
Static Verification of Design Constraints and Software Correctness Properties in

the Hob System

Patrick Lam and Martin Rinard
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology
Cambridge, MA 02139, USA

{plam,rinard}@csail.mit.edu

Abstract

Sets of objects are an intuitive foundation for many
object-oriented design formalisms, serving as a key concept
for describing elements of the design and promoting com-
munication between members of the development team. It
may be natural for the sets of the objects in the design to
correspond to the sets of objects in the implementation. In
practice, however, the object structure of the implementa-
tion is much more complex than that of the design. More-
over, the lack of an enforced connection between the im-
plementation and the design enables the implementation to
diverge from the design, rendering the design unreliable as
a source of information about the implementation.

Hob allows developers to express and verify the connec-
tion between abstract sets of design objects and concrete
sets of implementation objects. Abstraction maps define the
meaning of the design sets in terms of the objects in the im-
plementation, enabling the elimination of implementation
complexity not relevant to the design. An abstract set spec-
ification language enables the developer to state important
relationships (such as inclusion and disjointness) between
abstract sets of objects; our verification system statically
checks that the implementation correctly preserves these
design-level correctness properties. We have implemented
Hob and used it to develop several software systems. Our
experience shows that Hob enables the effective expression
and verification of precise design constraints that manifest
themselves as important correctness properties that the im-
plemented system is guaranteed to preserve.

1 Introduction

Sets of objects are a primary concept in many object
modeling formalisms — using sets of objects as a concep-
tual tool enables developers to articulate and explore key as-
pects of the system’s design. When these aspects are made
formal (i.e., expressed in a suitable formal specification lan-
guage), the result is a set of key correctness properties that
the resulting software system must preserve.

One of the goals of the Hob project is to develop a new
specification language and associated verification system
that can establish a guaranteed connection between the de-

sign and the implementation, with sets of objects in the de-
sign corresponding to sets of selected objects within the
implementation and key design properties formalized as
key system correctness properties. Given these correctness
properties, the Hob system then analyzes the system before
it executes to determine if it may ever violate one of the
correctness properties. Hob is sound: if its analysis reports
no violations, then the system is guaranteed never to violate
the correctness properties.

The Hob system currently contains multiple analyses and
deploys these analyses in a coordinated way to verify tar-
geted design-level properties. We have used Hob to design,
implement, and verify several applications. As part of our
experience, we have found that the Hob approach provides
several significant benefits:

• Effective Naming: One of the key reasons that ob-
ject models can be so effective as a communication
medium is that they provide a single set of names that
developers can use to identify different kinds of ob-
jects independent of the particular context at hand. Our
specification language preserves this naming approach
— each system has a collection of abstract sets, each
with its own name. Developers therefore have a sin-
gle unified set of names and concepts that supports
quick and easy communication across different con-
texts. In particular, this approach enables developers
working on different parts of the system to commu-
nicate without first establishing a translation between
names and concepts from different contexts. It also
supports the effective expression of high-level design
constraints that cut across different parts of the system.

• Appropriate Abstraction: To support the expression
of a formal connection between the implementation
and the design, Hob supports abstraction maps, which
allow the developer to specify the sets of objects in the
implementation that make up each abstract set in the
design. Because abstraction maps can discard objects
that are required for the implementation but are irrel-
evant and distracting for high-level design purposes,
they can eliminate the clutter and excess implementa-
tion detail that would otherwise obscure key elements
of the design.

• Design Conformance: The fact that our analysis sys-

1



tem verifies correctness of the specifications ensures
the conformance of the design to the implementation.
Developers can therefore rely on the specification to
provide accurate information about the design. The de-
sign can therefore become a source of useful informa-
tion about the program (especially its high-level struc-
ture) throughout its entire lifetime. One especially im-
portant advantage is that the presence of an accurate
design makes poor design decisions much more ob-
vious and therefore much less likely to occur as the
system evolves in response to changing goals and re-
quirements.

• Documentation: One of the benefits of design con-
formance is that the abstract sets and the specification
language precisely document the state, invariants, and
preconditions of the software system. The elimination
of low-level object clutter provides an appropriate level
of abstraction for documentation; the guaranteed cor-
respondence with the implementation eliminates the
possibility that the documentation may be out of date
or simply wrong.

2 Implementation Language

Hob’s implementation language is a simple imperative
language with modules, procedures, object references, and
dynamic object allocation. Each implementation module
may contain format declarations, module variables (which
correspond to global variables in standard languages), and
procedures. Each format declaration describes the fields
that the module contributes to objects of the specified type
[3,10]. Formats therefore provide a form of distributed field
declarations—instead of centralizing field declarations in a
single type declaration, the declarations of object fields are
distributed across the modules that access objects of that
type. Modules therefore encapsulate data structures and
not objects. A program might have an object that simul-
taneously participates in a list module and a tree module,
with the fields that implement the list encapsulated in the
list module and the fields that implement the tree encapsu-
lated in the tree module.

Each module variable contains a reference to an object;
references serve as roots of data structures. Each procedure
contains a sequence of imperative statements that manipu-
late references and objects. The type checker ensures that
any well-typed program accesses only fields that exist and
are visible to the executing module. In particular, it checks
that the types of the actual and formal parameters match at
call sites and that each field access refers to a field declared
in a format declaration from the enclosing module.

Our language is designed to support programs with an
unbounded number of objects that participate in a bounded
(at compile time) number of data structures, with each data
structure encapsulated within a module. This structure har-
monizes with the abstract set approach—in most cases, each
data structure will be rooted at a given module variable and
will implement one or more abstract sets.

3 Specification Language

Hob’s specification language uses abstract sets to repre-
sent program state [10]. Abstract set declarations identify
each module’s abstract sets. Procedure specifications use
these sets to identify the effects of each procedure in the
module. The requires and ensures clauses in the pro-
cedure specifications use arbitrary boolean clauses over ab-
stract sets to specify these effects. The modifies clause
bounds the collection of sets directly modified by a proce-
dure.

The expressive power of boolean clauses is the first-order
theory of boolean algebras, which is decidable, implying
that there exist algorithms that analyze each statement and
computes its effect on the boolean algebra formulas, auto-
matically synthesize loop invariants, and check implication
when verifying ensures clauses. Our flags analysis uses
such an algorithm [13]; we expect other analyses to exploit
this decidability property in similar ways.

4 Scopes

Developers use boolean clauses to specify the proper-
ties that the abstract sets must satisfy during the execu-
tion. These boolean clauses often involve sets from different
modules, thereby capturing high-level design properties that
cut across the module structure. Conceptually, such clauses
are invariants that hold everywhere during the execution of
the program. In practice, however, such clauses may be
temporarily violated as the program updates its data struc-
tures (with object membership in the corresponding abstract
sets reflecting these changes). Scopes [10, 11] make it pos-
sible to identify the regions of the program in which the
clause may be temporarily and legitimately violated. Each
clause is therefore embedded in a scope declaration that
identifies: 1) a boolean clause, 2) the modules within which
the clause may be legitimately violated, and 3) the publicly-
available modules that may be invoked from outside the
scope.

The analysis engine ensures that the clause holds every-
where outside the modules in the scope by first assuming
that the clause holds on entry to each publicly-available
module, then verifying that the clause always holds upon
exit from that module. The analysis system can then as-
sume that the clause holds everywhere outside the module.

The Hob analysis engine uses an interprocedural link-
time analysis to check that the developer has marked all
reentrant calls. A reentrant call is a call from within the
scope—where the clause is potentially violated—that in-
vokes a publicly-available module that assumes that the
clause holds. In cases where a module within the scope
must invoke a module outside the scope that assumes the
clause, the “reentrant” label explicitly instructs the analysis
to verify that the clause holds before the invocation point.

5 Abstraction Maps

Abstraction maps provide the connection between the
concrete objects in the implementation and the abstract sets
of objects in the design. A central feature of the Hob frame-
work is the ability to deploy multiple analyses, each special-

2



ized to analyze a specific kind of module. Because differ-
ent analyses use different techniques, it becomes possible
to select the most appropriate analysis for each module, de-
pending on the expressiveness and the scalability required
to analyse that module.

To evaluate the feasibility of using different analyses for
different modules, we have developed and used a number of
different analyses. The flags analysis [13] assigns set mem-
bership according to the values of integer fields. The Bohne
analysis [19] performs field constraint analysis, a general-
ization of shape analysis [9], and assigns set membership
according to heap reachability properties. Finally, the the-
orem proving analysis [20] assigns set membership using
Isabelle predicates; it is useful for reasoning about complex
data structures that require theorem provers for verification.

Because plugins may support a variety of different ab-
straction maps, the Hob framework allows each analysis
to accept the syntax which is most convenient for its pur-
poses. In general, however, each analysis typically accepts
one or more abstraction maps (one for each abstract set in
the module) defined in a language suitable for the properties
it is designed to analyze. It may also accept a specification
of the internal representation invariants that any analyzed
data structures satisfy. Once again, these invariants are ex-
pressed in a language suitable for the verified properties.

Our flag analysis plugin verifies that modules implement
set specifications in which integer or boolean flags indicate
abstract set membership. Using these abstraction modules,
the developer may specify the correspondence between con-
crete flag values and abstract sets from the specification.
This abstraction language defines abstract sets in two ways:
(1) directly, by stating a base set; or (2) indirectly, as a
set-algebraic combination of sets. Base sets have the form
B = {x : T | x.f=c} and include precisely the objects
of type T whose field f has value c, where c is an integer
or boolean constant; the analysis converts mutations of the
field f into set-algebraic modifications of the set.

We use the flag analysis in our Minesweeper example,
described in Section 6.2. In many other examples, we use
the flag analysis without defining any sets to analyze “coor-
dination” modules. These coordination modules simply call
upon other modules to manipulate set membership. The flag
analysis is appropriate for analyzing such modules because
it does not impose any overhead when no sets are defined.

6 Experience

In this section, we describe our experience using the
Hob system to implement and specify design information
for two programs. The first program implements an HTTP
1.1 server, the second implements the popular Minesweeper
game. The sets in the HTTP 1.1 server include sets of re-
quest headers, response headers, and sets that capture de-
sign information related to a server-side cache. The sets in
the Minesweeper game include sets of hidden and exposed
cells. For both programs we describe how the set specifica-
tions allow designers and developers to state, communicate,
and enforce design-level information about the programs.

6.1 Case study: HTTP server

The HTTP 1.1 server implements the basic HTTP 1.1
protocol. This server hosts the Hob project homepage (see
http://hob.csail.mit.edu).

Description. Our web server reads configuration data
from a file and then listens for HTTP requests on the port
specified in the configuration file. It serves these requests
by transmitting the appropriate headers and content to the
client. If the client’s headers indicate that it supports com-
pression, the server uses a gzip library to compress the data,
and sends the compressed version to the client. Further-
more, we optimized our HTTP server by caching the results
of previous requests (both uncompressed and compressed)
and serving results from the cache. The Hob webserver con-
tains 14 modules, 1229 lines of implementation, and 335
lines of specification. The server contains the following ab-
stract sets of objects:

• HTTPRequest.Headers — the set of HTTP re-
quest headers.

• HTTPRequest.Entity,
HTTPRequest.Request,
HTTPRequest.General. The three different
kinds of HTTP request headers. Together, these sets
partition HTTPRequest.Headers.

• HTTPResponse.C — the set of HTTP response
headers

• CacheSet.Content,
CacheBlacklist.Content. These two sets
capture information about the request content cache.
CacheSet.Content is the set of objects in the
cache; CacheBlacklist.Content is a set of
objects that must not be placed in the cache (typically
because they are too large).

Serving a request. When serving an HTTP re-
quest, the server first needs to capture information
about what data the client is prepared to accept. To
do this, it builds the set HTTPRequest.Headers

and partitions it by header kind into the sets
HTTPRequest.General, HTTPRequest.Request

and HTTPRequest.Entity, for general, request and
entity-headers, respectively. These headers affect the
response which the server will transmit back to the client;
for instance, the presence of the appropriate request
header allows the server to transmit compressed data to
the client. The server then creates an HTTP response
header and populates the set HTTPResponse.C with
the proper header entries. Next, it searches the cache
blacklist CacheBlacklist.Content and the cache
content CacheSet.Content for cached versions of the
response; if no cached content is available, and the content
is not blacklisted, then it adds the content to the cache.

Response headers. The usual structure of an HTTP re-
sponse occurs in two parts: a response header and content.
A response header is a list of colon-separated strings, each
string containing a key and a value. In our implementation,
we build up an HTTP response in the HTTPResponse

module, which can send itself over the network to a client.
Our use of sets allows us to document and stati-

cally enforce the usage pattern of the HTTP response

3



module: we represent the current response header as
a set, HTTPResponse.C, and add header entries to
this set. Before serving any HTTP request, we always
emit a basic header, which contains mandatory fields
like the Date field; we can therefore guarantee that the
HTTPResponse.C set is non-empty. Since we do not
wish to emit stale header information from previous re-
quests, the precondition of the sendFile procedure in-
cludes the condition that card(HTTPResponse.C) =

0. We ensure that this precondition always holds by restor-
ing it upon exit to sendFile; in particular, we ensure that
card(HTTPResponse.C’) = 0.

Note that this specification does not constrain the cardi-
nality of C during the execution of the procedure. In fact, the
HTTPResponse.emit procedure requires C to be non-
empty; clearly, it is inconsistent with this design to trans-
mit empty responses. A different (and in our opinion infe-
rior) design might populate the set C only if the client had
requested that headers be transmitted. Our specifications
clearly document the design decision that we took in this
particular implementation and prevent maintainers from in-
advertently violating this decision in the maintenance phase
of the program’s lifecycle.

Transmitting files to clients. The sendFile proce-
dure coordinates the task of sending a file to a client, using
the cache if applicable. Content is generally stored in the
cache before being served. To avoid undesirable cache ef-
fects, however, our server blacklists cache entities that are
too large (greater than 1 megabyte in our current implemen-
tation). To simplify the implementation, we chose to have
our web server always load the content into the cache and
then serve the content from the cache, as long as the content
is not blacklisted. Our implementation reflects this design
decision. In the absence of any reliable information about
the design, the developer would have to glean this design
decision from the code.

Our approach makes this design decision
explicit and much more accessible. We de-
clare the sets CacheSet.Content and
CacheBlacklist.Content. It turns out that
these sets are defined by instantiating linked lists, and
Hob’s ability to combine shape analysis for the cache sets
with the simpler typestate analysis used for this module
is crucial for obtaining a global design conformance
result. The sendEntry procedure, which transmits an
entry to the client, relies on membership information for
these two sets. The specification for the sendEntry

procedure makes it clear that the content to be trans-
mitted will either be in the CacheSet.Content or
CacheBlacklist.Content sets. Hob establishes
the precondition for this procedure by observing that
either the entry is already in the cache or newly added
to the cache, so that n in CacheSet.Content;
or the entry is blacklisted, in which case n in

CacheBlacklist.Content. In this way, the
sendEntry specification clearly and accessibly doc-
uments this design decision, and Hob verifies that the
implementation conforms to this design.

6.2 Case study: Minesweeper

We have ported an implementation of the popular
Minesweeper game to the Hob system and verified design
conformance properties for this program. We structured
our version of minesweeper using several modules: a game
board module (which represents the game state), a con-
troller module (which responds to user input), a view mod-
ule (which produces the game’s output), an exposed cell
module (which stores the exposed cells in an array), and an
unexposed cell module (which stores the unexposed cells in
an instantiated linked list). There are 787 non-blank lines of
implementation code in the 6 implementation modules and
328 non-blank lines of design information in specification
and abstraction modules.

Minesweeper uses the standard model-view-controller
(MVC) design pattern. The board module implements
the model part of the MVC pattern. We have cho-
sen to represent game state using an array of Cell ob-
jects. Each Cell object may be mined, exposed or
marked. Abstractly, we define the sets MarkedCells,
MinedCells, ExposedCells, UnexposedCells,
and U (for Universe) to represent sets of cells with various
properties; the U set contains all cells known to the board.
The board also uses a global boolean variable gameOver,
which it sets to true when the game ends.

Note that the sets of exposed and unexposed cells in
the board are implicit: in fact, they are defined by fields
of the Cell objects. Our implementation also main-
tains explicit copies of these sets in the ExposedSet

and UnexposedList modules; the set-based copies
point to the same Cell objects as those in the board,
but permit access to and reasoning about these subsets
of the board in a more direct fashion. Our set spec-
ifications document the fact that the board and the
ExposedSet/UnexposedList always have identical
memberships, and permit the Hob analysis engine to ver-
ify that this equality holds throughout the program’s main-
tenance life-cycle.

Our system verifies that our implementation has the fol-
lowing properties (among others):

• The sets of exposed and unexposed cells are disjoint;
unless the game is over, the sets of mined and exposed
cells are also disjoint.

• The set of unexposed cells maintained in the board
module is identical to the set of unexposed cells main-
tained in the UnexposedList list.

• The set of exposed cells maintained in the board

module is identical to the set of exposed cells main-
tained in the ExposedSet array.

• At the end of the game, all cells are revealed; i.e. the
set of unexposed cells is empty.

These properties illustrate how Hob enables designers
and developers to state application-level design properties,
establish a connection between these properties and the im-
plementation, then verify the properties to provide a guar-
antee that the implementation conforms to the design.

Enforcing Set Consistency Properties. In our set
specification language, the set consistency property equat-
ing sets in the board with sets in the ExposedSet and
UnexposedList modules is expressed as follows:

4



(Board.ExposedCells = ExposedSet.Content) &
(Board.UnexposedCells = UnexposedList.Content)

Hob verifies this invariant by conjoining it to the
ensures and requires clauses of the appropriate
procedures. The board module is responsible for
maintaining this invariant. Yet the analysis of the
board module does not, in isolation, have the abil-
ity to completely verify the invariant: it cannot rea-
son about the concrete state of ExposedSet.Content
or UnexposedList.Content (which are defined in
other modules, using arbitrary—to the board—abstraction
maps). However, the ensures clauses of its callees, in
combination with its own reasoning that tracks membership
in the ExposedCells set, enables our analysis to verify
the invariant.

6.3 Discussion

We found that the presence of abstract sets affected how
we structured the our implementations: as we coded the
implementations, our underlying set-based view of the pro-
gram state forced us to think about the system at a deeper
and more abstract level. In particular, we had to think about
which invariants the system would satisfy (which helped us
further structure our implementation). The process of en-
coding the relevant invariants and postconditions in terms
of Hob’s set specification language served to record this de-
sign documentation and to bind it to the implementation.

Hob’s verification of design properties complements
software testing. While developing our benchmarks, we
found testing to be quite good at finding errors in pro-
grams, especially those encountered by typical program ex-
ecutions. However, testing has a number of shortcomings:
while static analysis considers all executions of the pro-
gram, testing’s effectiveness is limited by the test suite.
More importantly, testing cannot neither record design in-
formation nor enforce design constraints. Conventional
regression testing only detects drift in the program’s be-
haviour, not the program’s design. In particular, testing does
not guard implementators from changes that falsify needed
invariants unless the changes alter the program’s output1.

The sequencing of our implementation and specification
process differs from the traditional “specification first” ap-
proach. We believe that our process shares a number of
the benefits of the traditional approach: because develop-
ers have already designed the program’s abstract set layout
and have thought about the necessary invariants, the pro-
gram will have more structure than in a specification-free
approach. On the other hand, the fact that the specifications
are only formalized relatively late preserves code flexibil-
ity; it is easy to refactor procedures and redesign the im-
plementation’s structure during the development process.
Once the program is relatively well-developed, we can set
down the relevant design information in the form of specifi-
cations and verify that the implementation conforms to the
specification. The verified design properties thus obtained
will continue to be useful throughout a program’s develop-
ment lifecycle: they can serve as program documentation,

1Assertions can, of course, verify that invariants continue to hold, but
they still require a suitable test suite to work.

and the Hob system guarantees that the implementation cor-
rectly implements the design.

Verifying design properties helps to avoid design drift.
After we encoded our design properties in the form of spec-
ifications, the fact that Hob can verify these specifications
made it possible for us to, in some sense, regression-test
the design properties. As long as Hob certifies that the im-
plementation continues to conform to the specification, the
design properties are still valid on the current version of the
implementation. We believe that Hob’s automated verifica-
tion approach is critical for avoiding design drift.

Hob’s support for an iterative specification process
helped us adopt an incremental specification development
process. We believe that such a process is a useful way to
add specifications to pre-existing systems, which often start
without any design documentation information at all. The
prospect of documenting a system’s design is often daunt-
ing, and the ability to do so piecemeal rewards developers
continuously as they add additional documentation. Fur-
thermore, an incremental process works well when differ-
ent aspects of a system’s design become important over
time. For instance, when a developer wishes to augment
a subsystem’s functionality, it could be useful to verify in-
variants and postconditions for the initial code—which was
previously not worth specifying—before adding new func-
tionality to the subsystem. That way, after carrying out the
changes, the developer could ensure that the invariants and
postconditions continue to hold.

7 Related Work

We compare the Hob system with several specification
systems and tools for verifying design conformance. Spec-
ification systems can express sophisticated program prop-
erties, but typically do not include support for automati-
cally proving that implementations satisfy these properties.
Tools for verifying design conformance do not support the
detailed static analyses that Hob employs.

The Z Notation. The Z notation [18] allows system de-
signers and implementers to express properties of their sys-
tems. The power of the Z notation enables it to completely
specify system properties, so that—in principle—any de-
sired property of the system could be specified down to the
implementation level.

Compared to Z, Hob was designed to address the more
focused design conformance problem—it restricts develop-
ers to design-level properties that they can express using ab-
stract sets of objects. Hob’s partial specification approach
enables it to effectively verify design conformance proper-
ties. Moreover, the set-based specification language facili-
tates the task of providing design information and rewards
an iterative specification process. Partiality is also impor-
tant because our goal is to make the design accessible: the
level of detail in a complete specification could obscure the
design decisions we wish to expose.

Wide-Spectrum Specification Languages. The wide-
spectrum specification language approach attempts to help
developers ensure that implementations match their specifi-
cations by providing a family of related languages for spec-
ifying and implementing systems [1, 6, 8]. Previous work

5



on automatically proving that implementations conform to
their specifications has been sparse, and we are not aware
of any such research in the context of wide-spectrum speci-
fication languages. Wide-spectrum specification languages
therefore do not address the issue of design drift: imple-
mentations and specifications tend to end up diverging in
the absence of tools that automatically verify that an imple-
mentation conforms to its specification.

Hob does not use a wide-spectrum specification lan-
guage; we instead provide separate specification and im-
plementation languages, and automatically verify the con-
formance of the implementation to the specification with
respect to the abstraction language. Hob therefore guaran-
tees that a program’s implementation conforms to its design
throughout its lifecycle, preventing design drift.

Systems for Verifying Design Conformance. Hob verifies
that implementations of software systems conform to their
designs. Because techniques that do not inspect source code
are always vulnerable to design drift, a number of related
efforts also extract design information from source.

The ESC/Java2 [4, 7] tool verifies partial JML [2] spec-
ifications in Java programs. The JML specifications that
ESC/Java2 verifies are essentially legal Java expressions
(with some added keywords). A major difference between
the two approaches (ESC/Java2 and Hob) is that Hob takes
a stronger position on the kinds of specifications that devel-
opers should write. In particular, Hob is designed to allow
designers and developers to express and verify design-level
information about a bounded (at compile time) collection of
named abstract sets of objects. Hob’s specification language
is focused on set-based properties, which we believe to be
important and relevant for design information. We believe
that the Hob approach focuses the attention of the designers
and developers on the important core aspects of the design
and facilitates the effective verification of those aspects.

Murphy et al. have proposed reflexion models [16],
where developers propose a model of a software system and
an algorithm which extracts a model from the source code;
their tool then presents the difference between the proposed
model and the extracted model to the developer. Reflexion
models do not prescribe how models are to extracted. One
way to build a model is to assign module membership on a
per-file basis and to use procedure calls between these files
to determine module interaction. Sefika et al. present the
Pattern-Lint tool [17], which explores an approach that is
similar in spirit to reflexion models. Their approach com-
bines cursory static analysis and dynamic analysis to verify
whether or not software systems conform to desired archi-
tectural constraints. The novelty in Pattern-Lint appears to
stem from how it decides whether or not systems conform
to their designs (by collecting evidence for and against de-
sign conformance) rather than the static analysis that it uses,
which appears to be limited to inspecting method calls and
shared global variable accesses. Lam and Rinard have pro-
posed the token annotation system [14]. The token sys-
tem automatically extracts design information from the pro-
gram source code using developer-provided annotations and
produces diagrams summarizing direct and indirect (heap-
mediated) interactions. Like these systems, Hob attempts
to verify that a system’s implementation conforms to its de-
sign. However, Hob’s use of sophisticated static analysis

techniques allows it to verify deeper behavioural properties:
because Hob’s abstraction mappings provide summaries of
the concrete heap state, users of Hob can express important
program invariants at an abstract, set-based level, and stati-
cally verify that these invariants hold in the implementation.

8 Future Work

Hob has demonstrated the feasibility of performing mod-
ular verification of sophisticated design and program cor-
rectness properties that use abstract sets of objects as their
central organizing concept. The next step is to move beyond
sets to include relations. Such a step would enable develop-
ers to express a wider range of useful program correctness
properties. In particular, relations are crucial for expressing
designs involving maps between sets of objects; these maps
are often implemented in the software system using hash ta-
bles or association lists. Successfully generalizing the Hob
approach to support relations would enable the expression
and verification of such aspect of the design and the corre-
sponding correctness properties.

References

[1] J.-R. Abrial. The B-Book. Cambridge University Press, 1996.
[2] L. Burdy, Y. Cheon, D. Cok, M. D. Ernst, J. Kiniry, G. T. Leavens, K. R. M.

Leino, and E. Poll. An overview of JML tools and applications. Technical
Report NII-R0309, Computing Science Institute, Univ. of Nijmegen, March
2003.

[3] D. R. Cheriton and M. E. Wolf. Extensions for multi-module records in
conventional programming languages. In Proceedings of the 14th ACM
SIGACT-SIGPLAN symposium on Principles of programming languages,
pages 296–306. ACM Press, 1987.

[4] D. R. Cok and J. R. Kiniry. ESC/Java2: Uniting ESC/Java and JML: Progress
and issues in building and using ESC/Java2 and a report on a case study
involving the use of ESC/Java2 to verify portions of an Internet voting tally
system. In CASSIS: Construction and Analysis of Safe, Secure and
Interoperable Smart devices, 2004.

[5] CSK, editor. VDM++ Toolbox User Manual. VDMTools, 2005.
[6] B. Dandanell. Rigorous development using RAISE. In Proceedings of the

conference on Software for critical systems, pages 29–43. ACM Press, 1991.
[7] D. L. Detlefs, K. R. M. Leino, G. Nelson, and J. B. Saxe. Extended static

checking. Technical Report 159, COMPAQ Systems Research Center, 1998.
[8] C. B. Jones. Systematic Software Development using VDM. Prentice Hall

International (UK) Ltd., 1986.
[9] N. Klarlund and M. I. Schwartzbach. Graph types. In Proc. 20th ACM POPL,

Charleston, SC, 1993.
[10] P. Lam. The Hob System for Verifying Software Design Properties. PhD thesis,

Massachusetts Institute of Technology, 2006.
[11] P. Lam, V. Kuncak, and M. Rinard. Cross-cutting techniques in program

specification and analysis. In 4th International Conference on
Aspect-Oriented Software Development (AOSD’05), 2005.

[12] P. Lam, V. Kuncak, and M. Rinard. Generalized typestate checking for data
structure consistency. In 6th International Conference on Verification, Model
Checking and Abstract Interpretation, 2005.

[13] P. Lam, V. Kuncak, K. Zee, and M. Rinard. Set interfaces for generalized
typestate and data structure consistency verification. Theoretical Computer
Science, submitted.

[14] P. Lam and M. Rinard. A type system and analysis for the automatic extraction
and enforcement of design information. In Proc. 17th ECOOP, 2003.

[15] P. G. Larsen and J. Fitzgerald. VDM information: Examples repository,
November 2000.

[16] G. C. Murphy, D. Notkin, and K. Sullivan. Software reflexion models:
Bridging the gap between source and high-level models. In G. E. Kaiser,
editor, Proceedings of the 3rd ACM SIGSOFT symposium on Foundations of
software engineering, pages 18–28, 1995.

[17] M. Sefika, A. Sane, and R. H. Campbell. Monitoring compliance of a software
system with its high-level design models. In ICSE’96, pages 387–396, 1996.

[18] J. M. Spivey. The Z Notation: A Reference Manual. Prentice-Hall, Inc., 1992.
[19] T. Wies, V. Kuncak, P. Lam, A. Podelski, and M. Rinard. Field constraint

analysis. In VMCAI 2006, 2006.
[20] K. Zee, P. Lam, V. Kuncak, and M. Rinard. Combining theorem proving with

static analysis for data structure consistency. In International Workshop on
Software Verification and Validation (SVV 2004), Seattle, November 2004.

6


