
Modular Pluggable Analyses

Patrick Lam, Viktor Kuncak and

Martin Rinard

Modular Pluggable Analyses – p. 1



Scheduler

Two kinds of sets of objects:
Running, Suspended

This classification is dynamically-changing:
processes are suspended and woken up.

Set membership is determined in two ways: field
values and pointer reachability. Our analysis
checks that sets coincide.

Modular Pluggable Analyses – p. 2



Example

Modular Pluggable Analyses – p. 3



Example

Modular Pluggable Analyses – p. 4



Challenge: Module Interaction

Objects may be shared between modules.

How do we know that other parts of program
don’t break our invariants, especially through
aliases?

Allow modules to share objects, but ensure
that each module refers to disjoint fields.

impl module SuspendedQueue {

format Process { next:Process; priority:int; } }

impl module Scheduler {

format Process { status:int; } }

Modular Pluggable Analyses – p. 5



Challenge: Effects

Modules have effects; must reason about them.

We use a uniform specification language:
preconditions and postconditions in first-order
logic on sets.

proc suspend(p:Process; priority:int)

requires p in Running & card(p)=1

modifies Running, Suspended

ensures Suspended’ = Suspended + p &

Running’ = Running - p;

Modular Pluggable Analyses – p. 6



Plugin: Flags

Use fields to determine set membership.

abst module Scheduler {

use plugin "flags";

Running = {x:Process | "x.status=2"};

Suspended = {x:Process | "x.status=1"};

}

Uses a dataflow analysis over first-order boolean
formulas.

Modular Pluggable Analyses – p. 7



Plugin: Graph Reachability

abst module SuspendedQueue {

use plugin "PALE";

InQueue = {x:Process | "root<next*>x"};

invariant "type Process = {

data next:Process;

}";

invariant "data root:Process;";

}

Uses MSOL over trees and loop invariants.

Modular Pluggable Analyses – p. 8



Experience

We have implemented a prototype system and
tested computational patterns inspired by:

compiler transformations

CTAS

water

Currently working on bigger examples.

Modular Pluggable Analyses – p. 9



Conclusion

Most discovered errors were specification errors.

Found some errors in the implementation.

At one point, we inadvertently changed the
abstraction function and only partially updated
the code. The tool found this error.

Modular Pluggable Analyses – p. 10


	Scheduler
	Example
	Example
	Challenge: Module Interaction
	Challenge: Effects
	Plugin: Flags
	Plugin: Graph Reachability
	Experience
	Conclusion

