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Scheduler

Two kinds of sets of objects:
Running, Suspended

This classification is dynamically-changing:
processes are suspended and woken up.

Set membership is determined in two ways: field
values and pointer reachability. Our analysis
checks that sets coincide.
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Example
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Example
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Challenge: Module Interaction

Objects may be shared between modules.

How do we know that other parts of program
don’t break our invariants, especially through
aliases?

Allow modules to share objects, but ensure
that each module refers to disjoint fields.

impl module SuspendedQueue {

format Process { next:Process; priority:int; } }

impl module Scheduler {

format Process { status:int; } }
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Challenge: Effects

Modules have effects; must reason about them.

We use a uniform specification language:
preconditions and postconditions in first-order
logic on sets.

proc suspend(p:Process; priority:int)

requires p in Running & card(p)=1

modifies Running, Suspended

ensures Suspended’ = Suspended + p &

Running’ = Running - p;
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Plugin: Flags

Use fields to determine set membership.

abst module Scheduler {

use plugin "flags";

Running = {x:Process | "x.status=2"};

Suspended = {x:Process | "x.status=1"};

}

Uses a dataflow analysis over first-order boolean
formulas.
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Plugin: Graph Reachability

abst module SuspendedQueue {

use plugin "PALE";

InQueue = {x:Process | "root<next*>x"};

invariant "type Process = {

data next:Process;

}";

invariant "data root:Process;";

}

Uses MSOL over trees and loop invariants.
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Experience

We have implemented a prototype system and
tested computational patterns inspired by:

compiler transformations

CTAS

water

Currently working on bigger examples.
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Conclusion

Most discovered errors were specification errors.

Found some errors in the implementation.

At one point, we inadvertently changed the
abstraction function and only partially updated
the code. The tool found this error.
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