2 referenced
at line 5 would contain the new statement at line 3. The points-to sets pointsTo(c1) and
pointsTo(c2) would be disjoint: it is impossible for c1 and c2 to point to the same object.

At runtime, variable bindings β connect monitor variables to runtime heap objects. Points-
to sets can serve in the place of these heap objects, and we denote static variable bindings
which use points-to sets by β̃. Static variable bindings summarize runtime bindings. That is,

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Partially evaluating finite-state runtime monitors ahead of time A:15

let v be a monitor specification variable and o be a runtime object. Then β(v) = o implies

that o was created at one of the new statements n such that n ∈ β̃(v).
Bindings are critical to matching. A runtime monitor only reaches its error state after

having processed appropriate transitions with a “compatible variable binding”. That is,
each pair of transitions comes with bindings βi and βj ; we require that, for each pair of
transitions leading to a match, compatible(βi, βj).

We statically approximate variable bindings using points-to sets. To do so, we define a
static approximation stCompatible of the compatibility predicate compatible. Instead of
requiring equality as in the runtime case, we instead declare two bindings to be statically
compatible when their points-to sets overlap on their joint domains. That is, variables in
common may possibly be assigned the same objects at runtime:

stCompatible(β̃1, β̃2) := ∀v ∈ (dom(β̃1) ∩ dom(β̃2)). β̃1(v) ∩ β̃2(v) 6= ∅.
Shadows. Programs contain shadows, which are static program points causing finite-state

machine transitions. Pointcuts in the declaration of the dependency state machine induce
shadows. Each shadow binds some number of variables. At runtime, shadows cause events,
and their variables become bound to heap objects. We use points-to sets to approximate
the heap objects occurring in variable bindings. We denote the set of all shadows by S.

We say that two shadows s1 and s2 are compatible, and write stCompatible(s1, s2), if
their bindings are statically compatible. Like most points-to analysis clients, our static
analysis exploits the negation of stCompatible: it disregards transitions or events that can,
in combination, only lead to incompatible variable bindings. Such events clearly cannot
drive the runtime monitor into an error state.

Algorithm

Algorithm 2 presents the algorithm for the Orphan-shadows Analysis. This algorithm runs
the Quick Check once for each shadow s. Each invocation of the Quick Check is told that
only the labels for shadows compatible with s exist. Then s is necessary for Orphan-shadows
Analysis iff, considering only the set of shadows compatible with s, the Quick Check declares
that s is necessary.

To connect the Orphan-shadows Analysis to Clara’s optimization engine, we proceed
analogously to the Quick Check, and define the predicate necessaryTransitionOSA, as a
second instantiation of necessaryTransition:

necessaryTransitionOSA(a, t, i) := shadow(ai) ∈ necessaryShadows

6.1. Soundness of the Orphan-shadows Analysis

To show soundness for the Orphan-shadows Analysis (as per Section 4) we must show:
∀a ∈ Σ ∀t = a1 . . . ai . . . an ∈ Σ+ ∀i ∈ N :

a = ai ∧matchesL(a1 . . . an) 6= matchesL(a1 . . . ai−1ai+1 . . . an)
=⇒ necessaryTransitionOSA(a, t, i)

Proof. Assume matchesL(a1 . . . an) 6= matchesL(a1 . . . ai−1ai+1 . . . an). As with the
Quick Check, after having read the prefix a1 . . . ai−1, the automaton must either move from
one productive state to another or it must move to no state at all (because no current state
has a ai-transition). In either case, the disequality implies that the transition at position i

Algorithm 2 Compute symbols required under Orphan-shadows Analysis

Output: set necessaryShadows
1: function compSyms(s) = { l ∈ L | ∃s′ ∈ S. stCompatible(s, s′) ∧ l = label(s′)}
2: return {s ∈ S | label(s) ∈ QuickCheck(compSyms(s))}

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 Eric Bodden et al.

must have a variable binding compatible with all bindings of all transitions at positions 1
through n. Therefore, by construction, it must hold that shadow(ai) ∈ necessaryShadows
and hence necessaryTransitionOSA(a, t, i).

6.2. Benefits of a demand-driven pointer analysis

To compute points-to sets we use the demand-driven, refinement-based, context-sensitive,
flow-insensitive pointer-analysis by Sridharan and Bod́ık [2006]. Context-sensitive analyses
distinguish objects that are allocated in different calling contexts but using the same alloca-
tion sites, e.g., multiple iterators that are all instantiated by calling the same iterator()
method in the Java runtime library. Sridharan and Bod́ık’s analysis starts with context-
insensitive information computed by Spark [Lhoták and Hendren 2003] and then refines the
context-insensitive results with additional context information on demand. This is relatively
fast because the refinement only needs to be computed for variables that we are interested
in, i.e., for program variables that the monitor actually refers to. The pointer analysis is also
demand-driven: it computes context information up to a certain level, defined by a user-
provided quota. If the refined information is precise enough to distinguish the computed
points-to sets from others, then we are done. Otherwise, we can opt to have the points-to
set refined further with a higher quota.

To use the demand-driven approach, we augmented points-to sets with wrappers. Upon an
emptiness-of-intersection query for points-to sets pointsTo(c1) and pointsTo(c2), the wrap-
pers compute a first approximation of pointsTo(c1) and pointsTo(c2). If this approximation
is sufficient to determine that pointsTo(c1)∩pointsTo(c2) = ∅, then the wrappers immedi-
ately return false. Otherwise, the wrappers refine the approximations of both points-to sets
and re-iterate until finding two approximations with empty intersection (yielding false), or
until exhausting a pre-defined quota, yielding true.

7. FLOW-SENSITIVE NOP-SHADOWS ANALYSIS

The key technical contribution in this work is our novel Nop-shadows Analysis. This analysis
is a flow-sensitive intra-procedural analysis, which incorporates inter-procedural information
from the flow-insensitive Orphan-shadows Analysis. Its abstractions track, for each program
statement, (1) the set of heap objects that could be in each state of the Dependency State
Machine, and (2) sets of states from which objects could reach a final state. Using this
information, our analysis identifies nop shadows, which are shadows that do not affect
whether the Dependency State Machine can reach a final state.

Two main reasons motivated our design decision to use an intra-procedural analysis. First,
intra-procedural analyses almost always run more quickly than inter-procedural analyses,
since they consider far less code. Our second reason is empirical. We manually investi-
gated the still-active instrumentation points in our benchmarks following the application
of the flow-insensitive Orphan-shadows Analysis, and found that, in most cases, intra-
procedural analysis information suffices to rule out unnecessary instrumentation points,
when combined with coarse-grained inter-procedural summary information available from
the Orphan-shadows Analysis. Most procedures appear to locally establish the conditions
that they require to satisfy the type of conditions that we currently specify and verify with
Clara. The results presented in this paper confirm these findings.

We next explain the need for flow-sensitivity by presenting some code which exercises our
running example, the ConnectionClosed tracematch. Our first example is straight-line code
involving a single connection object; however, in Section 7.6, we discuss how our analysis
handles loops, multiple methods, and events on arbitrary combinations of aliased objects.

7.1. Example

Figure 7 presents example code. It is annotated with a simplified version of the analysis
information that our analyses will compute; an explanation of this information follows.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Partially evaluating finite-state runtime monitors ahead of time A:17

The code creates a connection and executes some operations on that connection, all of
which cause transitions on the ConnectionClosed aspect. Because our example code only
manipulates one connection object, we can defer our discussion of aliasing to Section 7.6.1.

While this example is contrived, it demonstrates the possibilities for optimization by
taking control flow into account. (The flow-insensitive Orphan-shadows Analysis does not
suffice: both disconnect and reconnect events occur on the same object.) The only events
that must be monitored to trigger the monitor for this example at the right time are 1) the
write at line 7 and 2) one of the two disconnect events at lines 5 and 6. In particular, the
disconnect and reconnect operations at lines 3 and 4 do not need to be monitored: they are
on the prefix of a match, but the match can be completed without monitoring this prefix.
Conversely, the operations at lines 8 to 10 do not lead to a pattern violation and hence need
no monitoring either. Soundness requires monitoring at least one of the two disconnects at
lines 5 and 6, but not both.

Using the Nop-shadows Analysis results, the compiler need only retain instrumentation
at lines 5 and 7, or 6 and 7—the minimal set of instrumentation points guaranteeing an
optimized instrumented program will report an error if and only if the un-optimized program
would have reported an error.

7.2. Analysis Overview

The Nop-shadows Analysis identifies nop shadows one at a time, by combining results from
two analysis phases. The first phase uses a backward dataflow analysis to tell apart, for every
statement in a method, (1) states which may possibly lead (in the rest of the program) to
a final state (“hot states”) and (2) states that will never give rise to a final state (“cold
states”). The second phase uses a forward dataflow analysis to compute possible monitor
states at each statement s. The analysis can then identify nop shadows by combining results
from the two phases.

Let shadow s lead from q to q′. Then s must be monitored, i.e., is not a nop shadow, if
there is some continuation for which q and q′ are not in the same equivalence class. Two
situations require shadows to remain enabled: (1) a transition at s may move the automaton
from a hot to a cold state, leading to false positives if disabled; or (2) a transition from a
cold state to a hot state, leading to false negatives if disabled. In (1), disabling s may lead
to false positives at runtime; because the transition is disabled, the monitor state remains
hot and the monitor may therefore signal a violation that s would have prevented. In (2),

1 public static void main(String args[]) {
2 Connection c1 = new Connection(args[0]);

3 c1.disconnect();
· {0} · · · · · · { {} · · · {0, 1, 2} }

4 c1.reconnect();
· {1} · · · · · · { {} · · · {0, 1, 2} }

5 c1.disconnect();
· {0} · · · · · · { {} · · · {0, 1, 2} }

6 c1.disconnect();
· {1} · · · · · · { {} · · · {0, 1, 2} }

7 c1.write(args [1]);
· {1} · · · · · · { {} · · · {1} }

8 c1.disconnect();
· {2} · · · · · · { {} · · · {2} }

9 c1.reconnect();
· {1} · · · · · · { {} }

10 c1.write(args [1]);
· {0} · · · · · · { {1} }

11 }
· {0} · · · · · · { {2} }

Fig. 7: Example program, annotated with combined analysis information.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 Eric Bodden et al.

the transition moves the automaton from cold to hot. In this case, disabling s may yield a
false negative; the monitor could fail to signal an actual violation.

We can disable s in all other cases: if, for all continuations of s, all possible source states
q and target states q′ are either all hot or all cold. Such a transition would not change
whether or not the automaton matches, and we declare that s is a nop shadow.

Dependencies between shadows require us to iterate our algorithm until it reaches a fixed
point, removing one shadow at a time.

We describe the algorithm by first discussing the forward and backward phases, as they
apply to a single set of variable bindings; Section 7.6.1 presents our full abstraction, which
maps Dependency State Machine states to logical formulas over binding representatives.

7.3. Forward pass

The forward pass determines, for each statement s, the set of automaton states that the
automaton could be in at statement s. The forward analysis works on a determinized input
state machine2. Clara builds the deterministic automaton using subset-construction:

Definition 12 (Determinizing a non-deterministic state machine). Let L ⊆ Σ∗ be a reg-
ular Σ-language and let M = (Q,Σ,∆, Q0, F) be a non-deterministic finite-state ma-
chine with L(M) = L. Then we define the deterministic finite-state machine det(M) as

det(M) := (P(Q),Σ, δ, Q0, F̂) by:

δ = λQs.λa. {qt ∈ Q | ∃qs ∈ Qs such that ∃(qs, a, qt) ∈ ∆};
F̂ = {QF ∈ P(Q) | ∃q ∈ QF such that q ∈ F}.

Figure 8a reproduces the non-deterministic finite-state machine for the ConnectionClosed
example. Figure 8b shows the equivalent deterministic finite-state machine. We have as-
signed a fresh state number to each state in the deterministic automaton.

In Figure 7, next to the downwards-pointing arrow, we have annotated each statement
with the states of the deterministic automaton just before and after executing that state-
ment. In this example, the program has only a single control-flow path, and therefore our
analysis will only associate a single state with each statement. However, if there are mul-
tiple control-flow paths reaching a statement s, and the execution along these paths yields
different states q1 and q2, then our analysis will associate both q1 and q2 with s—it does
not merge states. In the sequel, we will denote the set of source states associated with s by
sources(s). Also, we will refer to the deterministic finite-state machine det(M) as Mfwd.

7.4. Backward pass

The backward analysis determines, for every statement s, sets of states that are “hot” at
s; it finds one set for every possible continuation of the control flow after s which reaches
the final state. Like the forward analysis, the backward analysis uses a determinized state
machine. In particular, it uses a determinized state machine for the mirror language L,
which consists of the reverse of every word in L. Given a non-deterministic finite-state
machineM with L(M) = L, one can easily obtain a non-deterministic finite-state machine
rev(M) accepting L by reversing the transition function.

For any non-deterministic finite-state machine M,

L(rev(M)) = L(M).

Our backward analysis operates on the state machine

Mbkwd := det(rev(Mfwd)).

2Determinizing ensures that the state machine will be in only one state at a time. This simplifies the
backward pass, which partitions the states into equivalence classes.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Partially evaluating finite-state runtime monitors ahead of time A:19

CLOSE

CLOSE,
RECONNECT, WRITE

WRITE

CLOSE

(a) Original non-deterministic finite-state machine for L.

0 1 2

CLOSE

RECONNECT, WRITE

WRITE

CLOSE

RECONNECT CLOSE

RECONNECT, WRITE

(b) Mfwd, deterministic finite-state machine for L.

{2} {1} {0, 1, 2}WRITE CLOSE

CLOSE,
RECONNECT, WRITE

(c) Mbkwd, minimal deterministic finite-state machine for mirror language L.

Fig. 8: Finite-state machines for Connection example.

Note that L(Mbkwd) = L. Figure 8c shows the state machine that the backward analysis
uses for the ConnectionClosed example. The states of Mbkwd are actually subsets of the
state set of Mfwd; we labelled every state of Mbkwd with the corresponding state set of
det(rev(M)) (Figure 8b). For presentation purposes, we omitted the reject state from the
Figure; the reject state represents the empty state set. By construction,Mbkwd is minimal.
(See [Brzozowski 1962] for a proof.)

The forward analysis conceptually starts at the beginning of the program execution.
(Since our analyses are intra-procedural, we use Orphan-shadows Analysis to summarize
caller effects). The backward analysis, on the other hand, starts at every statement which
potentially reaches a final state, i.e., at every shadow s such that label(s) = l with an
l-transition into a final state qF ∈ F .

In Figure 7, we show how the states of Mbkwd evolve through the backward analysis.
At first, the only label that can bring the ConnectionClosed monitor into a final state is
a WRITE. The analysis therefore starts immediately before every write statement. The
analysis then proceeds exactly as the forward analysis. For instance, starting in state {2}
and reading a WRITE through the automaton in Figure 8c, the analysis infers that the
next state, just before the WRITE, is {1}. Due to the symmetries between the analyses, we
have implemented the forward and backward analyses using a common code base; the only
difference is in the inputs (state machines, control-flow graphs) that we provide to them.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 Eric Bodden et al.

7.5. Determining Nop shadows

The analysis information in Figure 7 enables us to identify and disable nop shadows. Our
notion of a nop shadow is related to the novel idea of continuation-equivalent states. We
say that states q1 and q2 are continuation-equivalent at a shadow s, or simply equivalent
at s, and write q1 ≡s q2, if, for all possible continuations of the control flow after s, the
dependency state machine reaches its final state at the same program points, whether we
are in state q1 or q2 at s. We formally define this equivalence relation as follows.

For every shadow s, call the sets of states computed by the backward analysis imme-
diately after s the futures of s. Further, call the states computed by the forward analysis
immediately before s the sources of s, and for every state q in sources(s), let target(q, s)
be the target state reached after executing an s-transition from q. For instance, for the
disconnect statement at line 5 of Figure 7 we have:

futures(line 5) = { {}, {0, 1, 2} };
sources(line 5) = {0};

target(0, line 5) = 1.

We further define continuation-equivalence for states as:

q1 ≡s q2 := ∀Q ∈ futures(s). q1 ∈ Q⇔ q2 ∈ Q.
A shadow is a nop shadow when it transitions between states in the same equivalence

class, unless the target state is an accepting state. (Because reaching a final state triggers
the monitor, such transitions have an effect even though they switch between equivalent
states.) Recall that F is the set of accepting, i.e., property-violating, states of Mfwd.

Definition 13. A shadow at a statement s is a nop shadow if:

∀q ∈ sources(s). q ≡s target(q, s) ∧ target(q, s) 6∈ F.
The first conjunct states a nop-shadow transitions only between states that are in the

same equivalence class. However, if target(q, s) ∈ F , then the shadow triggers the run-
time monitor. According to Clara’s monitoring semantics, a monitor must signal repeated
property violations every time the violation occurs—some monitors execute error-handling
code. For instance, on “c.disconnect(); c.write (); c.write()”, the monitor should signal a
violation after both WRITE events. However, the second WRITE event does not change
the monitor’s state; we have 2 = target(2, s) = 2, so we must explicitly handle such cases.

Examples. The disconnect statement at line 5 of Figure 7 has source(s) = {0} and
target(0, s) = 1. For both sets Qfut ∈ futures(s) = { {}, {0, 1, 2} }, 0 ∈ Qfut ⇔ 1 ∈ Qfut.
Consequently, we have 0 ≡s 1. Because 1 6∈ F , s is a nop shadow.

The write statement at line 7 is different. Here, source(s) = {1} and target(1, s) = 2. The
set Qfut = {2} ∈ futures(s) has 2 ∈ Qfut but 1 6∈ Qfut. Hence, 1 6≡s 2, i.e., s is not a nop
shadow, and must therefore remain enabled.

Remark on minimization. Although any machine accepting the mirror language would
work for the backward analysis, the definition of nop shadows explains why we use a mini-
mal deterministic finite-state machine: in a minimal state machine, all (forward-)equivalent
states are collapsed together. The collapsed state will be labeled with a larger set Qfut of
Mfwd states than the un-collapsed sets would have been. Hence, after collapsing equivalent
states, more sets Qfut will contain both source and target states.

Need to re-iterate. Our example program contains several nop shadows. For instance, all
shadows in lines 3–6 from Figure 7 are nop shadows, and indeed it is sound to disable any
single shadow from that set. However, we can only remove shadows one-by-one: after dis-
abling a shadow, we need to re-compute the analysis information for its containing method,

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Partially evaluating finite-state runtime monitors ahead of time A:21

because disabling a shadow changes the monitor’s transition structure within the method.
For instance, in our example, disabling both CLOSE transitions at lines 5 and 6 is unsound:
removing both shadows leads to the monitor not reaching its final state at line 7.

Algorithm 3 presents the main loop of the Nop-shadows Analysis. For each shadow-
bearing method in the program, this algorithm iterates the forward and backwards passes,
along with the Orphan-shadows Analysis (when necessary), greedily removing shadows until
it reaches a fixed point. On our benchmarks, two iterations of the outer loop always sufficed.

Algorithm 3 Main loop for Nop-shadows Analysis.

repeat
for each method m still bearing enabled shadows do
repeat

compute forward and backward analysis results for m.
if m contains nop shadows then

arbitrarily choose and remove any one nop shadow.
re-run Orphan-shadows Analysis on shadows from m.

end if
until no nop shadows remain in m.
if we have removed any nop shadows from m then

re-run Orphan-shadows Analysis on entire program.
end if

end for
until we failed to remove a nop shadow in the previous iteration

In the example, the algorithm would leave one of the shadows at lines 5–6, and the shadow
at line 7—exactly the minimal set of shadows in this case.

Figure 9 shows how often we re-iterate the analysis of each method, summarizing results
over all methods from our benchmark set where Nop-shadows Analysis applies. Observe
that we iterate only a few times for the vast majority of cases—this number is bounded
by the number of still-enabled shadows in the method—and there are only twelve cases in
which we have to iterate more than ten times. There was one method which required 78 re-
iterations: fillArray in class CompactArrayInitializer of the bloat benchmark with the
FailSafeIter tracematch. This method contains a large number of statements that modify a
collection (an instruction stream).

Our simplified discussion ignored the following features of Java code:

(1) conditional control flow and loops,
(2) multiple methods with virtual dispatch,
(3) aliased objects, and
(4) more general specification patterns referring to more than one object.

In the following, we explain an analysis that takes all of the above into account. We show
that it is sound for any single-threaded Java program without reflection; in continuing work,
we are investigating the use of dynamic information for circumscribing the potential impact
of reflection on program behaviour [Bodden et al. 2011].

7.6. Full description of the Nop-shadows Analysis

We next present a sound implementation of the function necessaryTransition for the Nop-
shadows Analysis. First, we motivate the need for flow-sensitive alias information. Recall
that we defined the semantics of a dependency state machine over ground traces, which
are projections of the single trace of parameterized events occurring at runtime. Our static

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 Eric Bodden et al.

0 20 40 60 80

1

10

100

1000

Number of re-iterations

F
re

q
u

en
cy

(n
u

m
b

er
of

m
et

h
o
d
s)

Fig. 9: Number of re-iterations per method (log scale).

analysis needs an analogue of projection to extract sub-traces for different variable bindings.
We next define object representatives and explain how they are used in our abstraction.

7.6.1. Abstractions: object and binding representatives. Runtime monitors associate automaton
states with variable bindings, i.e., mappings from free variables declared in the depen-
dency state machine to concrete runtime objects. Because concrete runtime objects are
not available at compile time, we use a static abstraction. We model a runtime binding
x = o(v1) ∧ y = o(v2) with a binding x = r(v1) ∧ y = r(v2), where r(vi) is the “ob-
ject representative” of o(vi). Object representatives are a static abstraction that uniformly
incorporate aliasing information from multiple alias analyses. A full description of object
representatives is beyond the scope of this paper; see [Bodden et al. 2008b] for details. In
brief, object representatives almost transparently substitute for runtime objects by support-
ing both may-alias and must-alias queries. The must-alias relation is the equality relation
for object representatives. That is, when our implementation generates a set of two object
representatives {r1, r2}, then if r1 and r2 must-alias, we have r1 = r2, so the set reduces to
{r1} = {r2}. This smaller representation saves time and memory during analysis.

At compile time, we implement object representatives as objects that are instantiated with
a local variable v and statement s as parameter. An object representative hence represents
the object pointed to by v at s. We omit s when it is clear from the context, or when
v has a single assignment, and write o(v). (Note that storing s is necessary because our
internal representation is not in Static Single Assignment Form [Cytron et al. 1991]. If it
were, s could be inferred from v.) Each object representative r1 also has access to a flow-
insensitive context-sensitive whole-program pointer analysis and to intra-procedural flow-
sensitive must- and must-not-alias analyses, allowing the representative to decide aliasing
relations to other object representatives r2 on a best-effort basis (while defaulting to “may
alias”, denoted r1 ≈ r2). Table I summarizes the relations between object representatives.

We call the set of all object representatives Õ. For any subset R ⊆ Õ of object represen-
tatives, we define sets mustAliases(R) and mustNotAliases(R) as follows:

mustAliases(R) := {r′ ∈ Õ | ∃r ∈ R such that r = r′};
mustNotAliases(R) := {r′ ∈ Õ | ∃r ∈ R such that r 6= r′}.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Partially evaluating finite-state runtime monitors ahead of time A:23

r1 ≈ r2 Object representatives may-alias
r1 = r2 Object representatives must-alias
r1 6= r2 Object representatives must-not-alias

Table I: Aliasing relations between object representatives

Binding representatives resemble the static bindings β̂ that we used in the Orphan-
shadows Analysis, but contain richer information: a binding representative contains both
positive and negative information. The positive information records which objects a variable
could possibly be bound to, while the negative information records which objects a variable
cannot be bound to.

Binding representatives are key to our abstraction. Our analyses maintain, for each pro-
gram statement and Dependency State Machine state, a set of binding representatives
representing objects that could be in a given state (or that are hot, for the backward pass).

We define a binding representative b ∈ B̃ as a pair (β+, β−) containing a positive binding
β+ and a negative binding β−. Both binding functions map a Dependency State Machine’s
free variables to sets of object representatives. We extend both partial functions to total
functions by mapping a free variable v to ∅ when no other mapping for v is defined.

For example, the binding representative

({x 7→ {r1, r2}, y 7→ {r3}}, {x 7→ {r4}})
states that x can only be bound to objects represented by both r1 and r2, and can certainly
not be bound to objects represented by r4. (We can deduce r1 ≈ r2: if r1 6= r2, then x could
not simultaneously be bound to both r1 and r2, while if r1 = r2, then we would only store
either r1 or r2.) Also, y can only be bound to objects represented by r3.

We sometimes choose to write binding representatives as a conjunction of equations. For
instance, one can write the above binding representative as:

x = r1 ∧ x = r2 ∧ y = r3 ∧ x 6= r4.

This representation allows us to easily identify and perform simplifications on binding repre-
sentatives; see [Bodden 2009] for details. These simplifications can reduce self-contradictory
binding representatives to false, increasing the precision of our analysis.

Recall the important concept of compatibility, which we use to determine when a given
shadow affects an abstract state. For any variable-to-object representative binding β : V →
Õ, and any binding representative b = (β+, β−), we define compatibility between β and b:

compatible(β, (β+, β−)) := @v such that β(v) ∈ mustNotAliases(β+(v))

∨ β(v) ∈ mustAliases(β−(v)).

That is, β is incompatible with b if β binds some variable v to an object representative that
must-not-aliases some object representative in v’s positive binding, or if some v must-aliases
some object representative in v’s negative binding. Note that when β is empty, i.e., binds
no variables at all, β will be compatible with any binding representative.

Shadows may also be compatible with binding representatives. Every shadow s induces a
variable binding βs = shadowBinding(s) of type V → Õ. We will often write compatible(s, b)
in place of compatible(βs, b).

Using the notion of compatibility, we can define an inclusion relation on binding represen-
tatives, which we will use to accelerate our analysis passes: we don’t propagate representa-
tives that are subsumed by other representatives. Let b1 and b2 be binding representatives.
Then b2 is at least as permissive as b1, or b1 ⊆B̃ b2, if:

b1 ⊆B̃ b2 :⇐⇒ (∀β. compatible(β, b1)→ compatible(β, b2)) .

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 Eric Bodden et al.

That is, b1 ⊆B̃ b2 if, for every variable v, every object o that can be bound to v according
to b1 can also be bound to o according to b2.

We define strictly more permissive, or ⊂B̃, in terms of ⊆B̃, as follows:

b1 ⊂B̃ b2 :⇐⇒ b1 6= b2 ∧ b1 ⊆B̃ b2.
We will denote the empty binding representative, in which both binding functions β+

and β− are undefined for all variables, by >. Note that

∀b ∈ B̃ : b ⊆B̃ >.
7.6.2. The worklist algorithm. We next describe the forward and backward analyses that,

together, enable us to identify nop shadows. Algorithm 4 presents the worklist algorithm
which implements our analyses. Our forward and backward analyses both compute sets of
configurations before and after each statement. A configuration (Qc, bc) is an element of

P(Q)× B̃, i.e., a configuration combines a set Qc ⊆ Q of automaton states with a binding
representative bc. The underlying state set Q is the state set of Mfwd; the forward and
backward analysis operate on the same state set, but use reversed transition functions.

Algorithm 4 worklist(initial, succcfg, succext, δ)

1: wl := initial
2: before := after := λstmt. ∅ // associate ∅ with every statement
3: while wl non-empty do
4: let (stmt, cs) = wl.pop() in
5: // reduce configurations so that only most permissive ones remain
6: let cstemp = cs ∪ before(stmt) in
7: let csnew = {(Qc, bc) ∈ cstemp | @(Qc, b

′
c) ∈ cstemp . bc ⊂B̃ b′c} \ before(stmt) in

8: let cs′ = if shadows(stmt) = ∅ then csnew
else {c′ | ∀c ∈ csnew . ∀s ∈ shadows(stmt). c′ = transition(c, s, δ)} in

9: before.put(stmt,before(stmt) ∪ cs)
10: let cs′new = cs′ \ after(stmt) in // filter out configurations already computed
11: if cs′new non-empty then
12: after.put(stmt, after(stmt) ∪ cs′new)
13: // add jobs for intra-procedural successor statements
14: for stmt′ ∈ succcfg(stmt) do
15: wl.put(stmt′,wl(stmt′) ∪ cs′new)
16: end for
17: // add jobs for inter-procedural successor statements
18: for stmt′ ∈ succext(stmt) do
19: wl.put(stmt′,wl(stmt′) ∪ reachingStar (cs′new , relevantShadows (stmt)))
20: end for
21: end if
22: end while

While this algorithm builds on the worklist algorithm used in standard dataflow analyses,
it differs in a number of ways: 1) it integrates the results of a flow-insensitive inter-procedural
analysis at call sites and returns; 2) it does not merge dataflow facts at control-flow merges
(and is hence intra-procedurally path-sensitive); 3) it processes invididual configurations,
not the entire in set for each statement at each iteration; and 4) it prunes subsumed config-
urations on-the-fly. Section 7.6.4 describes how our algorithm initializes the worklist. The
worklist contains jobs (stmt, cs), which map from statements to sets of configurations. For
every statement stmt, wl contains a set of configurations reaching stmt whose successor con-
figurations must be computed. The worklist is empty if it maps every statement to the empty

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Partially evaluating finite-state runtime monitors ahead of time A:25

set. The algorithm also initializes mappings before and after to store previously-computed
configurations. These mappings allow us to detect the fixed point.

Lines 6–7 implement an optimization. Effectively we conduct a merge operation on each
statement’s before set. However, unlike most other merge operations, ours is lossless: it
only removes redundant information, i.e., configurations that are subsumed by others also
present in the set. The algorithm first computes the union cstemp of the old before set
and the configurations that need to be computed at the current statement, according to
the job popped from the worklist. Because the worklist maps statements stmt to jobs, the
current job is the only job for stmt, so the set cstemp holds all information computed so far
for stmt. At line 7, the algorithm removes subsumed configurations (Qc, bc) where cstemp

contains a configuration (Qc, b
′
c) with b′c strictly more permissive than bc. (Any shadow that

is compatible with bc will also be compatible with b′c. Hence, if (Qc, bc) causes a shadow to
be identified as a necessary shadow, then so will (Qc, b

′
c).) This optimization reduced the

number of configurations computed for many methods by two to three orders of magnitude.
Finally, line 7 also removes from the resulting set all configurations contained in the before

set and places the final result into csnew . Since the algorithm previously computed successor
configurations for these configurations (line 8), it need not recompute this information.

The remainder of the algorithm implements the standard work-list dataflow analysis
algorithm, using transition as described below. Lines 17–20 handle inter-procedural control-
flow by adding intra-procedural edges to the beginning or end of the current method (see
Section 7.6.3 for details.)

The transition function. Algorithm 5 implements our transition function. For a given
configuration and shadow, the algorithm computes a set cs of successor configurations.
Our implementation directly mirrors Avgustinov et al.’s implementation of the tracematch
runtime [Allan et al. 2005]. Because object representatives can approximately stand in for
runtime objects at compile time, static analysis algorithms based on object representatives
can closely resemble their corresponding runtime algorithms.

The transition function δ computes the set of target states from the shadow’s label l and
the incoming states Qc. For the forward analysis, δ is the transition function of Mfwd, and
for the backward analysis, it is the transition function of Mbkwd.

The remaining part of Algorithm 5 handles variable bindings. At runtime, the event
induced by shadow s changes the states of runtime monitors compatible with βs from Qc
to Qt. The resulting variable binding after a change is bc ∧βs. The monitors for all variable
bindings incompatible with βs remain in Qc. Hence, the variable bindings that remain in
Qc are bc ∧ ¬βs. Lines 3–6 compute successor configurations for all the variable bindings
that move to Qt, using the function and. In lines 8–9, the algorithm creates configurations
for all these variable bindings that remain in Qc, using the function andNot. We explain
both functions below.

Note that the algorithm applies andNot for each bound variable v separately, following
the tracematch runtime [Allan et al. 2005]. Consider a shadow s with a variable binding βs
which binds two variables, e.g. x = r(v1) ∧ y = r(v2). Then:

β− ≡ bc ∧ ¬βs
≡ bc ∧ ¬(x = r(v1) ∧ y = r(v2))

≡ (bc ∧ ¬x = r(v1)) ∨ (bc ∧ ¬x = r(v2)).

Since our abstraction stores all information in Disjunctive Normal Form, we must therefore
return multiple configurations in this case, one for every disjunct.

Algorithms and and andNot use simplification rules to (1) return ⊥ whenever the abstrac-
tion allows us to conclude that bc and βs are incompatible, and (2) minimize the number of
bound object representatives in the resulting binding representative, without losing sound-
ness or precision. Returning ⊥ means that the current configuration will not be propagated

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26 Eric Bodden et al.

Algorithm 5 transition((Qc, bc), s, δ)

1: cs := ∅ // initialize result set
2: l := label(s), βs := shadowBinding(s) // extract label and bindings from s
3: β+ := and(bc, βs) // compute configurations for objects moving to target states
4: if β+ 6= ⊥ then
5: cs := cs ∪ {(δ(Qc, l), β+)}
6: end if
7: // compute configurations for objects staying in Qc

8: B− :=
⋃

v∈dom(βs)

{ andNot(bc, βs, v) } \ {⊥}

9: cs := cs ∪ {(Qc, β−) | β− ∈ B−}
10: return cs

Algorithm 6 and((β+, β−), βs)

1: β+
new := β+, β−new := β−

2: for v ∈ dom(βs) do
3: if βs(v) ∈ mustNotAliases(β+(v)) ∨ βs(v) ∈ mustAliases(β−(v)) then
4: return ⊥ // bindings were incompatible
5: end if
6: // add new positive binding
7: β+

new := β+
new [v 7→ β+

new (v) ∪ {βs(v)}]
8: // prune superfluous negative bindings
9: β−new := β−new [v 7→ β−new (v) \ {r− | r− 6= βs(v)}]

10: end for
11: return (β+

new , β
−
new)

any further (see Algorithm 5, lines 4 and 8). This is an essential contribution to the pre-
cision of our analysis. Minimizing the number of bound object representatives leads to a
smaller abstraction and to a smaller number of possible configurations, thus enabling earlier
termination of the worklist algorithm.

We explain our implementation of and (Algorithm 6), which adds bindings βs to a binding
representative (β+, β−). For every variable v bound by βs, the algorithm compares the
existing positive and negative bindings for v with the object representative βs(v). The
bindings are incompatible if βs(v) must-not-aliases some object representative in β+(v),
or if it must-aliases some object representative in β−(v). The algorithm returns ⊥ for
incompatible bindings. Next, in line 7, the algorithm refines the positive binding by adding
βs(v) to β+

new (v). We consider three cases. When βs(v) ∈ mustAliases(β+
new (v)) already,

then it will not be added to the set again (by the design of the implementation). The
case βs(v) ∈ mustNotAliases(β+(v)) was excluded above. Hence, βs(v) will only be added
if it may-aliases all object representatives for v. Finally, in line 9, the algorithm prunes
superfluous negative bindings. For instance, if βs = x 7→ r(v) was just added to β+

new (v),
then x = r(v) implies that x 6= r− for all r− where r− 6= r(v). Hence we can remove such
object representatives r− from β−new (v)—such statements are implied by x = r(v) ∈ β+

new (v).
We implemented andNot, which updates (β+, β−) with the fact that v ∈ dom(βs) no

longer binds βs(v), as shown in Algorithm 7. First, if βs(v) must-aliases any object repre-
sentative from v’s positive binding, then the bindings are incompatible, and the algorithm
returns ⊥. Otherwise, the algorithm adds βs(v) to the negative bindings and returns the
updated binding representative. However, as with and, we avoid adding redundant negative
information when we know that βs(v) already must-not-aliases some positive binding for v.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Partially evaluating finite-state runtime monitors ahead of time A:27

Algorithm 7 andNot((β+, β−), βs, v)

1: if βs(v) ∈ mustAliases(β+(v)) then
2: return ⊥ // bindings were incompatible
3: end if
4: // negative binding redundant if it must-not-aliases a positive binding
5: if βs(v) ∈ mustNotAliases(β+(v)) then
6: return (β+, β−)
7: else // return updated binding
8: return (β+, β−[v 7→ β−(v) ∪ {βs(v)}])
9: end if

This concludes the description of our transition function. We return to our explanation
of the worklist algorithm, Algorithm 4.

7.6.3. The external-successor function succext. One of the contributions of this article is a
discussion of how we account for inter-procedural control-flow in our intra-procedural algo-
rithm. These are handled in lines 17–20 of Algorithm 4. Figure 10 illustrates the analysis
of a potentially-recursive method m, represented by the central dark rectangle. The dashed
arrows denote the successor function succcfg given by m’s control-flow graph. The solid ar-
rows represent a second, inter-procedural, successor function succext. We’ve assumed that m
includes method calls, which can potentially recursively call back to m itself; the recursion
may be indirect, through intermediaries in the call graph.

Call the set of potentially-recursive call sites C. Then, configurations that we computed
for any c ∈ C must propagate to m’s entry statement (edge (1)) through recursion. We also
need to propagate configurations coming into c to its control-flow successor (edge (3a)),
accounting for the case where c does not infinitely recurse. Furthermore, configurations that
we computed for any of m’s exit statements must also propagate to all potentially-recursive
call sites c′ ∈ C in m (edge (2)). For provably non-recursive call sites c′′ (as determined by
our call graph), we only propagate configurations from c′′ to its control-flow graph successor,
but not to m’s entry statement (edge (3b)). Finally, we account for the case where multiple
recursive calls to m occur within a recursive call by propagating configurations from m’s
exit statement(s) to its entry statement, if m has any potential recursion (edge (4)).

We define the function succext as follows. Let heads(m) be the set of entry statements
of m, and tails(m) the set of exit statements of m3. Further, let recCall(m) be the set of
statements of m that contain an invoke expression through which m can potentially call
itself recursively. Conversely, nonRecCall(m) contains all statements that contain an invoke
expression through which m can certainly not be called. Then:

succext := λstmt.

heads(m) ∪ succcfg(stmt) if stmt ∈ recCall(m);

succcfg(recCall(m)) ∪ heads(m) if stmt ∈ tails(m);

succcfg(stmt) if stmt ∈ nonRecCall(m);

∅ otherwise.

Observe that we add some edges from succcfg to succext. When propagating configurations
along an edge of succext, we do more than just copy configurations from the edge’s source
statement to its target statement: while executing an external successor edge of m, other
methods may also execute and cause state transitions in the monitoring state machine. To
model these potential state transitions through other methods, line 19 of Algorithm 4 adds

3Because our backward analysis operates on a reversed control-flow graph, heads(m) for that analysis—the
tails of the input control-flow-graph—can contain more than one element.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28 Eric Bodden et al.

public void m() {

}

x.m()

y.n()

◦

◦

◦
◦

◦
◦

(3a)

(3b)

(4)

(2)

(1)
method
entry

method exit

potentially-
recursive
call site

provably
non-

recursive
call site

Fig. 10: Inter-procedural control-flow for the current method m.

reachingStar(cs′new , relevantShadows(stmt)) as well as the ordinary set of configurations
cs′new for inter-procedural successors.

Functions relevantShadows, reachingPlus and reachingStar. We next define three helper
functions. reachingStar computes successor configurations after 0 or more relevant shadow
executions, using the flow-insensitive analysis information computed by the Orphan-shadows
Analysis. reachingPlus computes successors after 1 or more shadow executions. Both of these
functions summarize the effects of the shadows in relevantShadows.

We first define relevantShadows. If stmt contains an invoke expression, then
relevantShadows(stmt) contains all shadow-bearing statements in all methods transitively
reachable through the invoke, except for statements from m itself. We exclude m as we have
explicitly accounted for its effects by adding the succext edges to the heads and tails. If stmt
is a head or tail of m, then relevantShadows(stmt) contains all shadow-bearing statements
in the entire program (excluding m). We do not know which methods execute before or
after m (even with the call graph), so we cannot reduce this set any further.

Given a statement stmt and a set cs of configurations just before stmt, reachingPlus
computes the set of configurations after executing at least one shadow at a statement
in relevantShadows(stmt). When a configuration c = (Qc, bc) reaches an exit point or a
recursive call site during the analysis of method m, all relevant shadows may perform
transitions on c. However, only shadows compatible with bc can change Qc. Hence, for
every binding representative b ∈ B̃ and shadow set ss ⊆ S, we define compL(b, ss) as:

compL(b, ss) := {a ∈ Σ | ∃s ∈ ss such that compatible(s, b) ∧ label(s) = a}.

This set contains the labels of all shadows in ss compatible with b.
We then define reachingPlus(cs, stmt) as the set of configurations reachable from

cs by applying at least one compatible shadow which is relevant to stmt. Formally,

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Partially evaluating finite-state runtime monitors ahead of time A:29

reachingPlus(cs, stmt) is the least fixed point satisfying:

• (Qc, bc) ∈ cs ∧ l ∈ compL(bc, ss) =⇒
(δ(Qc, l), bc) ∈ reachingPlus(cs, stmt);

• (Qc, bc) ∈ reachingPlus(cs, s) ∧ l ∈ compL(bc, ss) =⇒
(δ(Qc, l), bc) ∈ reachingPlus(cs, stmt).

We further define reachingStar as the reflexive closure of reachingPlus:

reachingStar(cs, stmt) := reachingPlus(cs, stmt) ∪ cs.

Hence, reachingStar computes the set of configurations reachable from cs by executing 0
or more shadows that are relevant at stmt.

7.6.4. Initializing the worklist algorithm. We next explain how we initialize Algorithm 4, which
takes four parameters: initial, succcfg, succext and δ. In forward mode, succcfg is simply
the successor function of m’s control-flow graph, succext is the inter-procedural successor
function defined above, and δ is the transition function ofMfwd. For the backward pass, we
simply invert the two successor functions, and use the transition function of Mbkwd for δ.

We still need to define the set initial of initial configurations, which serves to initialize
the worklist from Algorithm 4. We show the initialization, along with subsequent fixed-
point iterations, for the forward analysis in Figure 11a. The “iteration” box is described in
Algorithm 4; for now, consider only the “initialization” box.

We may assume, without loss of generality, that we are analyzing the first invocation of
method m; Algorithm 4 accounts for subsequent executions of m with the loop in line 17–
20. The first invocation of m enters the method through its first statement (its head). The
configurations that can reach m’s head are those that arise starting with the initial state
set Q0 and executing any shadows outside of m, in any order, for any variable binding (i.e.,
for >). Hence, for the forward analysis we define:

initial := { (h, reachingStar({(Q0,>)}, relevantShadows(h))) | h ∈ heads(m) } .

We now give initial for the backward analysis. Our goal is to create jobs associating
statements stmt with configurations c from which the remainder of the execution (including
the execution of stmt itself) could lead into a final state.

Figure 11b illustrates the initialization and iteration. Dually to the forward analysis, we
assume that m will not be executed again after its current execution.

The simplest case leading to a final state is intra-procedural. We must initialize a job
when there is a “final” shadow in m itself—a shadow s labeled with a label l = label(s)
such that there exists an l-transition into a final state qF ∈ F .

However, m may also return to its caller, and then the remainder of the execu-
tion could drive the configuration into a final state using shadows in other methods.
We therefore create jobs associating tail statements stmt of m with configurations c in
reachingPlus({F}, relevantShadows(stmt)). This is almost dual to the initialization for the
forward analysis, except we use reachingPlus, not reachingStar : we cannot reach a final
state in F from any of m’s tail statements if there are no shadows in any other methods at
all. reachingPlus only includes configurations that reach in at least one step.

The last case is where a callee of m reaches a final state. Let this callee be invoked
at stmt. We again associate stmt with reachingPlus({F}, relevantShadows(stmt)). Here,
relevantShadows(stmt) will contain all shadows reachable through the call site stmt, rather
than all shadows in methods other than m.

We hence initialize the backward analysis with the union of two sets. One set holds
configurations that lead into a final state within m, while the other set holds configurations
that could into a final state outside of m:

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:30 Eric Bodden et al.

initialization

iteration

Q0

•
•
•

method m

method m

other
methods

other
methods

other
methods

(a) Configurations reaching a method m’s first
statement, and handling of inter-procedural in-
formation.

initialization

iteration

•

•

•

•

•

•
•
•

method m

method m

other
methods

other
methods

other
methods

qF

qF

qF

qF

qF

(b) Paths along which configurations can prop-
agate a final state qF to a statement in m.

Fig. 11: Initialization and iteration of forward and backward passes.

initial :=

let reachingConfigs = reachingPlus({(F,>)}, relevantShadows(stmt)) in

{ (stmt, {(F,>)}) | ∃s ∈ shadowsOf(stmt) : δ(F, label(s)) 6= ∅)} ∪
{ (tail, reachingConfigs) | tail ∈ tails(m) ∪ recCall(m) ∪ nonRecCall(m) }.

Here, δ denotes the transition function of Mbkwd, tails the return statements of m.

7.7. Optimizations for faster analysis

In Section 7.6.2 we discussed one important optimization that eliminated configurations
that were less permissive than other configurations at the same statement. We now describe
other optimizations that also decrease the analysis time.

Abstracted call graph. The call graph that we use to identify all shadows in the transitive
closure of an outgoing method call abstracts the call graph computed by the points-to anal-
ysis in Spark [Lhoták and Hendren 2003]; we omit paths that never reach a shadow-bearing
method, accelerating graph look-ups. If a method invocation cannot transitively call any
shadow-bearing methods, then the call graph will not have any call edge for the invocation
and the analysis can identify the call as harmless in constant time. In our benchmarks,
abstracting the call graph was highly effective: on average, the abstracted graph had only
4.3% of the edges of the complete graph, with 12.9% in the worst case (12984 remaining
edges in bloat-FailSafeIter), and 0.02% (26 edges in fop-HasNext) in the best case.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Partially evaluating finite-state runtime monitors ahead of time A:31

Caching. We cache results extensively, which generally speeds up the analysis, but seems
to cause an out-of-memory error on one of our benchmarks. We cache points-to sets, must-
alias and must-not-alias analysis results for every method, and the set of methods transi-
tively reachable through method calls. We also cache the set of currently-enabled shadows
for each method. Näıvely caching enabled shadows does not work: a disabled shadow must
be removed from its containing method, but the removal must also be visible when analyzing
other methods later on—the cached list of shadows for that method is no longer valid.

Aborting overly long analysis runs. Despite these optimizations, the Nop-shadows Anal-
ysis still takes a long time to finish on a small number of methods. Figure 12 summarizes
method peelLoops(int) from EDU.purdue.cs.bloat.cfg.FlowGraph of the benchmark
bloat. For this benchmark, our context-sensitive points-to analysis fails to compute con-
text information for the iterators and collections. Hence, when analyzing this method with
respect to the FailSafeIter monitor, the Nop-shadows Analysis gets imprecise information:
i1, i2 and i3 could all point to the same iterator. This leads to a large number of pos-
sible configurations. Assume that we have a configuration with a binding representative
b := c = r(c1) ∧ i = r(i1), and we want to compute b ∧ i = r(i2). Precise points-to
information would tell us that r(i1) 6= r(i2) (as the iterators cannot be the same), so that:

b ∧ i = r(i2) ≡ c = r(c1) ∧ i = r(i1) ∧ i = r(i2)

≡ c = r(c1) ∧ false

≡ false.

However, since we only know r(i1) ≈ r(i2), the analysis cannot reduce “c = r(c1) ∧ i =
r(i1)∧i = r(i2)”. The many consecutive loops in peelLoops(int) greatly increase the size
and number of configurations to be computed before the analysis reaches its fixed point.
Worse yet, due to the imprecise pointer information, the analysis fails to find nop shadows.

We therefore recorded the maximal number of configurations computed on a success-
ful (i.e. nop shadow-detecting) analysis run in any of our benchmarks. This occurred in
visitBlock(Block) of class EDU.purdue.cs.bloat.cfg.VerifyCFG, not quite coinciden-
tally in the same benchmark. The analysis computed 8828 configurations before it removed
a shadow from this method. We then modified the Nop-shadows Analysis so that it would
abort the analysis of a single method (thus continuing with the next method) whenever it
computed more than a fixed quota of configurations. We defined this quota to be 15000,
comfortably exceeding the 8828 observed configurations. We believe that this value is high
enough to yield excellent precision given precise pointer information; our experiments also
showed that it is low enough to significantly decrease the overall analysis time in the bench-
marks bloat-FailSafeIter, bloat-FailSafeIterMap and pmd-FailSafeIterMap. (Clara did not
abort analysis runs on any other benchmarks.)

Additionally, the benchmarks bloat, chart and pmd all use reflection in connection with
collections. Figure 13 shows a simplified version of a clone method in chart. A shortcoming
in the Java specification means that, even if an object implements the Cloneable interface,
the object is not required to implement a publicly-accessible clone method. The chart
developers work around this shortcoming by calling the clone method reflectively when it
exists. Such reflection confuses the Spark points-to analysis: the analysis has no idea which
class’s clone method will be called—reflection is not modeled precisely enough in Spark. As
a result, there are many possible clone implementations to consider and the demand-driven
analysis (see Section 6.2) fails to compute context in its given quota.

7.8. Soundness of Nop-shadows Analysis

Recall that Section 4 defined the semantics of dependency state machines and provided
soundness constraints for the predicates necessaryTransition. Any constraint-respecting
implementation of necessaryTransition implies a sound analysis: if the predicate holds,

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:32 Eric Bodden et al.

1 void foo(Collection c1, Collection c2, Collection c3)
2 Iterator i1 = c1. iterator ();
3 while(i1.hasNext()) {
4 i1 .next();
5 c2.add (..);
6 }
7 Iterator i2 = c2. iterator ();
8 while(i2.hasNext()) {
9 i2 .next();

10 c3.add (..);
11 }
12 Iterator i3 = c3. iterator ();
13 while(i3.hasNext()) {
14 i3 .next();
15 }
16 }

Fig. 12: Worst-case example for complexity of Nop-shadows Analysis (in the case of impre-
cise points-to sets).

1 public static Object clone(final Object object) throws CloneNotSupportedException {
2 if (object == null) {
3 throw new IllegalArgumentException(”Null ’object’ argument.”);
4 }
5 if (object instanceof PublicCloneable) {
6 final PublicCloneable pc = (PublicCloneable) object;
7 return pc.clone();
8 } else {
9 final Method method = object.getClass().getMethod(”clone”,(Class[]) null);

10 if (Modifier. isPublic(method.getModifiers())) {
11 return method.invoke(object, (Object[]) null);
12 }
13 }
14 throw new CloneNotSupportedException(”Failed to clone.”);
15 }

Fig. 13: Clone method in chart using reflection.

the analysis will not affect the runtime behaviour of the specified monitors. We now show
that the Nop-shadows Analysis respects necessaryTransition. To restate the soundness
condition, any sound implementation of necessaryTransition must respect:

∀a ∈ Σ ∀t = a1 . . . ai . . . an ∈ Σ+ ∀i ∈ N :
a = ai ∧matches(a1 . . . an) 6= matches(a1 . . . ai−1ai+1 . . . an)

=⇒ necessaryTransition(a, t, i).

Helper definitions. We denote the transitive closure of a transition function δ by δ∗. Also,
we define the variant finite-state machine Mq to be the state machine M = (Q,Σ, q0, δ, F)
with an alternate initial state q ∈ Q, i.e. Mq := (Q,Σ, q, δ, F).

Soundness of shadow removal. Assume that the Nop-shadows Analysis disables a shadow
s that triggers the i-th event with label(s) = ai. We will prove that, by construction,

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Partially evaluating finite-state runtime monitors ahead of time A:33

matches(a1 . . . ai−1aiai+1 . . . an) = matches(a1 . . . ai−1ai+1 . . . an), (1)

implying the soundness condition.
Consider a projected and therefore ground runtime trace t = a1 . . . ai . . . an ∈ Σ+. For

convenience, define w1 := a1 . . . ai−1, a := ai and w2 := ai+1 . . . an, i.e., we have that
a1 . . . an = w1aw2. Let source := δ∗(q0, w1) and target := δ∗(q0, w1a) = δ(source, a). Since
the Nop-shadows Analysis declares shadow s to be a nop shadow, Definition 13 provides:

∀Qfut ∈ futures(s). source ∈ Qfut ⇐⇒ target ∈ Qfut ∧ target 6∈ F.
From the definition of matches we know that:

∀w ∈ pref(w1). w ∈ matches(w1w2)⇐⇒ w ∈ matches(w1aw2).

Therefore, prefixes of w1 automatically satisfy Equation 1. We need only consider non-prefix
words w where w 6∈ pref(w1). But we need not consider prefixes of w1a either. Because
target 6∈ F we know that w1a 6∈ matches(w1aw2). Hence,

∀w ∈ pref(w1a). w ∈ matches(w1w2)⇐⇒ w ∈ matches(w1aw2).

Therefore, without loss of generality, we consider only words w with w 6∈ pref(w1a).
For such w, we need to show

w ∈ matches(w1w2)⇐⇒ w ∈ matches(w1aw2).

Since we have w = w1aw
′ ∈ (pref(w1aw2) \ pref(w1a)) and

∀Qfut ∈ futures(s). source = δ∗(q0, w1) ∈ Qfut ⇐⇒ target = δ∗(q0, w1a) ∈ Qfut,

we know that L(Msource) = L(Mtarget). Hence w is a matching prefix of w1w2 if and only
if it is a matching prefix of w1aw2.

Therefore, all that remains to be shown is that these set of states that we approximate in
our forward and backward passes are correct. In particular, our implementation must ensure
that, for every set Qfut ∈ futures(s), the states q ∈ Qfut are continuation-equivalent, i.e.,
for all ground traces t, the continuation of the program execution after reading s satisfies,

t ∈ L(Msource(s))⇐⇒ t ∈ L(Mtarget(s)).

Our implementation must therefore never merge state sets: merging may cause the analysis
to assume invalid equivalencies. Our worklist algorithm, Algorithm 4 (page 24), ensures
that state sets are never merged: while the algorithm does over-approximate pointer infor-
mation in various ways, it never merges configurations with differing state sets Qc. Every
configuration c = (Qc, bc) represents one element of the set futures. Algorithm 4 propagates
these configurations but never merges them. In particular, the algorithm has no special
treatment for control-flow merge points: when two different configurations reach the same
statement along different paths, the algorithm simply propagates both configurations; it
does not attempt to merge these configurations.

Further, the algorithm takes into account all possible continuations by propagating config-
urations along all possible intra- and inter-procedural paths. To properly propagate configu-
rations, the algorithm needs to conservatively handle binding representatives. When propa-
gating intra-procedurally, the algorithm refines configurations’ binding representatives using
simplification rules. When propagating configurations inter-procedurally along succext, the
algorithm does not refine binding representatives. Since unrefined binding representatives
are at least as permissive as refined representatives, this is a sound over-approximation.

The soundness of the forward and backward analyses then follow from the fact that we (1)
initialize both analyses with configurations at all nodes where an initial (or final) state could

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:34 Eric Bodden et al.

be reached; (2) propagate configurations along all possible control-flow paths (or abstrac-
tions of them), taking into account all relevant shadows (as determined by relevantShadow),
and (3) never merge configurations with differing state sets.

8. CERTAIN-MATCH ANALYSIS

The analysis information obtained during the Nop-shadows Analysis also enables us to
identify shadows s which certainly drive a Dependency State Machine into its final state.
Because such shadows imply that the program is definitely violating a stated property,
developers could profitably use a list of certain matches. Formally, we define a predicate
certainMatch on shadows s ∈ S:

certainMatch(s) := ∀q ∈ sources(s). target(q, s) ∈ F.
As an example, consider again the write shadows in the the two pieces of code from

figures 4a and 4d (page 6). Let s be the write shadow in Figure 4a. In this figure, there is
only one possible execution, and this execution yields sources(s) = {disconnected}. Because
target(disconnected,WRITE) = error ∈ F , the Certain-match Analysis will flag the write
shadow as a certain match.

On the other hand, there are two possible execution paths leading to the write shadow in
Figure 4d. One path closes the connection while the other one does not. Hence sources(s) =
{connected,disconnected}. As a result, we obtain target(connected,WRITE) = connected 6∈
F , so the Certain-match Analysis will not flag this write shadow as a certain match.

Because the Certain-match Analysis can operate on analysis information that the Nop-
shadows Analysis already computed, it has negligible compile-time cost. Further, because
the analysis only reports a certain match if the shadow in question completes the match
from all its possible source states, the Certain-match Analysis for a method m can only
yield false positives if m is actually dead, i.e., cannot be reached on any concrete program
execution. The Certain-match Analysis may miss some certain matches; for instance, it
may assume that certain control-flow paths are realizable, while the concrete program never
actually realizes these paths. The Certain-match Analysis therefore satisfies opposite design
goals from the other analyses that we presented: while the other analyses are sound over-
approximations that may report false positives but never miss potential violations, the
Certain-match Analysis is an unsound under-approximation that may miss actual violations
but never reports false positives (except for dead code, as explained above).

9. PRESENTING ANALYSIS RESULTS FOR MANUAL CODE INSPECTION

Designing a static analysis that is both sound and precise has obvious benefits. However,
we also quickly experienced the following drawback. Precise analyses are usually complex,
so when they do fall short, it is in complex situations.

In the context of Clara, some of the shadows remaining after our analyses—potential
property violations—can be difficult to manually classify as certainly-violating or certainly-
safe. Our hybrid approach enables the programmer to simply not care: she can test the
program with the inserted residual runtime monitor and observe whether the monitor is
actually triggered. Such an approach, however, depends on the availability of good test
cases. We therefore sought to present the static analysis results in an easily accessible way,
easing the task of manual code inspection as much as possible.

9.1. Potential points of failure and Potential failure groups

To reduce the workload on the programmer during manual inspection, we first divide all
still-enabled shadows into semantic groups. First, we select all still-enabled shadows from
the program that can lead the runtime monitor directly to an error state (e.g. all “write”
shadows for the ConnectionClosed property). These are the program points at which the
runtime monitor may potentially trigger its error handler at runtime. In the following, we

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Partially evaluating finite-state runtime monitors ahead of time A:35

will call each such shadow a potential point of failure (PPF). Next, we use points-to sets to
associate each PPF with all its context shadows, i.e., with all shadows that potentially may
have driven the runtime monitor to a state from which executing the shadow at the PPF
then makes the monitor reach the final state. For every PPF p, the context shadows of p are
exactly all those shadows compatible with p. The combination of a PPF with its context
shadows is called a potential failure group (PFG). That way, each group represents one
distinct error scenario. Clara reports its analysis results as a list of PFGs. The first author’s
dissertation [Bodden 2009] shows that inspecting PFGs instead of individual shadows can
reduce the number of items to inspect by about 70% on average. In previous work, we also
demonstrated methods to rank the reported list of PFGs such that PFGs whose shadows
likely remain enabled only due to analysis imprecision are ranked further to the bottom of
the list [Bodden et al. 2008a]. This, in turn, causes actual property violations more likely
to appear at the top of the list.

Programmers can inspect the list of PFGs in a textual format. However, such text files
may still be awkward to use. Ideally, one would like to display the analysis results inline with
the analyzed program’s source code. We therefore developed a plugin for the Eclipse IDE
that allows programmers to display the analysis results as an overlay to the program’s code.
Figure 14 shows a screenshot of this plugin on one of Clara’s test cases. Lines holding a
shadow are highlighted in yellow and give information about the shadow’s abstract symbol
name and the Nop-shadows Analysis’s analysis information on the right-hand side. (Future
versions will also display the property’s state machine inline.) Further, we use arrows to
link relevant shadows. An arrow exists from a shadow s1 to a shadow s2 if there is a PFG
containing both shadows, both shadows are within the same method and the program’s
control may flow from s1 to s2.

Many of the potential failure groups that remain after analysis, however, are spread over
different methods. This is because our intra-procedural analysis often successfully rules out
PFGs that are confined to a single method (except, of course, for methods that actually
cause a violation). We found the prospect of drawing arrows between multiple methods or
classes unappealing. Instead, we offer users a context menu for shadows, which automatically
links to all shadows in the same PFG but outside the clicked-on method.

We found this way of presenting our analysis a tremendous improvement over a textual
output. In particular, the plugin helped us to quickly identify implementation errors in ear-
lier versions of our analyses, and also allowed us to easily identify actual property violations
in our benchmark set. Further, good tool support for manual code inspection allows pro-
grammers to use Clara as a compile-time-only tool that allows them to identify possible
property violations without ever running a runtime monitor. For such an approach, it suffices
to provide Clara with a “skeleton” runtime monitor that consists only of advice definitions
and a Dependency State Machine annotation—such monitors need not contain any code
in advice bodies. This is particularly important as research has shown that writing correct
and efficient code for parameterized runtime monitors is highly nontrivial [Avgustinov et al.
2006; Chen and Roşu 2007].

10. EXPERIMENTS

In this section we explain our empirical evaluation and present our experimental results.
Due to space limitations, we can only give a summary of those results. The first author’s
dissertation [Bodden 2009] gives a full account.

This work presents experimental results for monitors generated from tracematch spec-
ifications [Allan et al. 2005]. Because Clara abstracts from the implementation details
of a runtime monitor through Dependency State Machines, Clara supports all AspectJ-
based runtime monitors that carry a Dependency State Machine annotation. Our earlier
work [Bodden et al. 2009] showed that the efficacy of our static analyses is independent of
the concrete monitoring formalism.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36 Eric Bodden et al.

Fig. 14: Presentation of analysis results in the Eclipse IDE

property name description
ASyncContainsAll synchronize on d when calling c.containsAll(d)) for synchronized col-

lections c and d
ASyncIterC only iterate a synchronized collection c when owning a lock on c
ASyncIterM only iterate a synchronized map m when owning a lock on m
FailSafeEnum do not update a vector while iterating over it
FailSafeEnumHT do not update a hash table while iterating over its elements or keys
FailSafeIter do not update a collection while iterating over it
FailSafeIterMap do not update a map while iterating over its keys or values
HasNextElem always call hasMoreElements before calling nextElement on an Enu-

meration
HasNext always call hasNext before calling next on an Iterator
LeakingSync only access a synchronized collection using its synchronized wrapper
Reader do not use a Reader after its InputStream was closed
Writer do not use a Writer after its OutputStream was closed

Table II: Monitored properties for classes of the Java Runtime Library

For our experiments, we wrote a set of twelve tracematch specifications for different
properties of collections and streams in the Java Runtime Library. Table II gives brief
descriptions for each of these properties. We selected properties of the Java Runtime Library
due to the ubiquity of clients of this library. Our tracematch definitions, all our benchmarks,
scripts, and Clara itself are available at http://www.bodden.de/clara/. We maintain
Clara as an open-source project.

We used Clara to instrument the benchmarks of version 2006-10-MR2 of the DaCapo
benchmark suite [Blackburn et al. 2006] with runtime monitors for the twelve properties we
defined. DaCapo contains eleven different workloads. We consider all but eclipse. Eclipse
makes heavy use of reflection, which Clara still has trouble with (see [Bodden et al. 2011]

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

http://www.bodden.de/clara/

Partially evaluating finite-state runtime monitors ahead of time A:37

for a possible strategy—beyond the scope of this work—for dealing with reflection). For
our experiments, we used a machine with an AMD Athlon 64 X2 Dual Core Processor
3800+ running Ubuntu 7.10 with kernel version 2.6.22-14 and 4GB RAM. We ran the static
analysis on IBM’s J9 virtual machine, allowing 3GB of heap space.

We will now discuss (1) the fraction of shadows that Clara can successfully identify
as unnecessary for monitoring, (2) the positive impact of disabling these shadows on the
runtime overhead of monitoring, and (3) the effectiveness of our Certain-match Analysis.

10.1. Fraction of shadows identified as irrelevant

Table III summarizes the analysis results for our 120 tracematch/property combinations.
In 11 cases, the property did not apply to the benchmark, leaving 109 cases to consider.
The table reports, as white slices, the fraction of shadows that the analysis identified as
irrelevant. In red (or gray) we show the fraction of shadows that are known to trigger actual
violations at runtime. No sound static analyses could disable these shadows: because the
shadows trigger a property violation at runtime, they must remain enabled. The remaining
black slices represent shadows which we are unsure about. These shadows remain active
even after analysis, either due to analysis imprecision or due to actual property violations.

As the table shows, our analysis is very effective in most cases. Clara was able to prove
for 74 out of these 109 cases (68%) that the program cannot violate the property on any
execution (all-white circles). In the remaining cases, the analysis can often disable a large
fraction of the instrumentation. Black slices due to imprecision remain mainly in bloat,
jython and pmd. bloat is notorious for having very long-lived objects and a literally very
bloated code base. This makes it hard for static analyses to handle this benchmark. In
fact, bloat has been removed from the new version (9.12) of the DaCapo benchmark suite.
jython and pmd both make heavy use of dynamic class loading and reflection. This confuses
our pointer analysis, which makes very conservative approximations in such situations.
Our pointer analysis therefore believes that certain iterators and enumerations in these
benchmark might be aliased even though no aliasing exists in practice. We are currently
trying to extend Clara so that it can handle reflection using finer-grained approximations.

For fop/FailSafeIterMap, our analysis ran out of memory, despite having 3GB of heap
space available. fop uses many maps and iterators, and the FailSafeIterMap tracematch
induces 263 shadows in one of fop’s methods. We believe that this method is the reason that
the analysis runs out of memory on fop. The fact that fop is the largest of our benchmarks
seems to be coincidental; however, it does induce a total of 1116 relevant shadows with the
FailSafeIter tracematch. Also, the points-to analysis does not seem to work well on fop, so
that the Orphan-shadows Analysis is only able to eliminate 2 shadows for FailSafeIterMap.
The Nop-shadows Analysis must therefore cope with 1114 shadows, a number much higher
than for all other benchmark/property combinations (see [Bodden 2009] for details).

Note that we did not optimize our analysis implementation for memory consumption.
Indeed, we cache information where possible. Hence, it may well be possible that other
implementations of our algorithms could cope with fop/FailSafeIterMap, even with less
than 3GB. We certainly do not believe that this limitation is fundamental.

10.2. Reduction of runtime overhead

To measure runtime overhead, we ran all benchmark/property combinations before and
after applying our static analysis. We used the HotSpot Client VM (build 1.4.2 12-b03,
mixed mode) with default heap size settings. To execute the benchmarks, we used DaCapo’s
-converge switch, which repeatedly runs benchmarks until they reach a steady state before
measuring runtime, yielding error margins usually below 3%. Table III gives qualitative
information about the residual monitor’s runtime overhead through the ring that surrounds
each circle. A solid ring denotes an overhead of at least 15%, a dashed ring an overhead of less
than 15%, and a dotted ring means that no observable overhead remains. Table IV quantifies

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:38 Eric Bodden et al.

antlr bloat chart fop hsqldb

ASyncContainsAll 0
71

0
6

ASyncIterC 0
1621

0
498

0
146

0
33

ASyncIterM 0
1684

0
507

0
176

0
39

FailSafeEnum 0
76

0
3

0
1

6
18

0
120

FailSafeEnumHT 26
133

0
102

0
44

0
205

3|0
114

FailSafeIter 0
23

830
1394

149
510

0
288

0
112

FailSafeIterMap 0
130

444
1180

49
374 OOM

0
252

HasNextElem 0
117

0
4

0
12

0
53

HasNext 452
849

48
248

0
72

0
16

LeakingSync 0
170

0
1994

0
920

0
2347

0
528

Reader 0
50

0
7

0
65

0
102

3
1216

Writer 35
171

15|0
563

0
70

0
429

10
1378

jython luindex lusearch pmd xalan

ASyncContainsAll 0
31

0
18

0
18

0
10

ASyncIterC 0
128

0
149

0
149

0
671

ASyncIterM 0
138

0
152

0
152

0
718

FailSafeEnum 18|26
110

0
61

0
61

0
21

0
222

FailSafeEnumHT 33|28
153

0
37

0
37

0
100

0
319

FailSafeIter 112
253

0
217

11|5
217

287
546

0
158

FailSafeIterMap 133
250

0
136

0
136

204
583

0
540

HasNextElem 34
64

0
22

0
22

0
11

1|0
63

HasNext 0
74

0
74

184
346

LeakingSync 0
1082

0
629

0
629

0
986

0
1005

Reader 4|0
139

0
226

0
226

0
102

0
106

Writer 0
462

0
146

0
146

0
62

0
751

Table III: Shadows identified as irrelevant, and therefore disabled. White slices represent shadows
our analysis identified as irrelevant. Black slices represent shadows that we fail to identify as irrel-
evant, due to analysis imprecision or because the shadows may help trigger a property violation
at runtime. Red (or gray) slices represent shadows that we confirmed relevant by manual inspec-
tion. Outer rings represent the monitor’s runtime overhead after optimizing advice dispatch. Solid:
overhead ≥ 15%, dashed: overhead < 15%, dotted: no overhead. OOM = OutOfMemoryException
during static analysis.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Partially evaluating finite-state runtime monitors ahead of time A:39

antlr bloat chart fop hsqldb
pre post pre post pre post pre post pre post

ASyncContainsAll - - 0 0 X 0 0 X - - - -
ASyncIterC - - 140 0 X 0 0 X 5 0 X 0 0 X
ASyncIterM - - 139 0 X 0 0 X 0 0 X 0 0 X

FailSafeEnumHT 10 4 0 0 X 0 0 X 0 0 X 0 0
FailSafeEnum 0 0 X 0 0 X 0 0 X 0 0 0 0 X

FailSafeIter 0 0 X >1h >1h 8 8 14 0 X 0 0 X
FailSafeIterMap 0 0 X >1h 22027 0 0 7 OOM 0 0 X

HasNextElem 0 0 X 0 0 X - - 0 0 X 0 0 X
HasNext - - 329 258 0 0 0 0 X 0 0 X

LeakingSync 9 0 X 163 0 X 91 0 X 209 0 X 0 0 X
Reader 30218 0 X 0 0 X 0 0 X 0 0 X 0 0
Writer 37862 36 229 228 0 0 X 5 0 X 0 0

jython luindex lusearch pmd xalan
pre post pre post pre post pre post pre post

ASyncContainsAll 0 0 0 0 X 0 0 X 0 0 X - -
ASyncIterC 0 0 0 0 X 0 0 X 28 0 X - -
ASyncIterM 0 0 0 0 X 0 0 X 35 0 X - -

FailSafeEnumHT >1h >1h 32 0 X 0 0 X 0 0 X 0 0 X
FailSafeEnum 0 0 30 0 X 18 0 X 0 0 0 0 X

FailSafeIter 0 0 5 0 X 20 0 2811 524 0 0 X
FailSafeIterMap 13 13 5 0 X 0 0 X >1h >1h 0 0 X

HasNextElem 0 0 12 0 X 0 0 X 0 0 0 0
HasNext 0 0 0 0 X 0 0 X 70 64 - -

LeakingSync >1h 0 34 0 X 365 0 X 16 0 X 0 0 X
Reader 0 0 0 0 X 77 0 X 0 0 0 0 X
Writer 0 0 0 0 X 0 0 X 0 0 0 0 X

Table IV: Effect of Clara’s static analyses on runtime overheads; numbers are runtime
overheads in percent before and after applying the analyses; X: all instrumentation removed,
proving that no violation can occur; >1h: run took over one hour

the runtime overheads in more detail. We marked the 74 cases for which Clara could prove
that the program cannot violate the property on any execution with “X”. In these cases,
monitoring is unnecessary because Clara removes all instrumentation. However, if we chose
to test run these combinations anyway, the runtime overhead would be zero, as the runtime
monitor is never called. 37 of the original 109 combinations showed a measurable runtime
overhead. After applying the static analysis, measurable overhead only remained in 13 cases
(35% of 37). These cases often show significantly less overhead than without optimization.

10.3. Effectiveness of Certain-match Analysis

Our results show that the Certain-match Analysis was much less effective than the other
analyses. Despite several runtime matches, the analysis found only one certain match: line
218 of method InductionVarAnalyzer.isMu(..) of bloat, with HasNext. The code is:

216 Iterator iter = cfg.preds(phi.block ()). iterator ();
217 Block pred1 = (Block) iter.next();
218 Block pred2 = (Block) iter.next();

This code certainly does violate the property: it calls next() twice without calling
hasNext() in between. Hence, Certain-match Analysis did find what it was looking for.
However, the finding also indicates a problem with our HasNext specification: it is fine for
a client to call next() twice in a row, as long as the underlying collection has at least two
elements. bloat maintains the internal invariant that phi nodes should always point to two
blocks. Hence, the above situation does not depict a bug in bloat.

It may be surprising that the Certain-match Analysis is so much less effective than the
Nop-shadows Analysis, even though they are based on the same analysis information. We
suggest two explanations for this difference in effectiveness.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:40 Eric Bodden et al.

First, our benchmark programs have already been debugged and therefore rarely violate
the correctness properties that we specify. This fact benefits shadow-disabling analyses
(since already-debugged programs require almost no monitoring), but hinders the Certain-
match Analysis: with few violations, there will be few certain matches.

Second, the Certain-match Analysis only reports matches known to be certain. For a
match to be certain, the analysis has to know that (1) all property-violating events must
occur on the same object, and (2) these events must execute in a property-violating order.
But our analyses use only intra-procedural must-alias information and control-flow informa-
tion. The Certain-match Analysis can therefore only be effective for violations that (1) refer
to objects all bound in the same method, and (2) are indeed violations on all possible exe-
cutions of this method. Both these restrictions are seldom fulfilled, and they are even more
rarely fulfilled in combination. Most of our properties refer to multiple objects; FailSafeIter,
for instance, refers to a connection and an iterator. For such properties, the Certain-match
Analysis could only succeed if the monitored events on both objects are confined to the
method being analyzed.

The above observations help explain why the Certain-match Analysis’s success occurs
with the HasNext pattern: this pattern only reasons about a single iterator object, and
iterators are usually only used in a single method (not passed to other methods). Moreover,
in the one case in which the Certain-match Analysis did succeed, the match is indeed certain,
i.e., will occur on all executions: there is only one execution path on this piece of code.

To summarize, we conclude that the Certain-match Analysis is not very effective because
programs are usually correct, because matches are seldom certain, and because the analysis
has must-information on an intra-procedural level only.

10.4. Analysis time

We designed our analysis to be particularly efficient by separating it into three different
stages. Earlier stages are cheaper to compute and reduce the load on more complex later
stages. Moreover, while the first two stages are inter-procedural, the Nop-shadows Analysis
and Certain-match Analysis are mostly intra-procedural: any information they use from the
inter-procedural level is flow-insensitive and has already been computed by the Orphan-
shadows Analysis once these analysis stages execute.

The Quick Check never took longer than one second to execute on any of our bench-
marks. The Orphan-shadows Analysis took never longer than 91 seconds, where this time
includes the time for points-to set and call-graph computation. The analysis itself never
took longer than 17 seconds, with an average of 1.4 seconds. This second analysis state is
fast because, despite being inter-procedural, it is flow-insensitive, and because we compute
context information on demand, only for such variables that we care about and only for
such variables that cannot already be determined to not alias without context information.

The third stage, the Nop-shadows Analysis, took under 50 seconds on average. This time
includes all re-iterations of the Orphan-shadows Analysis and Nop-shadows Analysis that
Clara performs. In 90% of the cases, the analysis finished in under one minute. By far
the worst case is bloat-FailSafeIter with just over 19 minutes of analysis time for this stage.
The bloat benchmark contains methods with thousands of bytecode instructions, many of
which use iterators and collections. This explains these extraordinarily high analysis times.
The average analysis time for a single shadow-bearing method was about half a second.

In all but two cases, the total compilation and analysis time, including all three analy-
sis stages, was under ten minutes. The combination bloat-FailSafeIterMap took almost 18
minutes in total, and bloat-FailSafeIter took just about 25 minutes in total.

11. RELATED WORK

We discuss three broad areas of related work. We first present related work in the area
of runtime monitoring and hybrid static and dynamic approaches to verifying program

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Partially evaluating finite-state runtime monitors ahead of time A:41

properties like ours. We then discuss static verification of typestate properties: the properties
that Clara verifies can be seen as typestate properties. Finally, we explain how our work
relates to previous work (by ourselves and others) on statically analyzing tracematches.

11.1. Runtime monitoring and hybrid approaches

We discuss a number of runtime monitoring tools that influenced the design and implemen-
tation of Clara. Many of these tools also implement hybrid static and dynamic approaches
similar to those that we propose in this paper—statically analyze first, then monitor re-
maining cases at runtime.

The first author previously developed J-LO, the Java Logical Observer [Bodden 2005], a
tool for checking temporal assertions at runtime in Java programs. The J-LO tool accepts
linear temporal logic formulae over AspectJ pointcuts as input, and generates plain AspectJ
code by manipulating an abstract syntax tree. Like in Clara, pointcuts in J-LO specifi-
cations can be parameterized by variable-to-object bindings. While the implementation of
J-LO is effective in finding seeded errors in small example programs, its runtime overhead
renders J-LO unsuitable for use on larger programs. Clara’s specification language sup-
ports the annotation of J-LO-generated aspects with dependency information; Clara’s
static analyses could then remove some of J-LO’s overhead.

Tracematches. Tracematches were first proposed and implemented by Allan et al. [2005].
Like J-LO, tracematches generate a low-level AspectJ-based runtime monitor from a high-
level specification which uses AspectJ pointcuts to denote events of interest. Tracematch
implementations generate far more efficient runtime monitors than J-LO. Furthermore, Av-
gustinov et al. [2007] perform sophisticated static analyses of a tracematch’s induced state
machine to compute an optimized monitor implementation. Our reported experimental
results use optimized monitor implementations as a baseline, and show that combining
monitor optimizations with our analyses yields low runtime overhead in most cases.

Another, orthogonal, approach to reducing runtime monitoring overhead is by using col-
laborative runtime verification. We previously explored collaborative runtime verification
for tracematches [Bodden et al. 2010], partitioning the monitoring both spatially and tem-
porally. Spatial partitioning creates many copies of the program being monitored; each
program copy monitors a small subset of the full set of shadows. We found that most copies
incurred no overhead over the un-instrumented program. Temporal partitioning switches
the instrumentation off and on over time, reducing the overhead of runtime monitoring (as
well as the probability of catching a property violation). Clara supports spatial partition-
ing independently of the monitor implementation. Clara cannot, however, easily support
temporal partitioning, because this would require additional knowledge about the monitor
implementation, which is unavailable from Dependency State Machines.

JavaMOP. JavaMOP provides an extensible logic framework for specification for-
malisms [Chen and Roşu 2007]. JavaMOP accepts specifications in various formalisms and
translates them into AspectJ aspects. Due to its generality, it makes few assumptions about
any particular specification language. This generality makes it difficult, if not impossible, to
analyze JavaMOP specifications. Feng Chen extended the JavaMOP implementation [Bod-
den et al. 2009] to perform a limited specification analysis, which enabled JavaMOP to
annotate generated monitors with dependency information. Clara can use this informa-
tion to partially evaluate JavaMOP monitors at compile time, and we have successfully used
Clara with monitors generated by JavaMOP [Bodden 2009].

Query Languages. Like tracematches, the Program Query Language [Martin et al. 2005]
enables developers to specify properties of Java programs; each property may bind free
variables to runtime heap objects. PQL supports a richer specification language than trace-
matches: it uses stack automata augmented with intersection, rather than finite-state ma-

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:42 Eric Bodden et al.

chines. Martin et al. propose a flow-insensitive static analysis to reduce the runtime overhead
of monitoring programs with PQL. This approach inspired our Orphan-shadows Analysis.
As the authors show and as we confirm in our work, such an analysis can be effective in
ruling out impossible matches. However, we also showed that a flow-sensitive analysis en-
ables additional optimizations. PQL instruments the program under test using the BCEL
bytecode engineering toolkit. If PQL used AspectJ instead, then it should be possible to
optimize the generated monitor with Clara.

The Program Trace Query Language, PTQL [Goldsmith et al. 2005], provides an SQL-
like language for querying properties of program traces at runtime, along with a compiler
for the query language. Its “partiqle” compiler modifies the source program to notify a
monitor about relevant events at runtime. The compiler attempts to partially evaluate
program queries at compile time, just like AspectJ compilers only insert runtime checks
when they cannot fully evaluate a pointcut at compile time. Because PTQL uses its own
compiler, and is not based on AspectJ, Clara cannot currently evaluate PTQL queries
ahead of time. Even if PTQL did generate aspects for monitoring, the PTQL language is
very expressive—probably Turing complete. Hence it remains unclear whether one could
effectively determine dependencies within a query at compile time so that Clara could
exploit these dependencies to optimize PTQL monitors.

Static checkers. We compare two fully-static checkers, PMD and FindBugs, to our
Certain-match Analysis. PMD [Copeland 2005] aims to find violations of “best practices”
or programming styles, rather than actual programming errors. For example: “A class that
has private constructors and does not have any static methods or fields is unusable.” PMD
has no support for data-flow analyses, so it cannot (in general) evaluate pointer nullness
or variable initialization-before-use. FindBugs [Hovemeyer and Pugh 2004] is a static rule
checker from the University of Maryland. FindBugs comes with a rich set of checkers that
identify common problems when using certain popular libraries (e.g. the Java Runtime Li-
brary). FindBugs rules usually favour false negatives over false positives: they will often miss
programming errors, but emitted warnings often indicate an actual programming problem.
The Certain-match Analysis is closer to FindBugs than PMD, since it uses analysis results
to identify definite problems in a program under analysis. However, it leverages pointer
analysis information and carries out a more detailed program analysis than FindBugs. Its
domain of applicability, however, is more restricted than that of FindBugs, since it only
finds violations of Dependency State Machine properties.

11.2. Typestate

The target class of Dependency State Machine program properties was inspired by typestate
systems. Typestate systems track the conceptual states that each object goes through during
its lifetime in the computation [Strom and Yemini 1986; Fink et al. 2006; Drossopoulou et al.
2002]. They generalize standard type systems by allowing the typestate of an object to
change during the computation. Strom and Yemini [1986] first proposed the idea of having
a value’s type depend on an internal state—its typestate. Operations can change a value’s
type by changing that value’s typestate.

Two critical differences between our work and the related work on typestate are: 1) the
treatment of false positives; and 2) how our (fundamentally intra-procedural) approach
accounts for effects in other procedures.

False positives. Our work differs from much of the work below in its treatment of potential
false positives. When our static analysis succeeds completely, it provides the same guaran-
tee as classical typestate: the program under analysis never violates the specified typestate
properties. However, our work originated in runtime monitoring, and thus supports a hybrid
monitoring/recovery situation. In particular, Clara can generate a program which evalu-
ates residual monitors at runtime, with much less overhead than the full runtime monitor.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Partially evaluating finite-state runtime monitors ahead of time A:43

Our approach thus allows developers to provide specialized instrumentation and recovery
code in the event of an actual run-time violation detected by a monitor. Fully-static ap-
proaches, on the other hand, typically emit a compile-time warning when they fail to verify
typestate specifications. In the fully-static context, it is much more critical to eliminate false
positives, so these analyses go to greater lengths to accurately analyze programs.

Inter-procedural analyses. Naeem and Lhoták [2008], Fink et al. [2006] and Das et al.
[2002] all implement inter-procedural typestate analyses using IFDS [Horwitz et al. 1995];
a major challenge in developing a usable flow-sensitive inter-procedural analysis is ensuring
scalability, especially for path-sensitive analyses. Our analyses, by contrast, are scalable be-
cause they are flow-insensitive at the inter-procedural level. Only our Nop-shadows Analysis
is flow-sensitive, but only at the intra-procedural level. It otherwise uses summaries of caller
and callee effects obtained from a flow-insensitive whole-program analysis.

Staged approach. Fink et al. [2006] present a static analysis of typestate properties for Java
programs. Their approach resembles ours—we both use a staged analysis which starts with
a flow-insensitive pointer-based analysis, followed by flow-sensitive checkers. However, the
analysis in [Fink et al. 2006] allows only for specifications that reason about a single object at
a time. This prevents programmers from expressing properties spanning multiple objects.
Furthermore, Fink et al. aim to verify properties fully statically, with the implications
discussed above. Finally, our Clara framework supports a range of property languages so
that developers can conveniently specify the properties to be verified; Fink et al. do not
describe how developers might specify their properties.

Integrating pointer information; path sensitivity. The ESP tool by Dor et al. [2004] imple-
ments inter-procedural typestate checking for large C programs using value flow simulation.
Value flow simulation enables the use of a path-sensitive analysis on an inter-procedural
level. A key feature of this approach is that, like ours, it takes may- and must- pointer
information into account. Furthermore, both approaches separate the alias analysis from
the analysis of the property in question.

Our memory abstraction differs from ESP’s in two ways: 1) while ESP tracks one object
at a time, we track multi-object properties using binding representatives (Section 7.6.1),
which store information about all relevant objects; and 2) within binding representatives,
we track individual objects using object representatives, while ESP uses value alias sets.
Value alias sets contain program expressions (e.g. variable names or heap access paths).
Both memory abstractions separately track may- and must- information to enable strong
updates; the key difference is our support for multi-object properties. It should be possible
to use value alias sets instead of object representatives as a basis for binding representatives.

Our Nop-shadows Analysis also tracks a richer domain-specific property atop the memory
abstraction. ESP only tracks the current state of the machine (like the forward pass of Nop-
shadows Analysis), while we track both the current state and the set of states that are
continuation-equivalent to a final state. This enables our Nop-shadows Analysis to identify
shadows that do not meaningfully change the automaton state.

ESP was one of the first practical path-sensitive inter-procedural analyses; it correlates
branches guarded by (simple variants of) the same predicate. To guard against combinatorial
explosion, their analysis only distinguishes the effects of program paths which have different
typestates. To do so, the analysis abstraction tracks constant propagation (or, potentially,
other) information along with typestate information. The analysis then performs branch
correlation—using propagated constants, it prunes infeasible paths.

ESP successfully scaled to run in hundreds of seconds on a 140,000 LOC C program.
Unfortunately, the authors did not evaluate how well their approach would perform without
branch correlation. It is therefore hard to judge how the additional information in the
analysis abstraction impacts analysis speed and precision.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:44 Eric Bodden et al.

Like ESP, our Nop-shadows Analysis is also path-sensitive—it does not merge information
from different branches. However, it does not track information about the values of scalar
variables, and hence does not perform branch correlation. Evidence about the efficacy of
branch correlation in ESP would help compare our analysis to ESP. Our benchmark results
suggest that the lack of branch correlation does not appear to pose a significant problem on
our benchmark set; as we discussed in Section 10.1, reflection seems to be more important
than analysis precision. Because Nop-shadows Analysis is flow-sensitive only on an intra-
procedural level, our analysis completes in a reasonable time despite being path-sensitive.

Annotation-based approaches. Bierhoff and Aldrich [2007] present an approach to enable
the checking of typestate properties in the presence of aliasing. Their Plural tool aims to be
modular, and therefore abstains from potentially expensive whole-program analyses such as
the points-to analyses used by Clara. Bierhoff and Aldrich instead associate references with
access permissions, creating an abstraction based on linear logic. The access permissions
enable their approach to relate the states of one object (e.g. an iterator) with the state of
another object (e.g. a collection which is being iterated upon). These permissions classify
how many other references to the same object may exist and define the allowed operations
on references. Their approach requires every method to be annotated with (potentially
inferred) information about how access permissions and typestates change when a method
is executed.

The modularity of the Plural approach implies that, given appropriate annotations it can
analyze any method, class or package independent of context. Our approach, on the other
hand, must analyze the whole program, and expects a complete call graph, with sufficient
precision to avoid unnecessary false positives. When the whole program is available, and
can be analyzed, then Clara has the advantage of not requiring program annotations.
Furthermore, Clara itself does not carry out any flow-sensitive whole-program annotations;
scalability is mostly limited by the scalability of the pointer and call graph analysis. In any
case, we have found that worst-case assumptions coupled with coarse-grained side-effect
information are surprisingly effective for quickly analyzing the whole program.

DeLine and Fähndrich [2004]’s approach is similar in flavour to Bierhoff and Aldrich’s ap-
proach. Their Fugue tool checks .NET programs for conformance to typestate specifications
statically, in the presence of aliasing. The authors present a programming model of type-
states for objects with a sound modular checking algorithm. As in Bierhoff and Aldrich’s
approach, DeLine and Fähndrich assume that a programmer (or tool) has annotated the
program under test with information about how calls to a method change the typestate
of the objects that the method references. One fundamental difference between the two
approaches is the treatment of aliasing. Fugue forbids any state-changing operations on
possibly-aliased objects. This makes Fugue’s type system less permissive than Bierhoff and
Aldrich’s system, where even aliased objects can change states.

Safe regions. Like us, Dwyer and Purandare [2007] use typestate analyses to specialize
runtime monitors. Their work identifies “safe regions” in the code using a static typestate
analysis. Safe regions can be methods, single statements or compound statements (e.g.
loops). A region is safe if its deterministic transition function does not drive the typestate
automaton into a final state. The authors summarize the effect of safe regions and modify
the program under test to update the typestate with the region’s effects all at once when
the region is entered, instead of one-by-one during the region’s execution.

Their “safe region” analysis has the same goal as our work—both approaches enable
a compiler to emit an optimized monitor, which will execute faster than the full monitor
because it will execute fewer transitions at runtime. However, summary transitions decouple
the link between the code locations that perform a state transition and the locations that
actually cause these transitions. This decoupling may impede manual understanding and
verification of code behaviour with respect to the monitored properties.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Partially evaluating finite-state runtime monitors ahead of time A:45

Our static analysis does not attempt to determine regions; we instead decide whether
each shadow in the program is a nop-shadow. It is difficult to directly compare the efficacy
of the two approaches, due to the different design decisions taken for each approach. In
any case, Dwyer and Purandare’s analysis is complementary to ours and should be easily
implementable in Clara. We encourage such an implementation.

11.3. Other static analyses for tracematches

Two of our previous papers presented earlier versions of techniques evaluating tracematches
ahead of time. Clara integrates this early work with small but significant improvements,
and it generalizes the previous work to apply to an entire class of runtime monitoring tools,
rather than just tracematches.

In the first paper [Bodden et al. 2007], we presented a staged analysis consisting of a
Quick Check, a flow-insensitive Consistent-shadows analysis and a flow-sensitive Active-
shadows analysis. The earlier Quick Check considered an entire state machine; it disabled
checking of the whole state machine if the program could not reach any final state along
any path. The present Quick Check acts on each path separately: when the state machine
cannot reach a final state along path p, then the check disables monitoring of the events
on p, even if one can reach the final state along other paths. This improvement helps with
properties that yield state machines with multiple accepting paths, e.g. for Reader, where
one path flags writes to an InputStream whose Reader was closed, and a second path flags
writes to a Reader whose InputStream was closed.

The Consistent-shadows analysis yields identical results to the Orphan-shadows Anal-
ysis that we present here. However, the Orphan-shadows Analysis runs faster and uses
less memory than the Consistent-shadows analysis. The Consistent-shadows analysis is a
generate-and-test algorithm, which takes time exponential in the number of shadows. The
Consistent-shadows analysis usually ran quickly enough to be usable, but suffered from long
analysis times and large memory consumption in cases like bloat-FailSafeIter. The execution
time of the Orphan-shadows Analysis is polynomial in the number of shadows, and it uses
a quadratic amount of memory to cache its results.

Impact of analysis abstractions. The third stage from our earlier work, the Active-shadows
analysis, was a first attempt at a flow-sensitive analysis of tracematches. While Clara’s
third analysis stage, the Nop-shadows Analysis, is flow-sensitive only on an intra-procedural
level, the Active-shadows analysis from our earlier work was a flow-sensitive, context-
insensitive analysis of the entire program. Unfortunately, the Active-shadows analysis ab-
straction only allowed weak updates because it did not encode must-alias information. Fur-
thermore, we chose a flow-insensitive pointer abstraction, and the computation of typestate
information was context-insensitive. These choices made the earlier analysis so imprecise
that it found no nop-shadows at all in largely the same benchmark set as the one in the
present paper. The previous results, in combination with the work that we present here,
show that choosing the right abstractions is key to obtaining good precision. Clara uses
precise intra-procedural flow-sensitive pointer information and context-sensitivity. This in-
formation can yield much optimization potential and therefore significantly improves over
the earlier Active-shadows analysis.

In [Bodden et al. 2008a], we presented an analysis similar to the Nop-shadows Analysis
that we present here, except for the following points. Firstly, the earlier analysis recognizes
“necessary shadows” using shadow histories. Unfortunately, this is unsound (see [Bodden
2010] for details). The earlier analysis is also optimistic: it assumes that a shadow s is unnec-
essary and can be removed, unless it drives a shadow history containing s into a final state.
The Nop-shadows Analysis that we present here instead detects “unnecessary shadows”,
i.e., nop shadows, using a backwards analysis. This analysis is pessimistic: it assumes that
a shadow is necessary until we prove that it is a nop shadow. Because pessimistic analyses

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:46 Eric Bodden et al.

make a pessimistic base assumption, implementation errors in such analyses are less likely
to produce unsound results: if our analyses misses any corner cases, it would likely keep
shadows alive that are actually nop shadows rather than accidentally disabling shadows
that are not nop shadows.

A second difference between the two analyses is in how we approximate inter-procedural
control-flow. In earlier work, we assumed that any state machine instance could be in any
state when entering the current method m. This is sound but imprecise. In the Nop-shadows
Analysis that we present here, we instead use the function reachingStar to compute a bet-
ter approximation. Also, we previously did not use the inter-procedural successor function
succext. Instead, whenever we recognized an outgoing method call that could (potentially
transitively) call a shadow-bearing method, then we simply “tainted” successor configu-
rations and refused to remove shadows with tainted configurations. The solution that we
present here is not only more elegant, it is also more precise. Tainting makes a worst-case as-
sumption about outgoing method calls. Our current implementation considers such method
calls more precisely—it considers the potential actions of the rest of the program.

Note also that all of the earlier analyses were designed and implemented to work for
tracematches only. In this paper, we present, for the first time, a set of algorithms that
is applicable to any runtime monitor written in the form of an AspectJ aspect. The only
restriction is that this aspect must carry an annotation in the form of a Dependency State
Machine. The Clara distribution comes with an extensive set of test cases containing trace-
matches, hand-written monitors, and monitors generated by JavaMOP that we annotated
by hand. We found that annotating JavaMOP monitors with Dependency State Machines
is easy. In particular, no other changes to the generated code are required.

The Nop-shadows Analysis presented in this paper was first published in [Bodden 2010],
in much less detail: due to space restrictions, we did not discuss our treatment of pointers,
nor our flow-insensitive handling of effects from inter-procedural control flow.

Context-sensitive, flow-sensitive whole-program analysis of tracematches. Naeem and
Lhoták [2008] present a context-sensitive flow-sensitive inter-procedural analysis to ana-
lyze typestate-like properties of multiple interacting objects at compile time. The main
difference between their work and ours is that we have no flow-sensitive inter-procedural
analysis, while Naeem and Lhoták do. One could integrate their analysis into Clara.

Our Nop-shadows Analysis is mostly intra-procedural and uses only flow-insensitive infor-
mation to model inter-procedural control flow. Naeem and Lhoták’s analysis, on the other
hand, propagates configurations along call edges and then through the bodies of called
methods. This can lead to enhanced precision when multiple methods use combinations of
objects that are relevant to a given specification, at the cost of analysis time.

Naeem and Lhoták also use a different pointer abstraction from ours. Our pointer ab-
straction, object representatives, is flow-sensitive only on an intra-procedural level, and at
outgoing method calls we resort to context-sensitive but flow-insensitive pointer informa-
tion. Naeem and Lhoták instead use a “binding lattice”, which models each object by the
variables that may or must point to the object. This representation encodes must-aliasing
and must-not-aliasing at the same time.

Naeem and Lhoták are re-implementing their analysis to increase precision and perfor-
mance. We therefore have not yet compared our analysis to Naeem and Lhoták directly. In
the future, we plan to create a joint comparative study in which we consistently use the
same tracematch specifications and analyze the same benchmark versions with the same
runtime library, taking into account the same set of potentially dynamically loaded classes.

12. CONCLUSION

We have presented four static whole-program analyses which partially evaluate parametrized
finite-state runtime monitors at compile time. We implemented the analyses in Clara, a

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Partially evaluating finite-state runtime monitors ahead of time A:47

novel framework for the partial evaluation of AspectJ-based runtime monitors. Our evalua-
tion of Clara on several large-scale Java programs demonstrated that most of our bench-
mark programs fulfill our example properties. For the remaining programs, Clara reduced
the monitoring overhead to below 10%. We also found multiple property violations in our
benchmark suite.

Our results show that Clara provides push-button technology to statically approximate
and optimize expressive runtime monitors. Clara’s mechanism is largely independent of
the runtime monitor’s concrete implementation strategy and can therefore be used with a
wide range of current runtime monitoring tools. A direct application of our static analysis
techniques enables runtime monitor optimization. We also advocate a compile-time-only
approach: programmers can use our analyses to identify code locations where a program
could potentially violate a given finite-state property. We have explained that an effective
integration into an integrated development environment allows programmers to tell apart
actual property violations from false positives relatively easily.

In ongoing work, we are extending the Clara static analysis framework to better cope
with native and reflective calls [Bodden et al. 2011], and to analyze and optimize runtime
monitors not only for individual programs but instead for entire software product lines [Kim
et al. 2010]. In future work, we plan to design typestate analyses that do not require the
entire closed program but instead operate on individual program modules, e.g. software
services. Furthermore, we plan to investigate how to combine data-flow analyses like the
one presented here with model checking. For instance, Rungta et al. [2009] have recently
shown how to effectively guide a model checker to problem points previously determined
through a (generic) static analysis. Such an approach would allow programmers to rule out
even more (if not all) false positives than Clara does.

Acknowledgements. This work would not have been the same without the support of many
people, including Pavel Avgustinov, Julian Tibble, Oege de Moor, Torbjörn Ekman and
other members of the Programming Tools Group at Oxford University, Grigore Roşu, Feng
Chen, Matthew Dwyer, Rahul Purandare, Kevin Bierhoff, Ciera Jaspan, Ondřej Lhoták,
Nomair Naeem and Manu Sridharan. Thank you all for your support and for the lively
discussion!

This work was supported in part by Canada’s Natural Science and Engineering Research
Council, the German Federal Ministry of Education and Research (BMBF) within EC
SPRIDE, and by the Hessian LOEWE excellence initiative within CASED.

REFERENCES

Allan, C., Avgustinov, P., Christensen, A. S., Hendren, L., Kuzins, S., Lhoták, O., de Moor, O.,
Sereni, D., Sittampalam, G., and Tibble, J. 2005. Adding Trace Matching with Free Variables
to AspectJ. In International Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA). ACM Press, 345–364.

Avgustinov, P., Christensen, A. S., Hendren, L., Kuzins, S., Lhoták, J., Lhoták, O., de Moor,
O., Sereni, D., Sittampalam, G., and Tibble, J. 2005. abc: An extensible AspectJ compiler. In
International Conference on Aspect-oriented Software Development (AOSD). ACM Press, 87–98.

Avgustinov, P., Tibble, J., Bodden, E., Lhoták, O., Hendren, L., de Moor, O., Ongkingco, N., and
Sittampalam, G. 2006. Efficient trace monitoring. Tech. Rep. abc-2006-1. March.

Avgustinov, P., Tibble, J., and de Moor, O. 2007. Making trace monitors feasible. In International
Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA). ACM
Press, 589–608.

Bierhoff, K. and Aldrich, J. 2007. Modular typestate checking of aliased objects. In International Con-
ference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA). 301–320.

Blackburn, S. M., Garner, R., Hoffman, C., Khan, A. M., McKinley, K. S., Bentzur, R., Diwan,
A., Feinberg, D., Frampton, D., Guyer, S. Z., Hirzel, M., Hosking, A., Jump, M., Lee, H., Moss,
J. E. B., Phansalkar, A., Stefanovic, D., VanDrunen, T., von Dincklage, D., and Wiedermann,
B. 2006. The DaCapo benchmarks: Java benchmarking development and analysis. In International

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:48 Eric Bodden et al.

Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA). ACM
Press, 169–190.

Bodden, E. 2005. J-LO - A tool for runtime-checking temporal assertions. M.S. thesis, RWTH Aachen
University.

Bodden, E. 2009. Verifying finite-state properties of large-scale programs. Ph.D. thesis, McGill University.

Bodden, E. 2010. Efficient hybrid typestate analysis by determining continuation-equivalent states. In
ICSE ’10: Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering.
ACM, New York, NY, USA, 5–14.

Bodden, E., Chen, F., and Roşu, G. 2009. Dependent advice: A general approach to optimizing history-
based aspects. In International Conference on Aspect-oriented Software Development (AOSD). ACM
Press, 3–14.

Bodden, E., Hendren, L., Lam, P., Lhoták, O., and Naeem, N. A. 2010. Collaborative runtime verifica-
tion with tracematches. Journal of Logic and Computation 20, 3, 707–723.

Bodden, E., Hendren, L. J., and Lhoták, O. 2007. A staged static program analysis to improve the per-
formance of runtime monitoring. In European Conference on Object-Oriented Programming (ECOOP).
Lecture Notes in Computer Science (LNCS), vol. 4609. Springer, 525–549.

Bodden, E., Lam, P., and Hendren, L. 2008a. Finding Programming Errors Earlier by Evaluating Runtime
Monitors Ahead-of-Time. In Symposium on the Foundations of Software Engineering (FSE). ACM
Press, 36–47.

Bodden, E., Lam, P., and Hendren, L. 2008b. Object representatives: a uniform abstraction for pointer
information. In Visions of Computer Science - BCS International Academic Conference. British Com-
puting Society.

Bodden, E., Lam, P., and Hendren, L. 2010. Clara: a framework for statically evaluating finite-state
runtime monitors. In 1st International Conference on Runtime Verification (RV). LNCS, vol. 6418.
Springer, 74–88.

Bodden, E., Sewe, A., Sinschek, J., Oueslati, H., and Mezini, M. 2011. Taming reflection: Aiding static
analysis in the presence of reflection and custom class loaders. In ICSE ’11: International Conference
on Software Engineering. ACM, 241–250.

Brzozowski, J. A. 1962. Canonical regular expressions and minimal state graphs for definite events. In
Symposium on Mathematical Theory of Automata. Polytechnic Institute of Brooklyn, 529–561.

Chen, F. and Roşu, G. 2007. MOP: an efficient and generic runtime verification framework. In International
Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA). ACM
Press, 569–588.

Chen, F. and Roşu, G. 2009. Parametric trace slicing and monitoring. In International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS). Lecture Notes in Computer
Science (LNCS), vol. 5505. Springer, 246–261.

Copeland, T. 2005. PMD Applied. Centennial Books.

Cytron, R., Ferrante, J., Rosen, B., Wegman, M., and Zadeck, F. 1991. Efficiently computing static
single assignment form and the control dependence graph. ACM Transactions on Programming Lan-
guages and Systems (TOPLAS) 13, 4, 451–490.

Das, M., Lerner, S., and Seigle, M. 2002. ESP: Path-sensitive program verification in polynomial time. In
Conference on Programming Language Design and Implementation (PLDI). Berlin, Germany, 57–68.

DeLine, R. and Fähndrich, M. 2004. Typestates for objects. In European Conference on Object-Oriented
Programming (ECOOP). Lecture Notes in Computer Science (LNCS), vol. 3086. Springer, 465–490.

Dor, N., Adams, S., Das, M., and Yang, Z. 2004. Software validation via scalable path-sensitive value flow
analysis. In International Symposium on Software Testing and Analysis (ISSTA). Boston, MA, 12–22.

Drossopoulou, S., Damiani, F., Dezani-Ciancaglini, M., and Giannini, P. 2002. More dynamic object re-
classification: Fickle II. ACM Transactions on Programming Languages and Systems (TOPLAS) 24, 2,
153–191.

Dwyer, M. B. and Purandare, R. 2007. Residual dynamic typestate analysis: Exploiting static anal-
ysis results to reformulate and reduce the cost of dynamic analysis. In International Conference on
Automated Software Engineering (ASE). ACM Press, 124–133.

Fink, S., Yahav, E., Dor, N., Ramalingam, G., and Geay, E. 2006. Effective typestate verification in
the presence of aliasing. In International Symposium on Software Testing and Analysis (ISSTA). ACM
Press, 133–144.

Goldsmith, S., O’Callahan, R., and Aiken, A. 2005. Relational queries over program traces. In Inter-
national Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOP-
SLA). ACM Press, 385–402.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Partially evaluating finite-state runtime monitors ahead of time A:49

Horwitz, S., Reps, T., and Sagiv, M. 1995. Demand interprocedural dataflow analysis. In Symposium on
the Foundations of Software Engineering (FSE). 104–115.

Hovemeyer, D. and Pugh, W. 2004. Finding bugs is easy. In International Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA). ACM Press, 132–136.

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., and Griswold, W. G. 2001. An
overview of AspectJ. In European Conference on Object Oriented Programming (ECOOP’01). LNCS,
vol. 2072. Springer, 327–353.

Kim, C. H. P., Batory, D., Bodden, E., and Khurshid, S. 2010. Reducing Configurations to Monitor
in a Software Product Line. In 1st International Conference on Runtime Verification (RV). LNCS.
Springer.

Krüger, I. H., Lee, G., and Meisinger, M. 2006. Automating software architecture exploration with
M2Aspects. In Workshop on Scenarios and state machines: models, algorithms, and tools (SCESM).
ACM Press, 51–58.

Lhoták, O. and Hendren, L. 2003. Scaling Java points-to analysis using Spark. In International Conference
on Compiler Construction (CC). Lecture Notes in Computer Science (LNCS), vol. 2622. Springer, 153–
169.

Maoz, S. and Harel, D. 2006. From multi-modal scenarios to code: compiling LSCs into AspectJ. In
Symposium on the Foundations of Software Engineering (FSE). ACM Press, 219–230.

Martin, M., Livshits, B., and Lam, M. S. 2005. Finding application errors using PQL: a program query
language. In International Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA). ACM Press, 365–383.

Masuhara, H., Kiczales, G., and Dutchyn, C. 2003. A compilation and optimization model for aspect-
oriented programs. In International Conference on Compiler Construction (CC). Lecture Notes in
Computer Science (LNCS), vol. 2622. Springer, 46–60.

Naeem, N. A. and Lhoták, O. 2008. Typestate-like analysis of multiple interacting objects. In International
Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA). ACM
Press, 347–366.

Rungta, N., Mercer, E. G., and Visser, W. 2009. Efficient testing of concurrent programs with
abstraction-guided symbolic execution. In Proceedings of the 16th International SPIN Workshop on
Model Checking Software. Springer-Verlag, Berlin, Heidelberg, 174–191.

Sridharan, M. and Bod́ık, R. 2006. Refinement-based context-sensitive points-to analysis for Java. In
Conference on Programming Language Design and Implementation (PLDI). ACM Press, 387–400.

Strom, R. E. and Yemini, S. 1986. Typestate: A programming language concept for enhancing software
reliability. IEEE Transactions on Software Engineering (TSE) 12, 1 (Jan.), 157–171.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

	Introduction and contributions
	Running Example
	Clara framework
	Definitions
	Runtime Monitors
	Statically optimizing parametrized monitors

	Syntactic Quick Check
	Flow-insensitive Orphan-shadows Analysis
	Soundness of the Orphan-shadows Analysis
	Benefits of a demand-driven pointer analysis

	Flow-sensitive Nop-shadows Analysis
	Example
	Analysis Overview
	Forward pass
	Backward pass
	Determining Nop shadows
	Full description of the Nop-shadows Analysis
	Object representatives
	The worklist algorithm
	The external-successor function succext
	Initializing the worklist algorithm

	Optimizations for faster analysis
	Soundness of Nop-shadows Analysis

	Certain-match Analysis
	Presenting analysis results for manual code inspection
	Potential points of failure and Potential failure groups

	Experiments
	Fraction of shadows identified as irrelevant
	Reduction of runtime overhead
	Effectiveness of Certain-match Analysis
	Analysis time

	Related Work
	Runtime monitoring and hybrid approaches
	Typestate
	Other static analyses for tracematches

	Conclusion

