
Implications of a Data Structure Consistency Checking
System

Viktor Kuncak, Patrick Lam, Karen Zee, and Martin Rinard

MIT Computer Science and Artificial Intelligence Laboratory
32 Vassar Street, Cambridge, MA 02139, USA

{vkuncak,plam,kkz,rinard}@csail.mit.edu

Abstract. We present a framework for verifying that programs correctly preserve impor-
tant data structure consistency properties. Results from our implemented system indicate
that our system can effectively enable the scalable verification of very precise data structure
consistency properties within complete programs. Our system treats bothinternal proper-
ties, which deal with a single data structure implementation, andexternalproperties, which
deal with properties that involve multiple data structures. A key aspect of our system is that
it enables multiple analysis and verification packages to productively interoperate to ana-
lyze a single program. In particular, it supports the targeted use of very precise, unscalable
analyses in the context of a larger analysis and verificationsystem. The integration of differ-
ent analyses in our system is based on a common set-based specification language: precise
analyses verify that data structures conform to set specifications, whereas scalable analyses
verify relationships between data structures and preconditions of data structure operations.
There are several reasons our system may be of interest in a broader program analysis and
verification effort. First, it can ensure that the program satisfies important data structure
consistency properties, which is an important goal in and ofitself. Second, it can provide
information that insulates other analysis and verificationtools from having to deal directly
with pointers and data structure implementations, therebyenabling these tools to focus on
the key properties that they are designed to analyze. Finally, we expect other developers to
be able to leverage its basic structuring concepts to enablethe scalable verification of other
program safety and correctness properties.

1 Introduction

This paper discusses a set of issues that arise in the verification of sophisticated pro-
gram correctness and consistency properties. The backdropfor this discussion is our
experience building the Hob program analysis and verification system, which verifies
that programs correctly preserve detailed data structure consistency properties. There
are several reasons that this experience is relevant to a larger program analysis and
verification effort. Data structures usually play a centralrole in the program. Other
kinds of program correctness properties often depend on thedata structure consistency
properties. Analyses that are designed to verify other program correctness properties
must therefore incorporate (and in some cases interact with) the analyses that verify
data structure consistency properties. Failure to either verify data structure consistency
properties or to present these properties in a form that supports further analysis can
therefore threaten the entire program verification effort.

Data structure consistency properties are also some of the most challenging program
properties to analyze and verify. Data structure consistency often involves complex re-
lationships between pointers, arrays, and unbounded numbers of data objects. There is
no consensus on an abstraction or analysis that would be suitable for effectively reason-
ing about such properties. Indeed, recent years have seen a proliferation of abstractions
and analyses, each with an ability to support the verification of a particular class of
data structure consistency properties [2, 8, 15, 24, 27]. Itcurrently seems unlikely that



any single approach will prove to be successful for the full range of data structures that
developers will legitimately desire to use. Any system thatovercomes these substan-
tial difficulties to successfully verify detailed data structure consistency properties in
non-trivial programs is therefore likely to provide concepts and approaches that will be
relevant to other analysis and verification efforts. We see several specific contributions
that our concepts, system, and overall approach can make to abroad program analysis
and verification effort.
Data Structure Consistency Properties.Data structure consistency properties are im-
portant in and of themselves. Our system shows, for the first time, how to automatically
verify detailed data structure consistency properties in complete programs. In particu-
lar, it shows how multiple analysis and verification systemscan cooperate to verify a
diverse range of properties.
Foundational System. Pointers and the data structures that they implement are a key
complication that any analysis or verification system must somehow deal with. In many
cases pointers are tangential to the primary focus, but if the analysis or verification
system does not treat them soundly, the system can deliver incorrect results. One con-
tribution of our system is that it provides a layer that encapsulates the pointers behind
data structure interfaces and provides a characterizationof the properties that objects
accessed via pointers or retrieved from data structures satisfy. Our system builds on this
layer, as can other systems, to obtain the data structure andpointer information needed
to provide correct results.
Transferable Concepts and Approaches.Our framework provides several concepts
and approaches that developers ought to be able to leverage when they build their anal-
ysis and verification tools. Approaches that we think will berelevant in other areas
include 1) our approach for applying very precise, unscalable analyses to targeted sec-
tions of the program as part of a broader scalable analysis and verification effort and
2) our technique for eliminating specification aggregation(Section 2.3), which occurs
when procedure preconditions propagate up the procedure call hierarchy to complicate
the specifications of high-level procedures.
Multiple Interoperating Analyses. One of the major themes of this paper is the need
for multiple analysis and verification systems to interoperate to analyze the same pro-
gram. Attempting to build a single general system that treats all analysis and verification
problems in a uniform way is counterproductive—it forces every potential developer to
understand the system and work within it if they are to contribute and makes it diffi-
cult to combine results from different, potentially independently developed, program
analysis and verification systems.

2 The Hob System

The Hob system is based on several observations about data structures and how systems
use them.
Encapsulated Complexity. Many data structures are designed to provide efficient
implementations of relatively simple mathematical abstractions such as sets, relations,
and functions. Appropriately encapsulating the data structure implementation behind
an abstraction boundary (as in an abstract data type) can effectively encapsulate this
implementation complexity. The complexity of the data structure (and therefore the
complexity of reasoning about its consistency properties)is substantially larger inside
the implementation than outside the implementation. In particular, it is usually possible



to completely encapsulate any use of pointers within the data structure implementation.
This encapsulation eliminates the need for analyses of datastructure clients to reason
about pointers—they can instead simply reason about the mathematical abstraction that
the data structure implements.
Internal and External Consistency Constraints. In most programs there are two
kinds of data structure consistency constraints.Internal constraintsidentify properties
of a single encapsulated data structure. These constraintstypically deal with elements of
the low-level representation of the data structure such as relationships between pointers
and array indices.External constraints, on the other hand, involve multiple data struc-
tures and typically deal with individual data structures atthe level of the mathematical
abstraction that the data structure implements. A typical external constraint might, for
example, state that one data structure contains a subset of the objects in another data
structure.
Client Dependence. Many data structure implementations will violate their internal
consistency constraints if their clients use them incorrectly. For example, a linked list
implementation may corrupt its internal representation ifasked to insert an object into
the list that is already present. Any practical data structure consistency analysis must
therefore analyze both data structure implementations andclients.
Diversity. Known data structures have a diverse range of internal consistency prop-
erties. Moreover, new data structures may very well come with new and unanticipated
kinds of properties.

Based on these observations, the overall design and approach of the Hob system
differs substantially from previous data structure analysis systems.

2.1 Decoupled Approach With Multiple Cooperating Analyses

In our approach, each data structure is encapsulated in a module, which consists of three
sections: an implementation section, a specification section, and an abstraction section
(which provides definitions for abstract variables). Theimplementation sectionof a
Hob module is written in a standard imperative language. Thespecification sectionof a
module is written in terms of standard mathematical abstractions such as sets of objects.
Each exported procedure has a precondition and postcondition expressed as first-order
logic formulas in the language of sets. To illustrate the benefits of set interfaces, Figure 1
presents the specification section of a module implementinga doubly-linked list with
an iterator. Note how complex manipulations of a list data structure are replaced by
a relationship between the values of sets before and after procedure execution. The
abstraction sectionis written in whatever language is appropriate for the analysis that
will analyze the implementation. This section indicates a representation invariant that
holds whenever control is outside of the data structure implementation, and provides
the values of abstract variables (sets) in terms of the concrete variables (the values of
fields of a linked data structure or expressions involving global arrays).

While this design adopts several standard techniques (invariants, the use of pre-
conditions and postconditions to support assume/guarantee reasoning), it deploys these
techniques in the context of very strong modularity boundaries that fully decouple the
analyses. In particular, it is possible to apply different analyses to verify different data
structure implementations and clients. Moreover, the complexity of of each individual
data structure implementation is encapsulated behind the data structure’s interface. Here
is how this design has worked out in practice.



spec module DLLIter {
format Node;
specvar Content, Iter : Node set;
invariant Iter in Content;

proc isEmpty() returns e:bool
ensures not e <=> (card(Content’) >= 1);

proc add(n : Node)
requires card(n)=1 & not (n in Content)
modifies Content
ensures (Content’ = Content + n);

proc remove(n : Node)
requires card(n)=1 & (n in Content)
modifies Content, Iter
ensures (Content’ = Content - n) & (Iter’ = Iter - n);

proc initIter()
requires card(Iter) = 0
modifies Iter
ensures (Iter’ = Content);

proc nextIter() returns n : Node
requires card(Iter)>=1
modifies Iter
ensures card(n’)=1 & (n’ in Iter) & (Iter’ = Iter - n’);

proc isLastIter() returns e:bool
ensures not e <=> (card(Iter’) >= 1);

proc closeIter()
modifies Iter
ensures card(Iter’) = 0;

}

Fig. 1. Specification Section of a Doubly Linked List with an Iterator

Multiple Targeted Analyses. We have developed a variety of analyses, with each
specific analysis structured to verify a specific, fairly narrow class of data structures.
The ability to target each analysis to a specific class of datastructures has provided
substantial benefits. Eliminating the burden of building a single general analysis has
reduced the overall development overhead and enabled us to produce very narrow but
very sophisticated analyses with relatively little engineering effort. It has also reduced
the amount of broad expertise any one person needs to acquireto develop an analysis.
Finally, it has enabled us to simply decline to implement problematic special cases.
These properties have made it much easier for us to bring people together to work on the
system since the barrier to entry (in terms of required program analysis and verification
expertise) to development effort for any one analysis are somuch smaller.
Interoperating Analyses. We have been able to productively apply multiple cooper-
ating analyses to the same program. This property has been absolutely crucial to de-
veloping a reasonable system in a reasonable amount of time—it has given us effective
abstraction barriers that have allowed us to decouple individual development tasks and
farm these tasks out to different people. This development strategy has had two key
benefits: first, it has allowed us to parallelize the work, andsecond, it has allowed us to
bring the strengths of multiple people to bear on the project, with each person given a
task best suited to his or her capabilities.
Relief from Onerous Scalability Requirements.Because the data structure interfaces
are written in terms of high-level mathematical abstractions (rather than implementation-
level concepts such as pointers), the data structure implementation complexity remains
encapsulated inside the implementation and is not exposed to the client. Of course, a
data structure’s implementation must be analyzed using some analysis technique. Be-
cause implementations may be arbitrarily complicated, andbecause our system aims



to verify sophisticated data structure consistency properties, it is difficult to imagine
any suitable analysis which could scale to sizable programs. However, our design elim-
inates any need for any single data structure analysis to scale—an analysis needs only
analyze the data structure implementation, leaving the analysis of the clients to simpler
and more scalable analyses.

Consider the implications of this approach. Roughly speaking, much of the history
of program analysis deals with managing the trade-off between scalability and preci-
sion. To a first approximation, it is relatively straightforward to build an analysis or
verification strategy for almost any property of interest ifscalability is not a concern. It
has also proved to be possible to build analyses of almost arbitrary scalability [25, 26]
as long as precision is not a concern. Building scalable, precise analyses has, however,
eluded the field despite years of effort. Our approach avertsthis problem by 1) limiting
the amount of code that any one internal data structure consistency analysis is respon-
sible for processing to the data structure implementation code, and 2) enabling the use
of less precise, more scalable analyses outside of the data structure implementations.

The result is that we have been able to effectively use analyses whose scalability
limitations would be prohibitive in any other context. Specifically, we have used anal-
yses with exponential and super-exponential complexity [10] and even made good use
of interactive theorem proving [30].

2.2 Clean Analysis Problems

One of the key problems that program analysis and verification researchers have strug-
gled with is what abstraction to use for programs with pointers [5, 15, 20]. Indeed, this
question is still open today and is the subject of much ongoing research. Standard ap-
proaches have used either special-purpose logics [18] or implementation-oriented ad-
hoc formalisms such as graphs [23]. The result is that the field has been effectively
estranged from many years of research into more standard mathematical foundations,
which have provided a significant body of potentially usefulresults in areas such as set
theory and more standard logics.

Our elimination of pointers as a concept outside of data structure implementations
has enabled us to use more standard mathematical abstractions (sets and relations) for
the majority of the program. This has, in turn, allowed us to effectively draw on the
large body of research on the properties of these standard mathematical abstractions.

2.3 Specification Aggregation

During our development of the system we encountered a problem that, as far as we can
tell, will complicate all attempts to use assume/guaranteereasoning to achieve modular
program verification. Assume/guarantee reasoning starts with procedure preconditions
and postconditions. To verify a procedure call, it translates the precondition into the
caller’s context, verifies that the analyses or verificationfact at the point before the pro-
cedure call implies the translated precondition, then translates the postcondition into
the caller context to obtain the analysis or verification fact at the point after the pro-
cedure call. It can verify that the procedure correctly implements its precondition and
postcondition independently. In this way, assume/guarantee reasoning enables modular
program analysis and verification.

If we attempt to apply this reasoning approach, however, we soon run intospecifi-
cation aggregation. To verify the precondition of the invoked procedure at a procedure
call site, we typically have to include some form of the precondition in the precondi-
tion of the calling procedure. The preconditions thereforeaggregate as we move up the



procedure call hierarchy. At the top of the hierarchy the procedure preconditions and
postconditions can become unmanageably complex. Moreover, the need to aggregate
preconditions and postconditions violates the modularityof the program, as the pre-
conditions of leaf procedures inappropriately appear in the preconditions of transitive
callers; in principle, these transitive callers should be unaware of the low-level imple-
mentation details of the procedures that they invoke.

Our solution is to use aspect-oriented concepts to pull invariants out into specifica-
tions on the side of the program [11]. Thescopeconstruct identifies the invariant and
the part of the program that may update the involved state. Because these invariants
do not appear in procedure preconditions and postconditions, they do not participate in
any specification aggregation that would otherwise occur. The analysis or verification
algorithm does, however, have access to the invariant and can use it to prove properties
anywhere except in the region of the program that may update the involved state. Scopes
different from hierarchical structuring mechanisms in that they can contain arbitrarily
overlapping modules and avoid the problem of dominant program decomposition. The
scope construct works well with data structure consistencyproperties, since they tend
to be true throughout most of the program and updated only in relatively small portions.
The end result is a substantial simplification of the specification of the program.

2.4 Experience

We have built a prototype system and used this system to verify a range of data structure
consistency properties [10–12, 30]. As expected, we have been able to use unscalable
analyses to verify very detailed internal data structure consistency properties. Specific
properties include the consistency of linked data structures such as linked lists (both
singly and doubly linked lists), trees, and array-based data structures. Our system is the
first to verify such properties in the context of complete programs.

Our system has also been able to use the results of the analysis outside the data
structure implementation to verify that the program uses the data structure correctly. In
particular, we have also been able to use multiple analyses on the same program, then
combine the analysis results to verify higher-level consistency properties that involve
multiple data structures. These properties include correlations between data structures,
for example that two data structures contain disjoint sets of objects. These properties
often capture application-level constraints; for instance, in our Minesweeper program
[10], we verify that the set of revealed cells is disjoint from the set of hidden cells.

Our system, perhaps surprisingly, enables developers to verify program correct-
ness properties that may not appear, at first, to be data structure consistency properties.
Specifically, we have been able to express typestate properties of objects and verify that
programs do not invoke operations on objects when they are inthe wrong typestate.

We have verified programs that are roughly one to two thousandlines long and con-
tain multiple data structures analyzed by different analyses. Moreover, these programs
implement complete computations such as the popular Minesweeper game, Water (a
scientific computation that simulates liquid water) [3], and a web server. Our ability to
demonstrate that our system is capable of verifying larger programs is limited largely
by our ability to develop or port these programs.

3 Comparison to Some Related Approaches
Frameworks for formal software development use the idea of data refinement [7, Chap-
ter 8] but achieve levels of automation similar to the use of our system with an inter-
active theorem prover alone [30]. The use of the full strength of our system provides



a greater degree of automation compared to approaches basedpurely on verification
condition generation and interactive theorem proving, thanks to the use of decision pro-
cedures and techniques for loop invariant inference. Like [7], our system acknowledges
the importance of both aspects of the verification: the verification of data structure im-
plementations and the verification of data structure clients. In contrast, most existing
static analysis approaches verify only the clients of interfaces, typically expressed as
finite state machines [1, 6], [22, Chapter 6]. The interfacesin Hob are more expres-
sive than finite state machines, because they can express finite-state properties of an
unbounded number of objects, and because they can express cardinality constraints on
the number of objects that satisfy a given property. Researchers have also explored the
verification of the usage of interfaces that are based on first-order logic [19]. Imple-
mentations of abstract data types have also been verified using TVLA [14]. Integration
of these two sides of the verification in TVLA using assume/guarantee reasoning is
the subject of ongoing research [28, 29]. Our approach in Hobwas to single out the
simple, yet powerful abstraction of global sets and explorethe range of properties that
such interfaces support [12]. Hob and the Spec# verifier [2] address different points in
the design space. Whereas Hob adopts a simple model of encapsulation using modules
and introduces new constructs for exploring novel overlapping inter-module grouping
mechanisms such as scopes, Spec# uses instantiatable classes as the main unit of en-
capsulation and remains close to its starting point, the programming language C#. Re-
garding the level of automation, Hob appears to provide moreautomated handling of
reachability properties in tree-like data structures, whereas Spec# has more support for
arithmetic; these differences are partly a consequence of design decisions and partly a
conequence of the decision procedures employed in these twosystems. Finally, there is
currently little emphasis of on abstract specification variables in Spec#, whereas Hob
uses them as the starting point for scalable analysis of the largest parts of the program.

4 Implications for Other Efforts

We see our system as relevant to other analysis and verification efforts in two ways.
First, our treatment of pointers and data structures can serve as a foundation for other
analysis or verification efforts that must deal somehow withprograms that contain
pointers and data structures. We envision analyses whose primary focus is not to verify
detailed properties involving data structures or pointers, but that rely on the truth of
some incidental data structure properties for the analysisto succeed. We envision our
analysis providing these other analyses with a relatively abstract, tractable, and verified
view of the data structures and pointers. Ideally, our system would give the developers
of the new analysis or verification system the information they need quickly and easily,
enabling them to productively focus their efforts on the problem of interest.

Second, we believe that the developers of other analyses maybe able to use sev-
eral of the concepts from our system to build analysis frameworks for their analysis
problems. By building on these concepts, these analysis frameworks would be able
to support the targeted application of multiple very precise, interoperating, unscalable
analyses in a scalable way to a single program. We view our ideas as likely to be partic-
ularly useful when there is some relatively small part of theprogram that manipulates,
in a fairly complex way, a clearly delineable part of the state (either of the program itself
or of some system that it interacts with). Outside this smallpart of the program the state
may be of interest but there is nothing complex going on. While data structures provide



a canonical example of such a situation, we believe that thisbasic pattern is pervasive
in modern software.

5 Future Work
We have implemented a prototype system Hob [13] for verifying data structure consis-
tency and successfully applied it to a range of programs. Several further problems are
worth exploring as we move forward; many of these problems are not specific to the
domain of data structure consistency properties.
Specialized analyses and libraries of verified data structures. Among the strengths
of our approach is the ability to verify a wide range of properties for a variety of data
structures. This strength comes from the availability of specialized analyses for com-
mon data structures. Researchers have successfully verified many properties of tree-like
data structures; on the other hand, there are fewer extant results on data structures that
use arrays and non-tree-like data structures. Many important and complex data struc-
tures are still to be verified (potentially even using interactive theorem proving [30])
and then included into a library of verified data structures.We expect that, as such li-
braries grow, there will be many common reasoning patterns that will allow the results
of verification to be extrapolated into fully automated analyses. Our approach supports
such incremental development because it supports both interactive theorem proving and
analyses with an increasing degree of automation.
Relevant tractable fragments of general-purpose logics.By using logical formu-
las to communicate analysis results, our system makes it convenient to build analyses
that themselves use logic to encode dataflow information inside the implementations
of modules. Such analyses are often precise and predictablebecause it is possible to
describe the class of properties to which they apply. It is therefore useful to explore new
classes of computationally tractable fragments of logics and constraints that can be used
as a basis for analyses. We suggest defining these logics as fragments of general logics
such as typed set theory, which have proven successful in formalizing a wide range of
properties. The study of logical fragments allows us to deploy specialized algorithms
while retaining simple semantics and the ability to communicate between different anal-
yses. Our experience suggests that, although traditional classifications based on simple
syntactic criteria are still useful [4, 9], data structure consistency constraints are likely
to yield new kinds of classifications and new ways of defining subclasses of logics [17].
Experience from larger applications. Experience from using our techniques in the
context of larger applications would further contribute tounderstanding the data struc-
ture consistency problem. We expect that the problem of internal data structure consis-
tency is essentially the same as for smaller applications, with larger applications having
greater diversity and wider data structure interfaces (to support many usage scenarios).
We also believe that we have identified some of the high-leveldata structure consis-
tency properties (such as disjointness and inclusion) thatare likely to generally useful.
It remains to investigate classes of more complex high-level properties. It is possible
that most of these properties will be domain-specific, with different kinds of useful and
tractable constraints applicable to different domains.
Supporting common language features. To obtain experience with larger applica-
tions, it is important to support the features of commonly used programming languages.
The evolution of languages has simultaneously contributed1) features that simplify
program semantics (such as memory safety and the ability to encode simple invariants
using types) and 2) features that complicate reasoning (such as higher-order functions,



continuations, dynamic dispatch, exceptions, reflection,and concurrency). An attempt
to handle the worst-case scenario arising from the use of these features is not likely to be
fruitful; it is instead important to consider the patterns in which these features are used
and adapt the analyses to work reasonably well in these cases. In addition to making
the automated analysis of these features practical, the study of these patterns is likely
to yield important results in programming methodology and programming language
design.
Correctness of analysis results.One of the major themes of this paper is the need for
multiple analyses to interoperate on the same program. Ideally, implementors will have
maximum flexibility in the implementation of these analyses, enabling the full range of
implementors to bring their skills effectively to bear and make a contribution. In par-
ticular, we envision developers with varying areas of expertise, levels of competence,
and programming styles and inclinations. Any time one combines the work of multiple
people, questions of competence and trust arise. An error inone analysis or verification
can call the entire result into question. We therefore believe that it is important to build
a system that can verify the results of the various analyses and verifications. Such a sys-
tem would accept and verify proofs of correctness of the results. We envision a system
similar to Credible Compilation [16, 21] in which each analysis or verification system
would generate, for each part of the program it processed, a proof that the specific result
it generated on that analysis or verification is correct.

6 Conclusion
We are becoming ever closer to having the basic requirementsin place for a successful
and ambitious program analysis and verification project—a recognized and growing
acknowledgement of the need for more reliable software, theraw computing power
necessary to support the required reasoning, and a community of program analysis and
verification researchers that, given an appropriate time and space budget, is able to
deliver algorithms that extract or check virtually any well-defined property of interest.

Important remaining barriers include techniques that dealeffectively with pointers
and data structures and, especially, ways to bring multipleanalyses together to interop-
erate during the analysis of a single program. It is especially important to support the
targeted application of unscalable approaches in the context of a larger scalable analysis
effort—these unscalable analysis and verification algorithms are the only way to verify
the precise, detailed properties to which any successful analysis and verification effort
must aspire.

We have addressed all of these issues in the context of the Hobsystem for verify-
ing data structure consistency. This system provides an effective analysis interface for
providing other analyses with pointer and data structure information. It has also em-
ployed a range of techniques that have enabled the successful coordinated application
of a range of unscalable analyses to complete programs. These techniques, and espe-
cially the concepts behind them, should generalize to enable the construction of other
systems for scalably verifying very precise program safetyand correctness properties.

References
1. T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani. Automatic predicate abstraction of C programs.

In Proc. ACM PLDI, 2001.

2. M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming system: An overview. InCASSIS
2004: International Workshop on Construction and Analysisof Safe, Secure and Interoperable Smart
devices, March 2004.



3. W. Blume and R. Eigenmann. Performance analysis of parallelizing compilers on the Perfect Bench-
marks programs.IEEE Transactions on Parallel and Distributed Systems, 3(6):643–656, Nov. 1992.

4. E. Börger, E. Grädel, and Y. Gurevich.The Classical Decision Problem. Springer-Verlag, 1997.

5. D. R. Chase, M. Wegman, and F. K. Zadeck. Analysis of pointers and structures. InProc. ACM PLDI,
1990.

6. M. Das, S. Lerner, and M. Seigle. ESP: Path-sensitive program verification in polynomial time. InProc.
ACM PLDI, 2002.

7. C. B. Jones.Systematic Software Development using VDM. Prentice Hall International (UK) Ltd., 1986.

8. V. Kuncak, P. Lam, and M. Rinard. Role analysis. InProc. 29th POPL, 2002.

9. V. Kuncak and M. Rinard. Decision procedures for set-valued fields. In1st International Workshop on
Abstract Interpretation of Object-Oriented Languages (AIOOL 2005), 2005.

10. P. Lam, V. Kuncak, and M. Rinard. On our experience with modular pluggable analyses. Technical
Report 965, MIT CSAIL, September 2004.

11. P. Lam, V. Kuncak, and M. Rinard. Cross-cutting techniques in program specification and analysis. In
4th International Conference on Aspect-Oriented SoftwareDevelopment (AOSD’05), 2005.

12. P. Lam, V. Kuncak, and M. Rinard. Generalized typestate checking for data structure consistency. In6th
International Conference on Verification, Model Checking and Abstract Interpretation, 2005.

13. P. Lam, V. Kuncak, and M. Rinard. Hob: A tool for verifyingdata structure consistency. In14th
International Conference on Compiler Construction (tool demo), April 2005.

14. T. Lev-Ami, T. Reps, M. Sagiv, and R. Wilhelm. Putting static analysis to work for verification: A case
study. InInternational Symposium on Software Testing and Analysis, 2000.

15. T. Lev-Ami and M. Sagiv. TVLA: A system for implementing static analyses. InProc. 7th International
Static Analysis Symposium, 2000.

16. D. Marinov. Credible compilation. Master’s thesis, Massachusetts Institute of Technology, 2000.

17. B. Marnette, V. Kuncak, and M. Rinard. On algorithms and complexity for sets with cardinality con-
straints. Technical report, MIT CSAIL, August 2005.

18. P. O’Hearn, J. Reynolds, and H. Yang. Local reasoning about programs that alter data structures. In
Proc. CSL, Paris 2001, volume 2142 ofLNCS, 2001.

19. G. Ramalingam, A. Warshavsky, J. Field, D. Goyal, and M. Sagiv. Deriving specialized program analyses
for certifying component-client conformance. InProceeding of the ACM SIGPLAN 2002 Conference on
Programming language design and implementation, pages 83–94. ACM Press, 2002.

20. J. C. Reynolds. Separation logic: a logic for shared mutable data structures. In17th LICS, pages 55–74,
2002.

21. M. Rinard and D. Marinov. Credible compilation with pointers. InProceedings of the Workshop on
Run-Time Result Verification, 1999.

22. N. Rinetzky. Interprocedural shape analysis. Master’sthesis, Technion - Israel Institute of Technology,
2000.

23. M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysis problems in languages with destructive
updating.ACM TOPLAS, 20(1):1–50, 1998.

24. A. Salcianu and M. Rinard. Purity and side effect analysis for java programs. InProc. 6th International
Conference on Verification, Model Checking and Abstract Interpretation, January 2005. To appear.

25. B. Steensgaard. Points-to analysis in almost linear time. InProc. 23rd ACM POPL, St. Petersburg Beach,
FL, Jan. 1996.

26. Y. Xie and A. Aiken. Scalable error detection using boolean satisfiability.POPL’05, 2005.

27. J. Yang, P. Twohey, D. Engler, and M. Musuvathi. Using model checking to find serious file system
errors. InOSDI’04, 2004.

28. G. Yorsh, T. Reps, and M. Sagiv. Symbolically computing most-precise abstract operations for shape
analysis. In10th TACAS, 2004.

29. G. Yorsh, A. Skidanov, T. Reps, and M. Sagiv. Automatic assume/guarantee reasoning for heap-
manupilating programs (ongoing work). In1st AIOOL Workshop on Abstract Interpretation of Object-
Oriented Programs, 2005.

30. K. Zee, P. Lam, V. Kuncak, and M. Rinard. Combining theorem proving with static analysis for data
structure consistency. InInternational Workshop on Software Verification and Validation (SVV 2004),
Seattle, November 2004.


