
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 1

Modular Pluggable Analyses for Data Structure
Consistency

Viktor Kuncak, Patrick Lam, Karen Zee, and Martin C. Rinard
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology

Abstract— Hob is a program analysis system that enables the
focused application of multiple analyses to different modules in
the same program. In our approach, each module encapsulates
one or more data structures and uses membership in abstract
sets to characterize how objects participate in data structures.
Each analysis verifies that the implementation of the module
1) preserves important internal data structure consistency prop-
erties and 2) correctly implements a set algebra interface that
characterizes the effects of operations on the data structure.
Collectively, the analyses use the set algebra to 1) characterize
how objects participate in multiple data structures and to
2) enable the inter-analysis communication required to verify
properties that depend on multiple modules analyzed by different
analyses.

We implemented our system and deployed several pluggable
analyses, including a flag analysis for modules in which abstract
set membership is determined by a flag field in each object, a
PALE shape analysis plugin, and a theorem proving plugin for
analyzing arbitrarily complicated data structures. Our experience
shows that our system can effectively 1) verify the consistency
of data structures encapsulated within a single module and 2)
combine analysis results from different analysis plugins to verify
properties involving objects shared by multiple modules analyzed
by different analyses.

Index Terms— Typestate, Data Structure, Invariant, Program
Analysis, Program Verification, Shape Analysis, Formal Methods,
Programming Language Design

I. I NTRODUCTION

A data structure is consistent if it satisfies the invariantsnec-
essary for the normal operation of the program. Data structure
consistency is important for successful program execution—if
an error corrupts the data structures of a program, the program
can quickly exhibit unacceptable behavior and may crash.
Motivated by the importance of this problem, researchers have
developed algorithms for statically verifying that programs
preserve important consistency properties [1]–[8].

However, two problems complicate the successful applica-
tion of these kinds of analyses to practical programs:scala-
bility and diversity. Because data structure consistency often
involves quite detailed object referencing properties, many
analyses fail to scale to the size of the entire program. Because
of the vast diversity of data structures, each with its own
specific consistency properties, it is difficult to imagine that
any one algorithm will be able to successfully analyze all of
the data structure manipulation code that may be present in a
sizable program.

This paper presents a new perspective on the data structure
consistency problem. Instead of attempting to develop a single

new algorithm that can analyze some specific set of consis-
tency properties, we propose a technique that developers can
use to apply multiple pluggable analyses to the same program,
with each analysis applied to the modules for which it is
appropriate. Our system uses a range of static analyses to
verify various classes of program properties. The analysesuse
a common abstraction based on sets of objects to communicate
their analysis results. Our approach enables the verification
of properties that involve multiple objects shared by multiple
modules analyzed by different analyses.

Our technique is designed to support programs that en-
capsulate the implementations of complex data structures in
instantiatable leaf modules, with these modules analyzed once
by very precise, potentially expensive analyses (such as shape
analyses or even analyses that generate verification conditions
that must be discharged using an interactive theorem prover).
The rest of the program uses these modules but does not
directly manipulate the encapsulated data structures. Themod-
ules in the rest of the program can then be analyzed using more
efficient analyses that operate at the level of the common set
abstraction. These analyses can be viewed as generalizations
of typestate analysis [9]–[14], with the typestate of an object
given by the sets to which the object belongs. These analyses
simultaneously 1) ensure that the rest of the program respects
the preconditions of the data structure operations (that is,
adheres to a protocol that guarantees the correct use of the
data structure), and 2) verify high-level consistency properties
between data structures, such as disjointness or containment
of data structure contents.

We have implemented our analysis framework in the context
of the Hob project [15], [16] and initially populated this frame-
work with three analysis plugins: 1) the flag plugin, which is
designed to analyze modules that use a flag field to indicate
the typestate of the objects that they manipulate [17]; 2) the
PALE plugin, which implements shape analysis for linked
data structures using the PALE tool [1]; and 3) the theorem
proving plugin, which generates verification conditions for
consistency properties of arbitrarily complicated properties and
discharges them using the Isabelle interactive theorem prover
[18]. This paper discusses these three plugins. Thomas Wies
has subsequently developed another shape analysis plugin,
Bohne [19], [20], which offers more automation and a wider
scope of applicability than the PALE plugin.

Our framework analyzes programs written in a memory-
safe imperative language with Java-like syntax. We used our
analysis framework to analyze several programs; our experi-

2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

ence shows that our framework can effectively 1) verify the
consistency of data structures encapsulated within a single
module and 2) combine analysis results from different anal-
ysis plugins to verify properties involving objects sharedby
multiple modules analyzed by different analyses.

Structure of the paper and related Hob publications.In the
rest of the paper, we present the basic concepts of our system.
We use a running example to illustrate these concepts and their
effectiveness in verifying complex data structure consistency
properties in the context of an application. Additional details
on earlier versions of the Hob system are presented in [15],
[16]. The theorem proving plugin is presented in [21], the
flag plugin in [17], and the field constraint analysis behind
the (recently developed) Bohne plugin in [19], [22]. Novel
specification-level constructs of Hob—scopes and defaults—
are described in [23].

II. M INESWEEPEREXAMPLE

To illustrate our technique, we present an example program
that implements the popular minesweeper game. The central
entity of the implementation is aCell object, which stores
the state of one cell in the field of the game. In terms of
content, eachCell may or may not contain a mine; in terms
of visibility, each cell can be exposed or unexposed; finally,
the player can mark an unexposed cell if they believe that it
contains a mine.

Our implementation uses the standard model-view-
controller (MVC) design pattern [24]. The implementation
has several modules (see Figure 1). The game board module
(Board) represents the game state and plays the role of
the “model” part of the MVC pattern; the controller module
(Controller) responds to user input; the view module
(View) produces the game’s output; the exposed cell module
(ExposedSet) uses an array to store the cells exposed by the
player in the course of the current game; and the unexposed
cell module (UnexposedList) uses an instantiated linked
list to store the cells that have not yet been exposed. There
are 750 non-blank lines of implementation code in the 6
implementation sections of minesweeper, and 236 non-blank
lines in its specification and abstraction sections. (Full source
code for the minesweeper example and other case studies, the
interpreter for our language, and analysis engine are available
from the authors’ web pages.)

Fig. 1. Modules in Minesweeper implementation.

The minesweeper application exhibits a variety of data
structures with a range of important consistency properties.
Among the data structure consistency properties verified using
our system are the following:

1) The set of unexposed cells in theUnexposedList

module form an acyclic doubly-linked list with allprev

references being the inverse ofnext references.
2) The iterator of theUnexposedList module is either

null or points inside the list.
3) If the board is initialized, then theExposedSet module

storing the exposed cells is also initialized.
4) The set of unexposed cells maintained in theBoard

module (using flags) is identical to the set of unexposed
cells maintained in the linkedUnexposedList data
structure.

5) The set of exposed cells maintained in theBoard

module (using flags) is identical to the set of exposed
cells maintained in theExposedSet array.

6) Unless the game is over, the set of mined cells is disjoint
from the set of exposed cells.

7) The sets of exposed and unexposed cells are disjoint.
8) At the end of the game, all cells are revealed;i.e. the

set of unexposed cells is empty.
Notice that this list contains two kinds of properties: i) data
structure consistency properties that involve the implemen-
tation of a single data structure, such as Property 1, and
ii) more abstract properties involving relationships between
objects stored in multiple data structures, such as Properties 4,
5, 6, and 8. One somewhat unusual feature of these abstract
properties is that they are outward looking: they capture
important features of the system that are directly meaningful
to the users of the system, and not just the implementors.
To the best of our knowledge, the Hob system is the only
currently existing system that supports and promotes the
explicit identification and guaranteed checking of these kinds
of outward-looking, application-oriented properties.

We next show how our system verifies these properties
by combining multiple analyses with different strengths and
different levels of automation. We start by describing the main
elements of our language using an example of a doubly-linked
list with an iterator, which corresponds to theUnexposedList

module in the minesweeper example.

III. M ODULES IN HOB

The basic unit of analysis in our system is a module. Be-
cause developers partition programs into multiple modules, our
system can verify different parts of a program independently,
using different analysis techniques. Each module in our system
consists of an implementation section, a specification section,
and an abstraction section. We illustrate different sections of
a module using the example of a doubly-linked list with an
iterator.

A. Implementation Section

Figure 2 contains a skeleton of the implementation section
of a doubly-linked list with an iterator. Our implementation
language is a standard memory-safe imperative language with

VIKTOR KUNCAK, PATRICK LAM, KAREN ZEE, AND MARTIN C. RINARD: MODULAR PLUGGABLE ANALYSES FOR DATA STRUCTURE CONSISTENCY 3

impl module DLLIter {
format Node { next : Node; prev : Node; }
var root, current : Node;

proc isEmpty() returns e:bool { return root==null; }
proc add(n : Node) { ... }
proc remove(n : Node) {

if (n==current) { current = current.next; }
if (n==root) { root = root.next; }
Node prv = n.prev, nxt = n.next;
if (prv!=null) { prv.next = nxt; }
if (nxt!=null) { nxt.prev = prv; }
n.next = null; n.prev = null;

}

proc openIter() { current = root; }
proc nextIter() returns n : Node {

Node n1 = current; current = current.next; return n1;
}
proc isLastIter() returns e: bool {return current==null;}
proc closeIter() {current = null;}

}

Fig. 2. Implementation Section of a Doubly Linked List with an Iterator.

dynamically allocated objects. (See Section VI for a discussion
of our choice of implementation language.) One interesting
feature of our language is the ability to introduce new fields
to an object in any module usingformats. In our doubly-linked
list example, the statementformat Node {next: Node;

prev: Node; } directs the compiler to addnext and prev

fields to allNode objects. These fields are encapsulated within
the doubly-linked list module in which they are declared; no
other module can access them because our typechecker only
allows the use of fields introduced in the current module. The
ability to encapsulate fields facilitates the modular analysis of
the list by maintaining the encapsulation of the doubly-linked
list data structure while still enabling objects in the listto be
shared with other modules.

Our doubly-linked list implementation includes the standard
add andremove procedures for a doubly-linked list, as well as
an iterator interface, represented by theopenIter , nextIter ,
isLastIter , and closeIter procedures. TheopenIter

procedure initiates an iteration by setting thecurrent refer-
ence to the root of the list. We shall see that our specification
prevents an iteration from being initiated unless all previous
iterations have completed. ThenextIter procedure advances
the current pointer to the next element of the list; it iterates
through the contents of the linked list, returning each element
in sequence. TheisLastIter procedure indicates to the
client when to stop iterating. ThecloseIter procedure
terminates an iteration by skipping directly to the end of
the list, which allows a new iteration to start. Note that
the implementation of theremove operation must take into
account the existence of an iterator by moving the iterator
pointer when the corresponding element is removed.

B. Specification Section

In conventional programming languages, a module inter-
face contains only type declarations that indicate the format
of procedure parameters. Type declarations typically do not
describe the behavior of procedures, which are usually left
to the informal, unchecked documentation of the module. In
contrast, the specification section of a module in our language

spec module DLLIter {
format Node;
specvar Content, Iter : Node set;
invariant Iter in Content;

proc isEmpty() returns e:bool
ensures e’ <=> (card(Content’) = 0);

proc add(n : Node)
requires card(n)=1 & not (n in Content)
modifies Content
ensures (Content’ = Content + n);

proc remove(n : Node)
requires card(n)=1 & (n in Content)
modifies Content, Iter
ensures (Content’ = Content - n) &

(Iter’ = Iter - n);

proc openIter()
requires card(Iter) = 0
modifies Iter
ensures (Iter’ = Content);

proc nextIter() returns n : Node
requires card(Iter)>=1
modifies Iter
ensures card(n’)=1 & (n’ in Iter) &

(Iter’ = Iter - n’);
proc isLastIter() returns e:bool

ensures not e <=> (card(Iter’) >= 1);
proc closeIter()

modifies Iter
ensures card(Iter’) = 0;

}

Fig. 3. Specification Section of a Doubly Linked List with an Iterator.

contains a procedure contract for each public procedure of the
module.

Figure 3 presents the specification section for our iterable
doubly-linked list module. To describe the behavior of pro-
cedures without exposing implementation details, the spec-
ification module introduces abstract variables. The abstract
variables in our example are the setsIter andContent . The
set Iter represents the set of objects still to be iterated over;
this set is a subset of theContent set, as indicated by the
formula following theinvariant keyword in Figure 3. The
in keyword denotes the subset relation on sets. Because our
language represents individual elements as singleton sets, in

also serves as the set membership operator.

Procedure contracts. A procedure contract consists of a
requires clause that specifies a condition that must hold
before calling a procedure, anensures clause that speci-
fies the postcondition that the procedure guarantees, and a
modifies clause that states the sets that may change during
the execution of the procedure. For example, theadd operation
has a precondition that the element being inserted is not in the
list already, as given by the conjunctnot (n in Content) .
We represent references to objects as sets of cardinality atmost
one, with∅ denoting a null reference, and a local variable name
x denoting a singleton set containing the object referenced by
x. In particular, the conjunctcard(n)=1 in the precondition of
add indicates that the parametern is notnull .1 Theensures

clause can refer to initial variables at procedure entry, with
unprimed variables indicating the values at procedure entry
and primed variables indicating the values at the end of

1The idea of using singleton sets to represent elements appears in decision
procedures for several logics for reasoning about sets [25], [26] and is used
successfully in the Alloy modelling notation [27].

4 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

procedure execution. For example, the notationContent’ =

Content + n indicates that the final version of theContent

set is equal to the union of the initial version of the set and the
newly inserted elementn. A modifies clause lists all sets that
may change during the execution of the procedure and can
be thought of as a shorthand for the condition

∧
M

S′ = S

which would otherwise appear in theensures clause, where
M ranges over all sets of the program that are not listed in the
modifies clause (also known as the frame condition [28]). In
our example, the modifies clause of theadd procedure states
that add does not change theIter set.

Boolean algebra of sets. Procedure preconditions, post-
conditions, and invariants are first-order logic formulas in the
language of the boolean algebra of sets, which is a decidable
theory for reasoning about sets of uninterpreted elements [26],
[29]. Formulas in the language of boolean algebra of sets
contain set expressions built using set union, intersection,
and difference. Atomic formulas in this language can state
set inclusion, set equality, as well as cardinality constraints
card(S) ρ k on sets with constant cardinality boundk and
some ordering or equality relationρ ∈ {=, <,≤,≥, >}.
Such atomic formulas can then be combined using arbitrary
propositional combinations, as well as quantification oversets.

Specifying an iterable list. Procedure contracts summarize
the behavior of the doubly-linked list in terms of abstract sets,
and impose constraints on both the clients and the imple-
mentation of theDLLIter module. Therefore, the contracts
of procedures in Figure 3 present the intended use of these
procedures. The developer initiates the iteration by calling
openIter , which initializes Iter to contain all members
of Content . openIter requires thatIter be empty upon
entry, which requires the client to end each iteration before
beginning a new iteration. Note that no analysis of the linked
list implementation in isolation could ensure this particular
precondition: it is the responsibility of the client to ensure that
this precondition holds. Subsequent calls tonextIter remove
an item from Iter and return that item, while preserving
the underlyingContent set. The precondition of this pro-
cedure requires thatIter contain at least one remaining item
(card(Iter)>=1). TheisLastIter procedure tests whether
any such item exists. By calling theisLastIter procedure
and testing the result before calling thenextIter procedure,
the developer can determine if there are any remaining ele-
ments and therefore satisfy the precondition of thenextIter

procedure. Furthermore, iterating untilisLastIter becomes
true ensures that theIter set is empty, which enables the next
iteration to begin. Another way to enable subsequent iterations
is to call thecloseIter procedure, which also ensures that
the Iter set is empty upon exit.

Invariants between sets.The implementation of our iterable
doubly-linked list preserves the abstract invariantIter in

Content . Hob ensures that this invariant holds throughout
the entire program’s execution by assuming that the invariant
holds upon entry to the module and proving it upon exit.
Because the setsIter andContent are encapsulated within
the DLLIter module, showing that the invariant always holds
upon exit given that it holds in the initial program state is

abst module DLLIter {
use plugin "PALE";
Content = { n : Node | "root<next * >n" };
Iter = { n : Node | "current<next * >n" };

invariant "type Node = {
data next:Node;
pointer prev:Node[thisˆNode.next = {prev}];

}";
invariant "data root : Node;";
invariant "pointer current : Node;";

}

Fig. 4. Abstraction Section of a Doubly Linked List with an Iterator.

sufficient to show that the invariant always holds outside the
DLLIter module. A module entry occurs when a procedure
that does not belong to the module calls a procedure that does
belong to the module. Conversely, module exit occurs when
a procedure inside the module returns control to a procedure
outside the module. Note that, together, the invariantIter

in Content and theopenIter andnextIter specifications
naturally express the essence of iteration over a set.

C. Abstraction Section

Previous sections described how developers write imple-
mentations of Hob programs in the implementation sections
and how they specify interfaces of operations in the specifica-
tion sections. Such separation into different sections enables
Hob to perform modular analysis of data structure clients. To
verify that the data structure implementation itself conforms
to its interface, it is necessary to specify the connection
between the implementation and the specification. For this
purpose, each module in Hob has anabstraction section,
specifying the abstraction function as well as any additional
information needed to verify the implementation. Figure 4
shows the abstraction section for the doubly linked list with an
iterator, which connects the specification in Figure 3 with the
implementation in Figure 2. The abstraction section specifies
the appropriateanalysis pluginthat will analyze the module,
the abstraction functionthat gives the values of abstract
variables, and therepresentation invariantsthat should hold
inside the module. We next discuss each of these pieces of
information in greater detail.

Analysis plugins.The use plugin keywords in the abstrac-
tion section of a module specify the specialized analysis, or
plugin, that the system should invoke to verify the module.
In the example in Figure 4, the Hob system will invoke the
PALE plugin to analyze the iterable list module; this choiceof
plugin is appropriate because the PALE plugin is specialized
for analyzing linked data structures.

All verification in Hob is ultimately performed by the anal-
ysis plugins. The Hob system currently contains four analysis
plugins, of which we present three that illustrate different
target properties and different tradeoffs between expressive
power and automation.

• The flag plugin, described in Section IV-C, propagates
constraints between sets and tracks the values of constant
flags of fields of objects. The flag analysis is an example
of a simple, automated analysis that infers loop invariants.

VIKTOR KUNCAK, PATRICK LAM, KAREN ZEE, AND MARTIN C. RINARD: MODULAR PLUGGABLE ANALYSES FOR DATA STRUCTURE CONSISTENCY 5

• The PALE shape analysis plugin, described in Section IV-
A, verifies properties of tree-like linked data structures
using monadic second-order logic. The use of monadic
second-order logic enables PALE to verify specifications
that contain reachability expressions that are not ex-
pressible in first-order logic. PALE requires the use of
loop invariants, but the subsequently developed Bohne
tool [19], [22] shows how such invariants can often be
inferred.

• The theorem proving plugin, described in Section IV-
B, illustrates that our approach can verify arbitrarily
complex implementations of data structures as long as
this complexity is encapsulated within the data structure
itself and the (partial) interface can be expressed in
the set specification language. The internal language of
the theorem proving plugin is the higher-order logic of
the Isabelle interactive theorem prover [18] which can
express all data structure properties we have encountered.
The developer can prove the generated proof obligations
interactively using the Isabelle theorem prover, which,
given enough manual effort, enables developers to verify
arbitrarily complex properties.

Hob supports a loose interaction model between different
plugins: each procedure is analyzed by a single plugin. The
plugin attempts to establish that the procedure conforms to
its specification and reports an error if this is not the case.
The analysis plugins in Hob do not directly interact with each
other; the interaction is solely through the fact that one plugin
shows the correctness of explicitly provided set interfaces that
can be used by another plugin. Thanks to this architecture,
there are very few requirements on each Hob plugin: each
plugin only needs to be able to extract the information from
the set interfaces of public methods. The plugin can use
arbitrarily expressive logics and data structures to accept
from the developer or synthesize automatically propertiesthat
are not visible to other modules. Such properties can occur
in the form of loop invariants, data structure representation
invariants, and the specifications of private procedures; we
illustrate such more complex properties below.

Abstraction functions. Analysis plugins establish that the
behavior of the implementation is observationally equivalent
to the behavior of its specification. To help the analysis plugins
in this task and to serve as design documentation, we require
developers to specify an abstraction function that maps the
state of the implementation to the state of the specification.
The abstraction section of a module specifies this abstraction
function by defining the meaning of each specification variable
in terms of concrete variables. The abstraction section of the
iterable list module in Figure 4 defines the setContent as the
set of all nodes reachable from the root of the doubly-linked
list along thenext field. Namely, we can view thenext field
as a binary relation, sonext * denotes the transitive closure
of next , and root<next * >n denotes the statement that the
transitive closure ofnext holds for the pair (root ,n), which
means thatn is reachable fromroot along next . Similarly,
the setIter is defined as the set of nodes reachable from
the global reference variablecurrent that denotes the next

element to return from the iterator. Note that these definitions
use reachability expressions, whose expressive power is be-
yond first-order logic. In general, the developer defines the
meaning of set variables using a notation specific to one of
Hob’s analysis plugins; the expressive power of this notation is
not limited by the set specification language. This abstraction
function allows both the analysis and the developer to interpret
procedure contracts in terms of the implementation: replacing
the set variables with their definitions results in a contract
that refers to the implementation state. Our design supports
the development of analysis plugins for verifying arbitrarily
complex data structure implementations, while ensuring that
such plugins remain capable of communicating with other
components of the system through the set specification lan-
guage.

Representation invariants. Data structures often maintain
privaterepresentation invariantsthat are true before and after
each public data structure operation. Abstraction modules
allow the developer to specify representation invariants using
a language specific to the analysis plugin. The representation
invariants in Figure 4 use the notation of graph types [1] to
specify that the linked data structure has the shape of a doubly-
linked list with a back pointer. For example, the invariant states
that thenext field is a data field, indicating that it is part
of the tree backbone of the data structure, and that theprev

field is an auxiliarypointer field that is the inverse of the
next field.

In general, representation invariants [30], [31] allow the
developer to specify data structure consistency properties that
are internal to the data structure and are expressed directly
in terms of the data structure implementation. In contrast,the
requires clauses and specification module invariants indicate
those preconditions of operations that are expressible solely
in terms of abstract specification variables, such as the public
invariant Iter in Content in Figure 3. Representation in-
variants are often essential for proving that procedures satisfy
their set specifications: for example, the remove operation
in Figure 2 would be incorrect without the property that
prev is the inverse ofnext . However, incorporating such
conditions into procedure contracts would violate the data
structure abstraction boundary.

Because representation invariants mention concrete vari-
ables of a module, they are only visible while analyzing the
implementation of a module. A plugin proves the invariant
when control leaves the module and in the initial state of
the module (the initial state is given by the initial values of
variables according to the semantics of our implementation
language). Because variables participating in representation
invariants are private, outside actions cannot violate therepre-
sentation invariants. In our example, our system ensures that,
in the initial state with no objects,prev is the inverse ofnext ,
which holds trivially, and conjoins the representation invariant
to both the precondition and postcondition when verifying that
each procedure conforms to its specification.

6 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

D. Instantiating and Using Modules

We next illustrate the module instantiation mechanism in
Hob, and then present an example of using a module in our
system.

Module instantiation. To allow the reuse of modules, our
language supports a static instantiation mechanism that intro-
duces a new module into the system by copying an existing
module and possibly renaming its types. In our minesweeper
example, we use the declaration

spec module UnexposedList = List with Node <- Cell;

to instantiateUnexposedList as a List module with the
Node type replaced by theCell format. Modules generated
using instantiation behave no differently from other modules.
Our module instantiation mechanism is similar in spirit to
SML’s functor mechanism, which we discuss further in Sec-
tion VII.

Verifying correct data structure use. Our minesweeper
implementation uses iterators to process the list of unexposed
cells in two contexts; both of these contexts are shown in
Figure 5. One use of iteration is at the end of the game, at
which point the implementation exposes all of the cells. The
second use is in a “peek” command, which we added to our
minesweeper implementation. The “peek” command allows
the player to peek at all unexposed cells. This command is
implemented by iterating twice over the set of unexposed cells,
first exposing them, then hiding them.2

Benefits of set abstraction. Because the clients of the list
data structure need not reason about pointers, only abstract
sets, it is possible to build more scalable and more automated
analyses of clients. In particular, the fragments of quoted
text in Figure 5 make up part of the loop invariants for our
loops.3 Our flag analysis plugin can, in fact, infer these loop
invariants [32], eliminating the additional annotation burden
on the programmer. One reason for the success of our loop
invariant inference technique is that it works at the level of
abstract set variables.

Note that client code always uses the list through its inter-
face; it cannot directly manipulate the list itself. In general,
verifying consistent interface use is simpler than verifying
consistency of data structure operations, and our Hob system
therefore uses the simpler but more efficientflag plugin to
verify the consistency of data structure uses. The flag plugin
verifies that the precondition fornextIter (the Iter set is
nonempty) is always satisfied beforenextIter is called. This
follows from the fact thatisLastIter always returnsfalse

before nextIter is called. Thepeek example nondestruc-
tively iterates over theUnexposedList set without changing
the backingContent set, whereas therevealAllUnexposed

procedure removes all elements from the list during itera-
tion. The revealAllUnexposed procedure guarantees that

2One of the authors successfully used the “peek” command to dramatically
improve his minesweeper score.

3Our notation of primed and unprimed variables in loop invariants is similar
to the convention in postconditions: unprimed variables denote values at
procedure entry, whereas primed variables denote current values. In Figure 5,
all variables refer to current values; in general, a loop invariant can relate the
current state with the state at procedure entry (see Figure 7).

// in Board specification

proc setExposed(c:Cell; v:bool) returns causedGameOver: bool
...

ensures (v => (ExposedCells’ = ExposedCells + c)
& (UnexposedCells’ = UnexposedCells - c)
& (UnexposedList.Iter’ = UnexposedList.Iter - c))

& ((not v) => ((ExposedCells’ = ExposedCells - c)
& (UnexposedCells’ = UnexposedCells + c)))

& ...

proc revealAllUnexposed()
requires gameOver
modifies ExposedCells, UnexposedCells
ensures card(UnexposedCells’) = 0;

// in Board implementation

proc peek() {
peeking = true;
Cell c;
UnexposedList.openIter();
bool b = UnexposedList.isLastIter();
while "(b’ <=> (UnexposedList.Iter’ = {})) & peeking’"
(!b) {

c = UnexposedList.nextIter();
View.drawCellEnd(c);
b = UnexposedList.isLastIter();

}
// ... wait for key press ...
UnexposedList.openIter();
b = UnexposedList.isLastIter();
while "(b’ <=> (UnexposedList.Iter’ = {})) & peeking’"

(!b) {
c = UnexposedList.nextIter();
View.drawCell(c);
b = UnexposedList.isLastIter();

}
peeking = false;

}

proc revealAllUnexposed() {
UnexposedList.openIter();
bool b = UnexposedList.isLastIter();
// loop invariant in quotes below:
while "... & (b’ <=> (UnexposedList.Iter’ = {})) &

(UnexposedList.Iter’ = UnexposedList.Content’)" (!b) {
Cell c = UnexposedList.nextIter();
setExposed(c, true);
b = UnexposedList.isLastIter();

}
}

Fig. 5. Doubly-Linked List Client. An optional loop invariant appears in
quotes after thewhile keyword.

the unexposed set is empty at the end of the procedure,
as follows. The procedure maintains the invariant that the
Iter set equals theContent set during every loop iteration
becausenextIter removes an element from theIter set, and
setExposed removes the same element fromContent . The
loop exit condition implies that theIter set is empty upon
completion, which, in turn, implies thatContent is empty as
well.

Addressing specification aggregation.When analyzing the
start of an iteration, which contains a call to theopenIter

procedure, the analysis must showopenIter ’s precondition
card(Iter)=0 . The analysis should be able to use the
preconditions ofpeek and revealAllUnexposed for this
purpose, but because Hob analyzes each procedure in isolation,
preconditions such ascard(Iter)=0 would need to propa-
gate into the preconditions and postconditions of procedures
that callpeek and revealAllUnexposed . We call this phe-
nomenonspecification aggregation[23]. We address this prob-

VIKTOR KUNCAK, PATRICK LAM, KAREN ZEE, AND MARTIN C. RINARD: MODULAR PLUGGABLE ANALYSES FOR DATA STRUCTURE CONSISTENCY 7

lem by factoring out such global invariants ascard(Iter)=0

that apply to many preconditions and postconditions, and
specifying them only once. For this purpose, we introduce the
notion of ascope, which groups several modules along with
invariants on public specification variables of these modules.
If the developer specifiescard(Iter)=0 as an invariant of
a scope, Hob will implicitly conjoin it to the preconditions
and postconditions of public procedures in the scope. This
invariant, however, may be violated during iteration over the
list, so it must not be conjoined to preconditions of procedures
called during the iteration. Therefore, we introduce a guarded
version of the invariant into a scope:
(not Board.peeking) => (card(UnexposedList.Iter) = 0)

As the procedurepeek illustrates, the program can explic-
itly set Board.peeking to true to disable the invariant
during the iteration over the list. This reduces the evalu-
ation of card(Iter)=0 to finding the truth value of the
boolean variableBoard.peeking . To provide fine-grained
control over whenBoard.peeking holds, the developer
can use the concept ofdefaults [23] to write an expres-
sion over program points specifying the preconditions and
postconditions whereBoard.peeking holds. In our ex-
ample, the developer specifies the defaultnot peeking

with an expression that syntactically identifies the precon-
ditions of both peek and revealAllUnexposed as the
points in the source code where the default applies. The
analysis expands the default and conjoins the scope invari-
ant, so bothnot peeking and (not Board.peeking) =>

(card(UnexposedList.Iter) = 0) are part of the pre-
condition ofpeek and revealAllUnexposed , which allows
the analysis to deducecard(Iter)=0 and verify these pro-
cedures.

Separate verification of data structure use and data struc-
ture implementation. Hob’s analysis of an implementation
proves that each procedure conforms to its specification. This
specification is expressed in terms of abstract sets; the concrete
meaning of abstract sets is given by the abstraction module,
as seen in the linked list example. On the other hand, data
structure clients can use a module’s specification, as expressed
in Hob’s set specification language, to reason about the effects
of operations and to ensure that a module’s preconditions are
satisfied when calling into the module; in our example above,
the minesweeper board guarantees that the iterator always has
at least one iterable element before each call.

In our approach, clients of the linked-list data structure
need not be analyzed using the shape analysis plugin. Hob
provides another analysis plugin (the flag plugin) that performs
a dataflow analysis over set algebra formulas. This plugin
is more efficient than the shape analysis plugin, as it tracks
less-detailed properties. The availability of additionalanalysis
plugins is crucial in deploying shape analysis techniques in the
context of larger programs: our technique for composing anal-
ysis plugins allows the focused application of shape analysis
to only the relevant module in isolation, while other analysis
plugins guarantee that the remainder of the program uses the
module correctly.

Two sides of data structure consistency. To clarify the

relevance of our approach we next emphasize two equally im-
portant components of the data structure consistency problem.
Consider an application that manipulates an encapsulated data
structure. To ensure that the data structure satisfies consistency
properties at run time, we need to ensure both 1) that the data
structure operations conform to their contracts, and 2) that
the rest of the program invokes data structure operations in
states where operation preconditions are satisfied. Without the
first condition we cannot say anything about the preservation
of our data structure consistency property, and without the
second condition we cannot assume that procedure contracts
apply. Writing procedure contracts without checking the im-
plementation runs the risk of writing incorrect specifications of
procedures that do not correspond to the actual data structure
implementation. Conversely, writing contracts without check-
ing their use in the context of a program runs the risk of
writing too-strong preconditions that the make the operations
impossible to use, or too-weak postconditions that make it
impossible to satisfy preconditions of subsequent operation
invocations. This is why Hob verifies both components of
data structure consistency. It does so using potentially different
analyses because these two components are likely to require
different precision/scalability trade-offs. In the next section
we give an overview of the PALE plugin and the theorem
proving plugin as two precise analysis plugins suitable for
verifying data structure implementations, and then present a
more scalable typestate analysis plugin suitable for verifying
data structure use.

IV. M ODULAR ANALYSIS IN HOB

An analysis plugin must ensure that the implementation
of a module conforms to its specification, and that any
calls originating in the module it is analyzing satisfy their
preconditions. To analyze a moduleM , the analysis uses the
implementation, specification, and abstraction sections of M ,
as well as the specification sections of all modules whose
proceduresM invokes. Apart from these requirements, the
details of the analysis are entirely plugin-specific, whichgives
our system great flexibility in leveraging different analysis
techniques.

Fig. 6. Checking implementation of minesweeper board.

Figure 6 illustrates our analysis of theBoard module from
minesweeper: to ensure thatBoard meets its specification,
we use the flag plugin (described in Section IV-C). Instead of
using the implementation of all of the modules in Figure 1,
the plugin only needs to read the the specification sections of
the ExposedSet andUnexposedList module in addition to
the implementation, abstraction and specification sections of

8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

the Board module. As a special case, if a module is in the
leaf of the call graph, as is the case with theExposedSet

or UnexposedList modules in Figure 1, then it suffices
to examine the implementation, specification, and abstraction
sections of that module.

Soundness of modular reasoning. The modular approach
of Hob is possible because different modules access disjoint
regions of state: a moduleM directly accesses only the fields
declared inM , and the invariants inM depend only on those
fields that are declared inM . When the developer instantiates
modules, the fields declared in each module instance are
distinct from the fields of other instances of the same module.
This semantics prevents sharing of fields, while allowing
sharing of objects. Arrays in Hob are not objects and have
a distinct type, and we impose the following simple rules to
ensure the soundness of modular reasoning in their presence:
if an abstraction function or a representation invariant depends
on an array, then this array must be a global variable initialized
by array allocation in the module, and module operations are
not allowed to introduce additional references to the array(but
they can copy its content into fresh arrays). When an array
does not affect the value of a specification variable, then there
are no restrictions on its use.

We next describe three of the analysis plugins that we
have implemented in our analysis framework. These plugins
enabled us to modularly verify data structure consistency
properties in our example programs.

A. The PALE Analysis Plugin

Our PALE plugin uses a previously implemented tool, the
Pointer Assertion Logic Engine [1] (PALE). We incorporated
PALE into our framework with very few changes to the tool
itself: we reported a few bugs in the underlying MONA tool
and modified PALE to return different exit codes on success
and failure.

The PALE analysis system takes as input a program written
in the PALE imperative language [1]. This program includes
preconditions, postconditions, loop invariants, andgraph type
declarations [33]. A graph type is a tree-like pointer-based
(potentially recursive) data structure with a distinguished set
of data fields(such as thenext field in Figure 4), whose
values form the spanning treebackboneof the data structure.
In addition to data fields, a graph type may containrouting
fields [33] (such as theprev field in Figure 4). These routing
fields are functionally determined by the backbone; theprev

field in Figure 4, for example, is uniquely determined as the
inverse of thenext field. By identifying data fields that form
the spanning tree and by providing the definitions for the
derived fields, graph type declarations allow the developerto
specify the representation invariants that the data structures
must satisfy.

PALE preconditions, postconditions, and loop invariants
are formulas written in monadic second-order logic (MSOL),
which is decidable [34]. Our use of MSOL allows the use of
transitive closure over object reference fields to identifythe set
of all objects that participate in that data structure. Thisfeature
of MSOL makes it more appropriate for verifying linked data

structures than first-order logic, which cannot express reacha-
bility properties. The PALE analysis system translates an input
program into a collection of verification conditions whose
validity guarantees that the procedures in the program satisfy
their precondition/loop invariant/postcondition relationships.
These verification conditions are formulas in MSOL, and the
PALE system then uses the MONA decision procedure [35],
[36] to determine the validity of these verification conditions.
If all of these conditions are valid, the program satisfies its
PALE specification.

Using the PALE plugin. As illustrated in Section III, the
developer specifies the abstraction function for a data structure
verified by PALE by defining the content of an abstract set
using a formula in monadic second-order logic.

The developer specifies the representation invariants for the
PALE plugin usinginvariant declarations in the abstraction
section. An invariant for the PALE plugin can be a graph type
definition, such as the definition of theNode graph type in Fig-
ure 4; the declaration of a routing restriction for the backbone
of the data structure, such as the declarationdata root:

Node; or the declaration of a non-backbone routing restriction,
such as the declarationpointer current: Node .

These representation invariants impose the following con-
straint on the heap: each object is either 1) amemberof the
data structure or 2) an objectexternal to the data structure.
Each member object is reachable from the data structure
root along specially-markeddata fields (denoted by thedata

keyword). In addition to data fields, a member object may have
routing fields (denoted by thepointer keyword) whose value
is given by the formula specified in the graph type definition.
On the other hand, each external object is unreachable from
the data structure root, and all of its fields that are declared in
the analyzed module arenull.

The member/external constraint applies to the projection of
the heap onto the fields declared in the currently analyzed
module. The constraint does not apply to fields declared in
other modules, enabling objects to simultaneously participate
in multiple data structures.

The Hob PALE plugin invokes the external PALE tool to
enforce this constraint throughout the procedure, with the
exception of points in the interior of a basic block. These
interior points may violate the constraint, provided that they
reestablish the constraint by the end of the basic block.

Translation to PALE Input Language. We incorporated the
PALE analysis system into our pluggable analysis framework
by 1) using abstraction sections to translate our common set-
based specifications into PALE specifications, 2) translating
statements into the imperative language accepted by PALE,
and 3) translating loop invariants into PALE loop invariants.
(The Hob system accepts loop invariants in the form of quoted
strings embedded into implementation sections). The loop
invariants in implementation modules verified by the PALE
plugin contain two parts. The first part contains concrete
data structure properties, and is written directly in the PALE
specification language. The second part contains abstract set
properties, and the PALE plugin translates this part in the same
way asrequires andensures clauses. Our translation also

VIKTOR KUNCAK, PATRICK LAM, KAREN ZEE, AND MARTIN C. RINARD: MODULAR PLUGGABLE ANALYSES FOR DATA STRUCTURE CONSISTENCY 9

elides scalar variables (which are not supported by PALE)
from the input program.

A sketch of the translation follows. For each set definition
of the form

S = {x : T | F (x)}

that appears in the abstraction section, the translator produces
a second-order predicate of the following form that takes a set
as an argument:

isS(set S:T) = allpos x of T: x in S <=> F(x)

The isS predicate therefore selectsS to be the set of objects
that satisfy predicateF. Together, theisS predicates enable us
to interpret a formulaB(S1, . . . , Sn) in the boolean algebra
of sets as the second-order formula

∃S1, . . . , Sn.
∧

n

i=1
isSi(Si) ∧ B(S1, . . . , Sn).

In this way, current values of abstract set variables in loop
invariants and postconditions are effectively replaced bytheir
definitions, using the fact that an expressionE({x | P (x)})
is equivalent to the expression∃S. S = {x | P (x)} ∧ E(S).

The predicatesisSi enable the PALE plugin to translate
procedure specifications. For instance, theremove procedure
whose implementation is in Figure 2 and whose contract is in
Figure 3 gives PALE code of the form:

set Content : Node;
set Iter : Node;
/ ∗ precondition ∗ /
[isContent(Content) ∧ isIter(Iter) ∧
n ∈ Content ∧ Iter ⊆ Content]

{stmts}

/ ∗ postcondition ∗ /
[existset Content

′
of Node : isContent(Content

′) ∧
existset Iter

′
of Node : isIter(Iter′) ∧

Content
′ = Content \ {n} ∧ Iter

′ = Iter \ {n} ∧
Iter

′ ⊆ Content
′]

In the PALE code, the definitionsset Content : Node

and set Iter : Node introduce local set variables that
are used to track the initial content of the data structure.
The precondition establishes the relationship between these
abstract variables and the concrete state of the program.
Procedure postconditions and loop invariants can then use
these variables to refer to the initial content of the data
structure. These annotations can also refer to current values of
abstract set variables, which are effectively substitutedusing
isSi predicates and existential quantification.

Our example uses twoisSi predicates,isContent and
isIter . Combined with the quantification induced by the
set declarations, these predicates bind theContent and
Iter sets to their definitions, giving meaning to the conjuncts
n ∈ Content andIter ⊆ Content in the precondition; a similar
translation is done for the postcondition.

Note that the actual translation is slightly more complicated
than what we have presented here because our PALE plugin
introduces additional instrumentation fields that conceptually
store the external objects (objects that are not part of the
currently analyzed data structure).

Consequences. The PALE analysis tool implements a
sophisticated analysis that can verify detailed properties of

complex linked data structures. For scalability reasons, it
is impractical to use PALE to analyze anything other than
encapsulated data structure implementations: PALE invokes
the MONA decision procedure [35], [36] for monadic second-
order logic, which has non-elementary complexity [37]. (Other
shape analyses also have high complexity.) But within this do-
main it can provide exceptional precision and verify important
properties that are clearly beyond the reach of more scalable
analyses. Our successful integration of the PALE analysis
system demonstrates that it is possible to apply very precise
analyses to focused parts of the program. Our results therefore
show how to unlock the potential of these analyses to verify
important data structure consistency properties in programs
that would otherwise remain beyond reach of static analysis.
In the next section we show how to verify potentially even
more detailed properties using theorem proving.

B. The Theorem Proving Plugin

The theorem proving plugin [21] generates verification
conditions using weakest liberal preconditions [38] and dis-
charges them using the Isabelle theorem prover. We have
chosen this technique for verifying arbitrarily complicated data
structure implementations. The logic for specifying abstraction
functions is based on typed set theory. Proof obligations can be
discharged using either automated theorem proving or a proof
checker for manually generated proofs. As a result, there is
no a priori bound on the complexity of the data structures
(and data structure consistency properties) that can be verified
using this technique.

For our minesweeper example, we have applied this plu-
gin to the verification of theExposedSet module, which
implements a set by storing objects in a global array. The
implementation ofExposedSet is shown in Figure 7. Note
that the implementation contains explicit loop invariants(in
quotes); our verification condition generator does not support
loop invariant inference. The state of theExposedSet module
is represented by the global arrayd which stores the set
elements, and the integer variables which indicates the
currently used part of the array.

One of the procedures in theExposedSet module is the
add procedure, which adds aNode to the set of Nodes
representing the exposed cells. The specification section of
the module states this contract more precisely in terms of the
abstract setContent (see Figure 8), which corresponds to the
set ofNode objects in theExposedSet .

The abstraction function in Figure 9 relates the abstract set
Content to its concrete implementation; it simply states that
Content corresponds to the set ofNode objects contained
within the array d with index between zero ands - 1

inclusive.
To verify that theadd procedure conforms to its specifica-

tion, the analysis plugin first augments theadd procedure’s
postcondition by conjoining it with a frame condition derived
from the modifies clause. The resulting formula is(Content’

= Content + n) & (setInit’ = setInit) .
The next step is to apply the definition ofContent from

the abstraction section to theadd procedure’s preconditions,

10 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

impl module ExposedSet {
format Node {}
reference d : Node[];
var s : int;

proc init() { ... }
proc add(n : Node) { d[s] = n; s = s + 1; }
proc remove(n : Node) {

int i = 0;
// loop invariant for removal
while "0 <= i’ & i’ <= s &

(forall j. (i’ <= j & j < s) --> d’[j] = d[j]) &
{x. exists j. 0 <= j & j < i’ &

x = d’[j] & x ˜= null} =
{x. exists j. 0 <= j & j < i’ &

x = d[j] & x ˜= null} - {n}"
(i < s) {

if (d[i] == n) d[i] = null;
i = i + 1

}
}
proc contains(n : Node) returns b : bool {

int i = 0;
bool result = false;
// loop invariant
while "0 <= i’ & i’ <= s & d’ = d &

(result’ <=> (n : {x. exists j. 0 <= j & j < i’ &
x = d’[j] & x ˜= null})"

(!result && (i < s)) {
if (d[i] == n) result = true;
i = i + 1

}
return result;

}
}

Fig. 7. Implementation Section of theExposedSet Module.

spec module ExposedSet {
format Node;
specvar setInit : bool;
specvar Content : Node set;

proc init()
requires true
modifies Content, setInit
ensures setInit’ & (Content’ = {});

proc add(n : Node)
requires setInit & card(n) = 1
modifies Content
ensures (Content’ = Content + n);

proc remove(n : Node)
requires setInit & card(n) = 1
modifies Content
ensures (Content’ = Content - n);

proc contains(n : Node) returns b : bool
requires setInit & card(n) = 1
ensures b <=> (n in Content)

}

Fig. 8. Specification Section of theExposedSet Module.

abst module ExposedSet {
use plugin vcgen;
Content = { x : Node | "exists j. 0 <= j & j < s &

x = d[j] & x ˜= null"};
invariant "0 <= s";

}

Fig. 9. Abstraction Section of theExposedSet Module.

assume setInit & card(n) = 1 & 0 <= s;
d[s] = n;
s = s + 1;
assert { x | exists j. 0 <= j & j < s’ &

x = d’[j] & x ˜= null} =
{ x | exists j. 0 <= j & j < s &

x = d[j] & x ˜= null} + {n} &
setInit’ = setInit & 0 <= s;

Fig. 10. Translated Implementation ofadd in Loop-Free Guarded Command
Language.

postconditions, loop invariants and assertions. The resulting
conditions are expressed in terms of the concrete data structure
state. For example, the formula “Content’ = Content +

n” translates into:
{x | ∃j. 0 ≤ j ∧ j < s′ ∧ x = d′[j] ∧ x 6= null} =
{x | ∃j. 0 ≤ j ∧ j < s ∧ x = d[j] ∧ x 6= null} ∪ {n}

The analysis then conjoins both the precondition and post-
condition with the representation invariants specified in the
abstraction section. Our example contains the representation
invariant0 ≤ s.

Next, the analysis translates the statements from the imple-
mentation ofadd into a loop-free guarded command language
similar to that used in [39]. The result of the translation is
given in Figure 10.

By computing weakest liberal preconditions, the analysis
then creates a formula from the translated code; the validity
of this formula implies the conformance of the procedure to
its specification.

To simplify the task of discharging the resulting verification
condition, the formula is split into as many conjuncts as possi-
ble by performing a simple non-backtracking walk through the
connectives∀, ⇒, ∧ in the formula syntax tree. The analysis
then attempts to verify each conjunct in turn. It first searches
a library of previously proven lemmas for a match to the
current conjunct. If it does not find a match, the analysis
invokes Isabelle’s built-in simplifier and classical reasoner with
array axioms, attempting to prove the formula automatically.
In our example, this attempt succeeds for most of the generated
verification-condition conjuncts. For the remaining conjuncts,
the fully automated verification fails and the plugin saves
them as “not known to be true”. The user then interactively
proves these difficult cases in Isabelle, and stores them in the
library of verified lemmas. Subsequent verification attempts
then execute without user assistance.

C. The Flag Plugin

Our flag analysis [40] verifies that modules implement
set specifications in which integer or boolean flags indicate
abstract set membership. The developer uses set definitionsin
the abstraction section of a module to specify the correspon-
dence between concrete flag values and abstract sets from the
specification.

Figure 11 presents the abstraction section of theBoard

module, which contains definitions of setsU, MarkedCells ,
ExposedCells , UnexposedCells , andMinedCells as well
as several global boolean variables. The setU contains all
initialized Cell objects in the program heap, that is, allCell

objects that have theirinit flag set to true . The other

VIKTOR KUNCAK, PATRICK LAM, KAREN ZEE, AND MARTIN C. RINARD: MODULAR PLUGGABLE ANALYSES FOR DATA STRUCTURE CONSISTENCY 11

abst module Board {
use plugin "flags";
U = { x : Cell | "x.init = true"};
MarkedCells = U cap { x: Cell | "x.isMarked = true"};
ExposedCells = U cap { x: Cell | "x.isExposed = true"};
UnexposedCells = U cap { x: Cell | "x.isExposed = false"};
MinedCells = U cap { x: Cell | "x.isMined = true"};
predvar gameOver; predvar init; predvar peeking;

}

Fig. 11. Abstraction Section ofBoard Module.

sets are defined as intersections withU, e.g.using the syntax
MarkedCells = U cap { ... }. This ensures that all sets
defined in this abstraction section are initially empty and do
not change when a different module allocates an object using
the new statement.

The flag analysis performs abstract interpretation [41] with
analysis domain elements represented by formulas. The trans-
fer functions in the dataflow analysis update boolean formulas
to reflect the effect of each statement, symbolically comput-
ing the relation composition of transition relations. Whenit
encounters an assertion, procedure call, or procedure post-
condition, our flag analysis generates a verification condition
and discharges it using the MONA decision procedure for
the monadic second-order logic of strings, which subsumes
boolean algebras [36]. In our experience, applying several
formula transformations drastically reduced the size of the
formulas generated by the flag analysis, as well as the time that
the MONA decision procedure spent verifying these formulas.
These transformations greatly improved the performance of
our analysis and allowed our analysis to verify larger pro-
grams. Complete treatments of the flag plugin appear in [17],
[32].

In addition to tracking the values of sets introduced
by flag values, the flag plugin also keeps track of the
values of sets specified in client modules. In theBoard

module of the minesweeper example, this includes the sets
ExposedSet.Content and UnexposedList.Content .
This allows the analysis to verify invariants such as

Board.ExposedCells = ExposedSet.Content

Board.UnexposedCells = UnexposedList.Content

disjoint(MarkedCells, ExposedCells)

disjoint(ExposedCells.Content,
UnexposedList.Content)

The last two properties are examples of high-level data
structure invariants that correlate the values of sets that
correspond to multiple data structures. Hob helps the
developer and the analysis deal with such high-level
invariants using the scope construct described in [23].

Flag example. Figure 12 presents a short procedure and
its specification. This procedure either adds or removes an
object from theMarkedCells set by mutating itsisMarked

boolean-valued field. We next present the formula that the flag
plugin generates to verify this procedure, omitting irrelevant
parts of the program state for the sake of brevity.

(M = U ∩ M1) ∧ M ′ = U ′ ∩ M ′

1 (1)

∧ ((M ′

1 = M1 ∪ c) ∧ v) | ((M ′

1 = M1 \ c) ∧ ¬v) (2)

∧ c ⊆ U ∧ card(c) = 1 (3)

∧ U ′ = U ∧ C′ = C ∧ p ⇔ p′ ∧ . . . (4)

impl module Board {
proc setMarked(c:Cell; v:bool) {

c.isMarked = v;
}

}

spec module Board {
proc setMarked(c:Cell; v:bool)

requires (c in U) & (card(c)=1)
modifies MarkedCells
ensures (v <=> (c in MarkedCells’)) &

(MarkedCells’ <= MarkedCells + c);
}

Fig. 12. Specification and implementation of procedures inBoard Module.

=⇒ (5)

C′ = C ∧ p ⇔ p′ (6)

∧ ((v ⇔ c ⊆ M ′) ∧ M ′ ⊆ M ∪ c) (7)

The formula ranges over the set variables and boolean pred-
icates in the program; procedure parameters occur as free
variables of the formula, while the program’s abstract state is
given in terms of universally quantified variables. The formula
contains two parts. Lines 1 through 4 specify the program
state after symbolic execution of the procedure, while lines 6
and 7 state the requirements on the program state needed by
the procedure’s postcondition. To verify that the procedure
satisfies its specification, MONA must deduce that lines 1
through 4 imply lines 6 and 7.

We first discuss the conditions known by Hob to hold upon
procedure exit. For brevity, we have replacedMarkedCells

by M and peeking by p. Line 1 states definitions for
derived formulas. These definitions are repeated twice, once
for unprimed variables and once for primed variables. Line 2
gives the result of the transfer function as computed over
the procedure. It captures the effect of the assignment to
the isMarked field, which defines the setM . Line 3 states
the procedure precondition. Finally, line 4 constrains sets and
variables that are unmodified by the procedure. Initially, all
sets and variables are unmodified; each transfer function that
modifies state also removes variables from this line.

Next, we discuss the required postconditions. Procedures
must guarantee that, upon exit, sets that are not declared to
be modified keep their initial values; line 6 states this require-
ment. Also, procedures must guarantee that their postcondi-
tions hold; in this case, line 7 states the needed postcondition.

Once the flag plugin generates the appropriate formula, it
passes the formula on to the MONA tool. In this case, the
verification succeeds because the antecedent is sufficiently
strong: the procedure does implement its specification.

Flag analysis and generalized typestate. We have just
observed that the flag plugin can establish high-level data
structure properties such as equality and disjointness of sets.
We have also seen (in Section III-D) that the flag plugin can
be used to verify the correct use of the iterator interface. Here
we present another perspective on an analysis that verifies
contracts (interfaces) based on sets, by viewing sets as a
generalization of typestate [9], [42].

Instead of associating a single state with each object, our
system models each typestate as an abstract set of objects.
If an object is in a given typestate, it is a member of the set

12 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

that corresponds to that typestate, which leads to the following
generalizations of the standard typestate approach:

• Abstract Data Types: For typestate purposes, abstract
data types can be viewed as maintaining several abstract
sets of objects. For example, an iterator contains one set
for all objects in the list, and one set of objects that remain
to be iterated over. In this way, the iterator indicates
whether an object has already been iterated over. With
this perspective, the typestate of an object is a function
of its participation in the abstract data type as reflected in
its membership in the data type’s abstract sets of objects.

• Orthogonal Composition: In our formulation of types-
tate, an object can be a member of multiple sets simul-
taneously. This promotes composite typestate structures
in which the developer endows each component with a
collection of abstract sets, with each set corresponding
to an aspect of the typestate relevant to the component.
With this kind of structure, each object’s typestate is an
orthogonal composition of the typestate aspects from each
of the components in which it participates. Examples
include composite typestates for objects that participate
in multiple data structures and objects that play multiple
roles within a single component.
The advantages of using multiple orthogonal sets include
better modularity (because each component deals only
with those aspects of the typestate that are relevant for its
operation) and support for polymorphism (because each
component can operate successfully on multiple objects
that participate in different ways in other components).

• Hierarchical Typestates: Hierarchical classification via
inheritance is a key element of the type systems in most
object-oriented languages, but is absent in historical flat
typestate systems [9]. Our formulation cleanly supports
typestate hierarchies—a collection of sets can partition
a more general set, with the subset inclusion ordering
capturing the hierarchy. Typestate hierarchies also appear
in [40], [43].

• Sharing and Typestates: Sharing via aliased object
references has caused problems for standard typestate
systems—it has been difficult to ensure that if the pro-
gram uses one reference to access the object and change
its typestate, the declared type of other references is ap-
propriately adjusted. Our typestate formulation supports
a new, more abstract form of sharing, which integrates
aliasing information directly into the analysis domain,
in the form of constraints expressed using sets (e.g.
set disjointness for unaliased variables). This integration
enables the flags plugin to update set membership in
a manner consistent with known aliasing relationships
between objects. Furthermore, if an object participates
in multiple data structures, its typestate characterizes
that kind of sharing by indicating its membership in
multiple typestate sets, one for each data structure. This
formulation supports non-monotonic changes—the set of
objects that contain an element may change arbitrarily
throughout the computation.

V. EXPERIENCE

In this section, we describe our experience using the Hob
system to implement and specify design information for other
benchmark programs. In addition to the minesweeper example
presented in Section II, we ran our analysis on a complete
webserver, as well as short programs inspired by computa-
tional patterns from scientific computations, operating-system
schedulers, and program transformation passes. Note in partic-
ular that the Hob webserver serves the Hob project webpage,
at http://hob.csail.mit.edu . These benchmarks use a
variety of data structures, and we have therefore implemented
and verified sets, set iterators, queues, stacks, and priority
queues. Table I illustrates the benchmarks we ran through our
system. Our data structure implementations range from singly-
linked and doubly-linked lists (with and without iterators) and
tree insertion (all verified using the PALE plugin) through
array data structures (verified using the theorem proving plu-
gin). Our modular approach allowed us to reuse data structure
implementations across multiple benchmarks. We expect such
reuse to be possible in general, thus amortizing the cost of
precise and potentially expensive data structure analysesacross
many clients of these data structures.

Section II gave the flavor of high-level properties that we
verified in our examples through the example of minesweeper,
using in particular sets of exposed and unexposed cells. Note
that all Hob properties are expressed in terms of sets, but that
the interpretations of sets vary on a per-application, domain-
specific basis. A second example where Hob enforces design
constraints arises in our web server example. A design decision
for the web server was to have the server cache the content
before sending it in response to a request. Our web server
implementation contains a procedure,sendEntry(c) , which
emits the contents of its parameterc to a socket. The interface
of sendEntry(c) imposes the precondition that the entry
c to be sent is either 1) stored in the cache or 2) in the
set of “blacklisted” objects that are too large to be stored.
Hob’s analysis tracks the dynamically changing values of sets
representing the cached content and the blacklisted content,
and checks that the parameterc of sendEntry is in the
union of these two sets. Note that the tracked property is
simple to state and understand, yet goes beyond static type
systems. The use of sets as opposed to flags associated with
objects naturally captures the idea that being in the cache (or
being blacklisted) is not the property of the content itself,
but rather a property of the way in which the content is
used in the web server, a fact that is reflected in the data
structures in which the content is stored. In thescheduler

example, we have verified disjointness of sets of suspended
and running processes, the equality of sets represented by
flags (allowing a constant-time membership test) and lists
(for iteration), as well as typestate preconditions on scheduler
operations. Theprodcons example coordinates the actions
of a producer and a consumer module that communicate via
a shared stack (implemented as a list), with specifications
ensuring that the elements are produced and consumed by the
operations and that stack underflow never occurs. Water is
a numerical simulation of water molecules that proceeds in

VIKTOR KUNCAK, PATRICK LAM, KAREN ZEE, AND MARTIN C. RINARD: MODULAR PLUGGABLE ANALYSES FOR DATA STRUCTURE CONSISTENCY 13

several phases; we verify that these phases are performed in
the desired order by encoding them using global boolean flags,
specifying these flags in preconditions and specifying their
changes in postconditions. The compiler example transforms
nodes of an abstract syntax tree. We used sets to encode the
typestates of the nodes. We provided specifications ensuring
that the nodes are processed in the correct order and that the
operations have the expected effect on the typestates.

System # # lines # lines
totals modules spec impl
compiler 3 113 211
water 10 542 1921
prodcons 3 54 78
scheduler 3 77 128
minesweeper 7 236 750
httpd 14 335 1229

TABLE I

BENCHMARK CHARACTERISTICS.

VI. SCOPE OFOUR TECHNIQUE

Our Hob system verifies data structure consistency prop-
erties for programs written in a memory-safe imperative
implementation language and specified using a specification
language based on the boolean algebra of sets. We now discuss
some of the design decisions that we made while building Hob.

a) Choice of Implementation and Specification Lan-
guages: We designed the Hob implementation language to
be syntactically similar to Java at a statement level. We
decided to use a custom procedural implementation language
as a convenient way to explore the automatic verification of
data structure consistency properties while avoiding inessential
complexities of a full-fledged programming language. In par-
ticular, we omitted common object-oriented features such as
inheritance, dynamic dispatch, and object-based encapsulation.
In our experience, it was relatively simple to port Java codeto
our implementation language. When comparing Java and Hob
it is important to keep in mind that Hob has two constructs
that approximately correspond to Java’s classes: 1) formats
are used to represent memory cells, and 2) modules are used
to structure a program into its main constituent parts. The
static module instantiation in Hob is less general than the
dynamic instantiation of classes with methods in Java, but it
encourages developers to express the static architecture of an
application, and aids verifiability. We expect that structuring
Java applications along similar principles would help the
analysis of Java programs as well.

We believe that Hob’s set specifications are natural for
developers to use because they enable developers to state
object membership properties and relationships between data
structures [17]. After all, many data structures are simply
implementations of sets. Set specifications can express many
key data structure properties and, in particular, consistency
properties which relate the contents of different data structures.
Such consistency properties are often crucial design properties
for a system which ought to hold throughout its life cycle; set
specifications provide a concise and easy-to-understand way
for developers to express and verify these properties.

To understand the scope of Hob’s set specification lan-
guage, consider the example of a map implementation. The
set specification language can express, for example, that the
set of keys and the set of values are disjoint, but cannot
express that a particular key is related to a particular value,
because the boolean algebra of uninterpreted elements doesnot
contain any relation symbols4. Nevertheless, our experience
shows that the boolean algebra of sets can express many
interesting data structure properties. Such descriptionsmay not
be full specifications of the behavior of operations, but they do
indicate important partial correctness properties. We therefore
believe that the set specification language makes a useful
trade-off between the expressive power and tractability ofthe
analyses. We chose to explicitly omit integer and floating-point
arithmetic from our specification language.5 Indeed, many data
structure consistency properties do depend on general integer
and floating-point arithmetic. Note that the set specification
language does not support sets of pairs or sets of sets, only sets
of uninterpreted elements. This is why it can be characterized
using the boolean algebra of sets and decided in elementary
time [29] and in practice often belongs to the quantifier-free
fragment that can be decided in non-deterministic polynomial
time.

It is important to distinguish between Hob’s interface lan-
guage, which was designed to be less expressive and more
tractable, and the specification languages inside the abstraction
modules, which express data structure representation invari-
ants and abstraction functions. Inside abstraction modules,
plugins may use arbitrarily powerful specification languages.
For example, the monadic second-order logic used in the
PALE plugin can express reachability properties that are not
even expressible in first-order logic [46]. In general, Hob can
analyze arbitrarily complex internal data structure properties
given the presence of appropriate plugins.

b) Developers’ Responsibilities:Our technique requires
developers to specify the data structure consistency properties
that they would like the Hob system to verify. Developers
express these properties 1) in terms of procedure preconditions
and postconditions; and 2) in terms of high-level invariants for
global data structure consistency properties. These properties
are expressed using the set specification language. Since there
is a gap between the abstract set specification language and
the concrete implementation language, developers must also
specify an interpretation for the program’s abstract sets—in
other words, abstraction functions. A key feature of the Hob
approach is that it supports a variety of different abstraction
function syntaxes, by delegating the core analysis task to
a set of analysis plugins. In short, each plugin is required
to verify that a procedure’s implementation conforms to its
specification, where the set interpretations are given by the ab-
straction function. While it would be possible to use analyses
to infer specifications or abstraction functions, we found it very

4The Jahob system [44] supports a module specification language that per-
mits the use of relations, and has successfully verified detailed specifications
of map implementations such as hash tables.

5In [45], we describe how to decide Boolean Algebra with Presburger
Arithmetic (BAPA); the Hob system’s core specification language could be
extended to support BAPA.

14 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

useful to explicitly state this information as part of software
documentation, and decided to focus the inference effort of
our analyses on loop invariants that are more program-point
specific and therefore less interesting for documenting thekey
properties of the system.

c) Hob and the Development Life Cycle:The abstract-
ness of Hob’s set specification language encourages developers
to think at a higher level of abstraction and enables them to
express deeper properties of programs. Such properties can
easily be obscured in a program’s implementation. At the
implementation level, design information is hidden behinda
mass of details, which are necessary for implementing, but not
useful for understanding, the underlying design. We believe
that the set specification language exposes design information
more effectively than imperative implementation languages,
since set specification languages abstract away from the details
of how the program carries out its tasks to expresswhat the
program does.

While a program’s set specifications are useful from the
earliest prototype stages of development, its specifications
become especially valuable as a program moves through its
development life cycle into the maintenance phase, when the
design information may become outdated, and the original
developers may have moved on to other projects. The Hob
system enables developers to use data structure consistency
properties as verified documentation. Our analysis tool verifies
that these properties hold, not just at any one point in the
program’s life, but throughout changes by successive devel-
opers, who may not understand the program’s original design
at all. Our experience with Hob suggests that it is capable of
recording design decisions taken by the original developers
and ensuring that this design information remains up-to-date.

d) Scalability of the Hob Approach:Because the Hob
system uses a modular verification approach, we believe that
it should scale quite well. However, we have not yet evaluated
its efficacy on programs larger than 2000 lines. The scalability
of our system does not depend on asymptotic complexity
arguments; we instead observe that researchers have not suc-
cessfully performed shape analysis on programs that exceeda
couple of hundreds of lines, and that our modular verification
approach sidesteps such ceilings on analysis applicability.

We believe that Hob’s use of a set specification language is
especially productive for several reasons. First, our experience
with the flag plugin suggests that set-based specification
languages make symbolic loop invariant inference feasible
because the space of possible invariants is relatively small
(especially compared to a specification language with full
integer arithmetic constraints). Second, the use of a simple
set-based specification language imposes fewer restrictions
on plugins, which need to understand specifications in this
language. A simpler specification language therefore makesit
easier to develop new analysis plugins. Finally, the use of are-
stricted specification language helps control the “specification
creep” observed in ESC/Java [8], because the restrictions of
the specification language force developers to avoid overlyde-
tailed specifications that would require unscalable techniques
to check.

While our use of a custom implementation language has the

advantage of being especially well-suited to our verification
approach, it has the disadvantage of requiring us to translate
benchmarks from other programming languages into the Hob
language. The related Jahob project [47] explores the use ofa
Java subset as an implementation language for verifying data
structure consistency properties.

VII. R ELATED WORK

We survey research in verification technology, existing
verification tools, and other approaches to combining different
verification techniques.

A. Verification technology

We first discuss the verification techniques used in the Hob
system. Hob builds on ideas from shape analysis and typestate
systems to verify data structure consistency properties. Since
Hob analysis plugins use a decision procedure for boolean
algebras for evaluating formulas in the set specification lan-
guage, we discuss the decidability of this question and examine
tools to decide this language.

Shape analysis. The goal of shape analysis is to verify
that programs preserve consistency properties of (potentially-
recursive) linked data structures. Researchers have developed
many shape analyses and the field remains one of the most
active areas in program analysis today [1], [2], [14]. These
analyses focus on extracting or verifying detailed consistency
properties of individual data structures. While these analyses
are very precise, the level of detail of the properties that they
must track have limited their scalability—many extant shape
analysis algorithms have super-exponential complexity. One
of our research goals is to enable the application of such
sophisticated but expensive analyses in small regions of code
(where their precision is needed), while taking advantage of
modularity to analyze other parts of code using more scalable
analyses.

Typestate systems. Typestate systems track the conceptual
states that each object goes through during its lifetime in the
computation [9], [48]. Typestate systems generalize standard
type systems in that the typestate of an object may change
during the computation. Our approach enables the checking
of properties that generalize typestate properties [17], [40].
The developer can simply use sets to model typestates: if an
object should be in a given typestate in the typestate system, it
is a member of the corresponding set in our system. Aliasing
(or more generally, any kind of sharing) is the key problem
for typestate systems—if the program uses one reference
to change the typestate of an object, the typestate system
must ensure that either the declared typestate of the other
references is updated to reflect the new typestate or that the
new typestate is compatible with the old declared typestateat
the other references. Role analysis [14] identifies this problem
and suggests a solution based on a precise abstraction of
the heap and user-specified procedure specifications. Fink,
Yahav, Dor, Ramalingam, and Geay integrate pointer analysis
with typestate property verification for Java programs [49].
Their approach scales due to the use of a series of related
abstractions: the simpler abstractions quickly rule out many

VIKTOR KUNCAK, PATRICK LAM, KAREN ZEE, AND MARTIN C. RINARD: MODULAR PLUGGABLE ANALYSES FOR DATA STRUCTURE CONSISTENCY 15

simple property violations, leaving the more sophisticated
cases to the more expensive analyses. Our system uses a looser
integration model for the constituent analyses, which makes
integration of diverse program analyses easier and allows
us to verify properties that go beyond traditional typestate
properties. Bierhoff and Aldrich describe a dynamic analysis
system for verifying typestate properties in Java programsthat
correctly handles typestates in the context of subclassing[43].
Like Hob, [43] also supports multiple orthogonal typestates.
While a dynamic analysis can prevent programs from execut-
ing undesirable actions, typically by terminating a program
when it attempts to execute such actions, the advantage of
our static approach is that it provides stronger guaranteesthat
programs never violate typestate constraints on any possible
execution.

Decision procedures for boolean algebras. We use first-
order logic formulas in the language of boolean algebras as the
basis of our module specification language. The decidability of
the satisfiability problem for the first-order theory of boolean
algebras dates back to [26], [50]. To our knowledge, the only
tool that can decide the first-order theory of boolean algebras
is MONA [35]; it implements the more general decision proce-
dure for monadic second-order logic over trees, and has non-
elementary complexity in general but adequate performance
in practice for the problems that arise in our program analysis
framework. A decision procedure for an extension of boolean
algebra with Presburger arithmetic operations is presented
in [45], [51]; this extension allows reasoning about sizes of
data structures.

Modularity mechanisms. Hob’s ability [23] to encapsulate
individual object fields in separate modules appeared in [52], is
present in aspect-oriented programming implementations [53],
and is used in intermediate languages for static checking tools
[8], [54]. Hob’s approach of allowing modules to share objects
and not fields enables it to solve some of the information-
hiding problems mentioned by O’Hearn, Yang and Reynolds
in [55]. In particular, the change in perspective from encapsu-
lating objects to encapsulating fields frees Hob plugins from
the obligation to reason about which module owns which
object: we have set up the system so that no module can
affect the contents of any other module’s sets. Note that, as
in [55], the Hob system supports purely static modules and
dynamically created objects.

Our module instantiation mechanism is similar in spirit to
the functor mechanism of Standard ML [56]. One difference is
that functors in Standard ML can take arbitrary declarations as
parameters, whereas parameters in Hob are simply names of
format types. Nevertheless, Hob’s mechanism is sufficient for
statically instantiating an arbitrary number of data structures.

B. Program verification and checking tools.

Methodologies for using formal specifications in soft-
ware development include Gypsy [57], the B method [58],
VDM [59], Z [60], Larch [61], and RAISE [62]. Some of these
methodologies (for instance, Z) provide a general notation
which developers may use to express program properties, and
expect developers to carry out all of the proofs by hand.

Most of these methodologies include some tool support in the
form of verification condition generators and proof assistants.
However, unlike Hob, these methodologies do not leverage
current static analysis technologies, such as shape analysis,
to automatically verify program properties. Tools based on
verification condition generation and theorem proving include
[61], [63], [64], and, more recently, [65]–[67].

ESC/Java [8] is a program checking tool which aims to
identify common errors in programs using program speci-
fications in a subset of the Java Modelling Language [68].
An explicit design goal of ESC/Java is to statically identify
potential run-time errors,e.g.null-pointer exceptions, although
ESC/Java does attempt to establish that preconditions holdat
call sites. The Hob system was principally designed to verify
program-specific properties, which include preconditionsand
postconditions, but also global data structure consistency prop-
erties. Hob’s support for abstraction functions and scopesmake
data structure consistency properties much easier to express.
ESC/Java also sacrifices soundness in that it 1) does not model
all of the details of the program heap and 2) unrolls loops
a finite number of times rather than using loop invariants.
However, ESC/Java does detect some common programming
errors.

The ESC/Java2 project extends the original ESC/Java work
by supporting current versions of Java, and verifying more
JML constructs. ESC/Java2 (as well as ESC/Modula-3 [69])
allows the use of heap abstractions via its support for model
fields. Model fields use developer-provided representations.
These representations are similar in spirit to the set definitions
which appear in Hob’s abstraction modules. However, not all
model fields have representations; for instance, the library
annotations provided with ESC/Java2 do not contain any
definition of a list’s contents. The first-order logic used by
the underlying Simplify theorem prover [70] does not support
transitive closure; effective (and necessarily partial) first-order
axiomatizations of transitive closure are still active areas of
research [71]–[73]. ESC/Java2 has therefore, to our knowl-
edge, not been used to verify the data structure consistency
properties that Hob verifies for linked lists. Another difference
is that ESC/Java2 representations are expressed in terms of
Java expressions or predicates, rather than the analysis-plugin-
specific set definitions supported by Hob. Cok explains how
ESC/Java2 handles model fields in [74]; essentially, it treats
them as method calls and includes the postconditions of the
model fields’ representations.

The Hob approach uses sets and abstraction modules in
place of JML’s model fields. Abstraction modules enable Hob
to check that implementations satisfy both local properties,
i.e. that representation invariants continue to hold, and global
properties (whose meaning is made explicit by abstraction
functions). Furthermore, abstraction modules allow Hob anal-
ysis plugins to use arbitrarily powerful logics for establishing
local set properties. Despite this, the simplicity of Hob’sset
specification language allows even simple and scalable plugins
to take advantage of detailed results produced by complex
analyses.

A more recent effort is a sound static analysis tool for
an object-oriented language, Spec#, which extendsC# and

16 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

comes with a particular methodology for the modular treat-
ment of invariants [75]. Spec# has recently been extended
with a treatment of model fields [76]. The Spec# static verifier
currently uses the theorem provers Simplify and Zap [77] that
do not directly support transitive closure; however, the overall
Spec# methodology is largely independent of the underlying
reasoning engine.

Other tools focus on verifying properties of concurrent
programs [6], [78] or device drivers [3], [4] as opposed to
properties of linked data structures.

Higher-order contracts. Modular analysis has also been pro-
posed for functional programs. Verifying contracts in the con-
text of higher-order programming languages is quite difficult;
existing approaches for improving programmer productivity in
this context typically focus on dynamic checking of contracts
or static checking based on type system extensions. However,
Meunier, Findler and Felleisen do propose a modular analysis
based on contracts in [79]. Note that their use of the term
“set-based” is not the same as our use of a set specification
language; in their work, set-based refers to the static analy-
sis technique used to verify contracts (in combination with
0CFA). Their approach uses the base programming language
to specify predicates for use in contracts; contrast this with
the Hob approach of using set specifications and abstraction
functions. In principle, one could use arbitrary analyses to
establish procedure contracts. In Hob, we have successfully
used multiple cooperating analyses to establish data structure
consistency properties. The analysis in [79] is modular in the
same sense that Hob is modular: they both analyze the program
one module at a time. In the context of higher-order functions,
contracts become more complicated to analyze, since the veri-
fication of a procedure’s contract must be delayed until higher-
order function parameters are evaluated. A significant amount
of effort goes towards handling this complication, which Hob
avoids by using a first-order implementation language.

C. Hob analysis approach.

Our research aims to enable the application of multiple
analyses that check arbitrarily complicated properties within a
single program. Most existing approaches, in contrast, attempt
to develop a single new analysis algorithm or technique. Our
system supports the loose integration of analyses where each
analysis applies to one procedure or module. This design de-
cision makes the incorporation of external tools easy. In [80],
Chang and Leino explore an approach that proposes a tighter
combination of a particular domain (uninterpreted function
symbols) with an arbitrary base domain. Their approach would
enable the application of static analysis techniques which
could reason about the program state using a number of
different abstract domains. Briefly, our approach works well
for combining analyses at granularities above the procedure
level, while their approach is targeted towards combining anal-
yses below the procedure level. The fine-grained combination
of analysis techniques also appears in the Jahob verification
system [47]. Note also that these techniques are not mutually
exclusive: finer-grained combinations of analyses could be
implemented and deployed as individual Hob analysis plugins.

VIII. C ONCLUSION

The program analysis community has produced many pre-
cise analyses that are capable of extracting or verifying quite
sophisticated data structure properties. Issues associated with
using these analyses include scalability limitations and the
diversity of important data structure properties, some of which
will inevitably elude any single analysis.

This paper shows how to apply the full range of analyses
to programs composed of multiple modules. The key elements
of our approach include modules that encapsulate object fields
and data structure implementations, specifications based on
membership in abstract sets, and invariants that use these
sets to express (and enable the verification of) properties that
involve multiple data structures in multiple modules analyzed
by different analyses. We anticipate that our techniques will
enable the productive application of a variety of precise anal-
yses to verify important data structure consistency properties
and check important typestate properties in programs builtout
of multiple modules.

Acknowledgements. We thank Thomas Wies for devel-
oping the Bohne symbolic shape analysis plugin that was
incorporated into the Hob system. We thank Anders Møller
for help with the PALE and MONA packages. We thank the
anonymous reviewers for their insightful comments that helped
improve the paper.

REFERENCES

[1] A. Møller and M. I. Schwartzbach, “The Pointer AssertionLogic
Engine,” in Programming Language Design and Implementation, 2001.

[2] M. Sagiv, T. Reps, and R. Wilhelm, “Parametric shape analysis via 3-
valued logic,”ACM TOPLAS, vol. 24, no. 3, pp. 217–298, 2002.

[3] T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani, “Automatic
predicate abstraction of C programs,” inProc. ACM PLDI, 2001.

[4] T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan, “Abstrac-
tions from proofs,” in31st POPL, 2004.

[5] S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith, “Modular verifica-
tion of software components in c,” inICSE 2003, 2003.

[6] N. Bjørner, A. Browne, E. Chang, M. Colón, A. Kapur, Z. Manna, H. B.
Sipma, and T. E. Uribe, “STeP: Deductive-algorithmic verification of
reactive and real-time systems,” in8th CAV, vol. 1102, 1996, pp. 415–
418.

[7] M. Musuvathi, D. Y. Park, A. Chou, D. R. Engler, and D. L. Dill, “CMC:
A pragmatic approach to model checking real code,” inOSDI’02, 2002.

[8] C. Flanagan, K. R. M. Leino, M. Lilibridge, G. Nelson, J. B. Saxe,
and R. Stata, “Extended Static Checking for Java,” inACM Conf.
Programming Language Design and Implementation (PLDI), 2002.

[9] R. E. Strom and S. Yemini, “Typestate: A programming language
concept for enhancing software reliability,”IEEE TSE, January 1986.

[10] R. DeLine and M. Fähndrich, “Enforcing high-level protocols in low-
level software,” inProc. ACM PLDI, 2001.

[11] M. Fähndrich and K. R. M. Leino, “Heap monotonic typestates,” in
International Workshop on Aliasing, Confinement and Ownership in
object-oriented programming (IWACO), 2003.

[12] J. Field, D. Goyal, G. Ramalingam, and E. Yahav, “Typestate verifica-
tion: Abstraction techniques and complexity results,” inInt. Symp. Static
Analysis, ser. LNCS, vol. 2694. Springer, 2003.

[13] M. Fahndrich and R. DeLine, “Adoption and focus: Practical linear types
for imperative programming,” inProc. ACM PLDI, 2002.

[14] V. Kuncak, P. Lam, and M. Rinard, “Role analysis,” inAnnual ACM
Symp. on Principles of Programming Languages (POPL), 2002.

[15] P. Lam, V. Kuncak, and M. Rinard, “On our experience withmodular
pluggable analyses,” MIT CSAIL, Tech. Rep. 965, September 2004.

[16] ——, “Hob: A tool for verifying data structure consistency,” in 14th
International Conference on Compiler Construction (tool demo), April
2005.

VIKTOR KUNCAK, PATRICK LAM, KAREN ZEE, AND MARTIN C. RINARD: MODULAR PLUGGABLE ANALYSES FOR DATA STRUCTURE CONSISTENCY 17

[17] ——, “Generalized typestate checking for data structure consistency,” in
6th Int. Conf. Verification, Model Checking and Abstract Interpretation,
2005.

[18] T. Nipkow, L. C. Paulson, and M. Wenzel,Isabelle/HOL: A Proof
Assistant for Higher-Order Logic, ser. LNCS. Springer-Verlag, 2002,
vol. 2283.

[19] T. Wies, V. Kuncak, P. Lam, A. Podelski, and M. Rinard, “Field
constraint analysis,” inProc. Int. Conf. Verification, Model Checking,
and Abstract Interpratation, 2006.

[20] A. Podelski and T. Wies, “Boolean heaps,” inProc. Int. Static Analysis
Symposium, 2005.

[21] K. Zee, P. Lam, V. Kuncak, and M. Rinard, “Combining theorem proving
with static analysis for data structure consistency,” inInternational
Workshop on Software Verification and Validation (SVV 2004), Seattle,
November 2004.

[22] T. Wies, V. Kuncak, K. Zee, A. Podelski, and M. Rinard, “On verifying
complex properties using symbolic shape analysis,” Max-Planck Institute
for Computer Science, Tech. Rep. MPI-I-2006-2-1, 2006.

[23] P. Lam, V. Kuncak, and M. Rinard, “Cross-cutting techniques in program
specification and analysis,” in4th International Conference on Aspect-
Oriented Software Development (AOSD’05), 2005.

[24] E. Gamma, R. Helm, R. Johnson, and J. Vlisside,Design Patterns.
Elements of Reusable Object-Oriented Software. Addison-Wesley,
Reading, Mass., 1994.

[25] J. R. Büchi, “Weak second-order arithmetic and finite automata,” Z.
Math. Logik Grundl. Math., vol. 6, pp. 66–92, 1960.

[26] L. Loewenheim, “̈Uber Mögligkeiten im Relativkalkül,”Math. Annalen,
vol. 76, pp. 228–251, 1915.

[27] D. Jackson, I. Shlyakhter, and M. Sridharan, “A micromodularity
mechanism,” inProc. ACM SIGSOFT Conf. Foundations of Software
Engineering / European Software Engineering Conference (FSE/ESEC
’01), 2001.

[28] A. Borgida, J. Mylopoulos, and R. Reiter, “On the frame problem in
procedure specifications,”TSE, vol. 21, no. 10, pp. 785–798, Oct. 1995.

[29] D. Kozen, “Complexity of boolean algebras,”Theoretical Computer
Science, vol. 10, pp. 221–247, 1980.

[30] B. Liskov and J. Guttag,Program Development in Java. Addison-
Wesley, 2001.

[31] H. Jifeng, C. A. R. Hoare, and J. W. Sanders, “Data refinement refined,”
in ESOP’86, ser. LNCS, vol. 213, 1986.

[32] P. Lam, V. Kuncak, K. Zee, and M. Rinard, “Set interfacesfor gener-
alized typestate and data structure consistency verification,” Theoretical
Computer Science, submitted.

[33] N. Klarlund and M. I. Schwartzbach, “Graph types,” inProc. 20th ACM
POPL, Charleston, SC, 1993.

[34] J. W. Thatcher and J. B. Wright, “Generalized finite automata theory
with an application to a decision problem of second-order logic,”
Mathematical Systems Theory, vol. 2, no. 1, pp. 57–81, August 1968.

[35] N. Klarlund, A. Møller, and M. I. Schwartzbach, “MONA implementa-
tion secrets,” inProc. 5th International Conference on Implementation
and Application of Automata. LNCS, 2000.

[36] N. Klarlund and A. Møller,MONA Version 1.4 User Manual, BRICS
Notes Series NS-01-1, Department of Computer Science, University of
Aarhus, January 2001.

[37] L. Stockmeyer and A. R. Meyer, “Cosmological lower bound on the
circuit complexity of a small problem in logic,”J. ACM, vol. 49, no. 6,
pp. 753–784, 2002.

[38] E. W. Dijkstra,A Discipline of Programming. Prentice-Hall, Inc., 1976.
[39] C. Flanagan and J. B. Saxe, “Avoiding exponential explosion: Generating

compact verification conditions,” inProc. 28th ACM POPL, 2001.
[40] P. Lam, V. Kuncak, and M. Rinard, “Generalized typestate checking

using set interfaces and pluggable analyses,”SIGPLAN Notices, vol. 39,
pp. 46–55, March 2004.

[41] P. Cousot and R. Cousot, “Systematic design of program analysis
frameworks,” inProc. 6th POPL. San Antonio, Texas: ACM Press,
New York, NY, 1979, pp. 269–282.

[42] R. E. Strom and D. M. Yellin, “Extending typestate checking using con-
ditional liveness analysis,”IEEE Transactions on Software Engineering,
May 1993.

[43] K. Bierhoff and J. Aldrich, “Lightweight object specification with
typestates,” inProceedings of ESEC-FSE ’05, H. C. Gall, Ed., September
2005, pp. 217–226.

[44] V. Kuncak, “Modular data structure verification,” Ph.D. dissertation,
Massachusetts Institute of Technology, 2007, to appear.

[45] V. Kuncak, H. H. Nguyen, and M. Rinard, “An algorithm fordeciding
BAPA: Boolean Algebra with Presburger Arithmetic,” in20th Interna-

tional Conference on Automated Deduction, CADE-20, Tallinn, Estonia,
July 2005.

[46] C. H. Papadimitriou,Computational Complexity. Addison-Wesley,
Reading, Mass., 1994.

[47] V. Kuncak and M. Rinard, “An overview of the jahob analysis system:
Project goals and current status,” inNSF Next Generation Software
Workshop, 2006.

[48] S. Drossopoulou, F. Damiani, M. Dezani-Ciancaglini, and P. Giannini,
“Fickle: Dynamic object re-classification,” inProc. 15th ECOOP, ser.
LNCS 2072. Springer, 2001, pp. 130–149.

[49] S. Fink, E. Yahav, N. Dor, G. Ramalingam, and E. Geay, “Effective
typestate verification in the presence of aliasing,” inISSTA’06, 2006.

[50] T. Skolem, “Untersuchungen über die Axiome des Klassenkalküls
and über “Produktations- und Summationsprobleme”, welche gewisse
Klassen von Aussagen betreffen,” Skrifter utgit av Vidnskapsselskapet i
Kristiania, I. klasse, no. 3, Oslo, 1919.

[51] V. Kuncak, H. H. Nguyen, and M. Rinard, “Deciding Boolean Algebra
with Presburger Arithmetic,”Journal of Automated Reasoning, 2006,
accepted for publication.

[52] D. R. Cheriton and M. E. Wolf, “Extensions for multi-module records
in conventional programming languages,” inACM PLDI. ACM Press,
1987, pp. 296–306.

[53] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. Lo-
ingtier, and J. Irwin, “Aspect-oriented programming,” inProc. 11th
ECOOP, Jyvaskyla, Finland, June 1997.

[54] V. Kuncak and K. R. M. Leino, “In-place refinement for effect checking,”
in Second International Workshop on Automated Verification ofInfinite-
State Systems (AVIS’03), Warsaw, Poland, April 2003.

[55] P. O’Hearn, H. Yang, and J. Reynolds, “Separation and information
hiding,” in Proc. 31st ACM POPL, 2004, pp. 268–280.

[56] R. Milner, M. Tofte, R. Harper, and D. MacQueen,The Definition of
Standard ML (Revised). The MIT Press, Cambridge, Mass., 1997.

[57] D. I. Good, R. L. Akers, and L. M. Smith, “Report on Gypsy 2.05,”
University of Texas at Austin, Tech. Rep., February 1986.

[58] J.-R. Abrial, M. K. O. Lee, D. Neilson, P. N. Scharbach, and I. Sørensen,
“The B-method,” inProceedings of the 4th International Symposium of
VDM Europe on Formal Software Development-Volume 2. Springer-
Verlag, 1991, pp. 398–405.

[59] C. B. Jones,Systematic Software Development using VDM. Prentice
Hall International (UK) Ltd., 1986.

[60] J. Woodcock and J. Davies,Using Z. Prentice-Hall, Inc., 1996.
[61] J. Guttag and J. Horning,Larch: Languages and Tools for Formal

Specification. Springer-Verlag, 1993.
[62] B. Dandanell, “Rigorous development using RAISE,” inProceedings of

the conference on Software for citical systems. ACM Press, 1991, pp.
29–43.

[63] J. C. King, “A program verifier,” Ph.D. dissertation, CMU, 1970.
[64] G. Nelson, “Techniques for program verification,” XEROX Palo Alto

Research Center, Tech. Rep., 1981.
[65] J.-C. Filliatre, “Verification of non-functional programs using interpre-

tations in type theory,”Journal of Functional Programming, vol. 13,
no. 4, pp. 709–745, 2003.

[66] J.-C. Filliatre and C. Marché, “Multi-prover verification of c programs,”
in ICFEM’04, 2004.

[67] C. Marché, C. Paulin-Mohring, and X. Urbain, “The Krakatoa tool for
certification of JAVA/JAVACARD programs annotated in JML,”Journal
of Logic and Algebraic Programming, 2003.

[68] L. Burdy, Y. Cheon, D. Cok, M. D. Ernst, J. Kiniry, G. T. Leavens,
K. R. M. Leino, and E. Poll, “An overview of JML tools and appli-
cations,” Computing Science Institute, Univ. of Nijmegen,Tech. Rep.
NII-R0309, March 2003.

[69] D. L. Detlefs, K. R. M. Leino, G. Nelson, and J. B. Saxe, “Extended
static checking,” COMPAQ Systems Research Center, Tech. Rep. 159,
1998.

[70] D. Detlefs, G. Nelson, and J. B. Saxe, “Simplify: A theorem prover for
program checking,” HP Laboratories Palo Alto, Tech. Rep. HPL-2003-
148, 2003.

[71] G. Nelson, “Verifying reachability invariants of linked structures,” in
POPL, 1983.

[72] T. Lev-Ami, N. Immerman, T. Reps, M. Sagiv, S. Srivastava, and
G. Yorsh, “Simulating reachability using first-order logicwith appli-
cations to verification of linked data structures,” inCADE-20, 2005.

[73] S. K. Lahiri and S. Qadeer, “Verifying properties of well-founded linked
lists,” in POPL’06, 2006.

[74] D. R. Cok, “Reasoning with specifications containing method calls and
model fields,”Journal of Object Technology, vol. 4, no. 8, pp. 77–103,
September–October 2005.

18 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

[75] M. Barnett, R. DeLine, M. Fähndrich, K. R. M. Leino, andW. Schulte,
“Verification of object-oriented programs with invariants,” Journal of
Object Technology, vol. 3, no. 6, pp. 27–56, 2004.

[76] K. R. M. Leino and P. Müller, “A verification methodology for model
fields,” in ESOP’06, 2006.

[77] T. Ball, S. Lahiri, and M. Musuvathi, “Zap: Automated theorem proving
for software analysis,” Microsoft Research, Tech. Rep. MSR-TR-2005-
137, 2005.

[78] S. Chaki, S. K. Rajamani, and J. Rehof, “Types as models:model
checking message-passing programs,” in29th ACM SIGPLAN-SIGACT
POPL. ACM Press, 2002, pp. 45–57.

[79] P. Meunier, R. B. Findler, and M. Felleisen, “Modular set-based analysis
from contracts,” inProc. 33rd ACM POPL, J. G. Morrisett and S. L. P.
Jones, Eds., January 2006, pp. 218–231.

[80] B.-Y. E. Chang and K. R. M. Leino, “Abstract interpretation with alien
expressions and heap structures,” inVMCAI’05, January 2005.

Viktor Kuncak is a doctoral candidate in the MIT
Department of Electrical Engineering and Computer
Science and a member of the MIT Computer Science
and Artificial Intelligence Laboratory. His research
interests include program analysis and verification.
In the context of the Hob and Jahob projects, he de-
veloped techniques for improving software reliabil-
ity by automatically proving properties of software
that manipulates complex data structures. He has
also worked on finite model generation, structural
subtyping constraints, and role analysis.

Patrick Lam is a doctoral candidate in the MIT
Department of Electrical Engineering and Com-
puter Science and a member of the MIT Computer
Science and Artificial Intelligence Laboratory. His
research aims to develop techniques which enable
the application of static analysis technology to the
domain of program understanding, in particular by
supporting the incorporation of verified design infor-
mation into the software development process. His
research interests also include software engineering,
programming languages, and program verification.

Karen Zee is a doctoral candidate in the MIT
Department of Electrical Engineering and Computer
Science and a member of the MIT Computer Science
and Artificial Intelligence Laboratory. Her research
interests focus on the use of program analysis to au-
tomate the verification of programs. Her work in the
Hob and Jahob systems center on the use of theorem
provers in combination with static analysis to show
strong properties about programs, and automatically
inferring loop invariants using a combination of
static and dynamic techniques.

Martin Rinard is a Professor in the MIT De-
partment of Electrical Engineering and Computer
Science and a member of the MIT Computer Science
and Artificial Intelligence Laboratory. His research
interests include parallel and distributed computing,
programming languages, program analysis, program
verification, software engineering, and techniques
that enable software systems to execute successfully
in spite of the presence of errors.

