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ABSTRACT
Runtime monitoring allows programmers to validate, for in-
stance, the proper use of application interfaces. Given a
property specification, a runtime monitor tracks appropri-
ate runtime events to detect violations and possibly execute
recovery code. Although powerful, runtime monitoring in-
spects only one program run at a time and so may require
many program runs to find errors. Therefore, in this paper,
we present ahead-of-time techniques that can (1) prove the
absence of property violations on all program runs, or (2)
flag locations where violations are likely to occur. Our work
focuses on tracematches, an expressive runtime monitoring
notation for reasoning about groups of correlated objects.
We describe a novel flow-sensitive static analysis for analyz-
ing monitor states. Our abstraction captures both positive
information (a set of objects could be in a particular mon-
itor state) and negative information (the set is known not
to be in a state). The analysis resolves heap references by
combining the results of three points-to and alias analyses.
We also propose a machine learning phase to filter out likely
false positives. We applied a set of 13 tracematches to the
DaCapo benchmark suite and SciMark2. Our static analysis
rules out all potential points of failure in 50% of the cases,
and 75% of false positives on average. Our machine learning
algorithm correctly classifies the remaining potential points
of failure in all but three of 461 cases. The approach revealed
defects and suspicious code in three benchmark programs.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Validation; F.3.2 [Logics and Meaning of Pro-
grams]: Semantics of Programming Languages—Program
analysis

General Terms
Experimentation, Reliability, Verification

Keywords
Static analysis, static verification, runtime verification, ma-
chine learning, points-to analysis
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1. INTRODUCTION
A program’s sequence of events over an execution is a

rich source of information about the program’s behaviour
on that execution. Some sequences of runtime events indi-
cate defects in the program: for instance, programs must not
advance iterators with no more elements. Runtime monitor-
ing can detect such sequences of events, enabling developers
to handle the sequences with reporting or recovery code.

However, runtime monitoring can only detect errors as
they occur, and furthermore inspects only one program ex-
ecution at a time and so may require many executions to
find errors. Errors may therefore be hard to find and can
remain unnoticed until late in the development process or
even until after a program is deployed.

Our research aims to verify runtime monitoring properties
ahead-of-time, through static analysis. Static verification
can (1) prove the absence of error conditions on all execu-
tions, or (2) flag all code locations where errors may possibly
occur. We designed a “complete” static analysis—no missed
violations—that would report as few false positives as pos-
sible. However, to design a complete static analysis, we had
to make conservative assumptions, which potentially lead to
false positives. To mitigate the impact of false positives, we
developed a new (optional) machine learning approach that
filters out likely false positives, which enables developers to
concentrate on program points that are likely points of fail-
ure. Our combined approach enables the programmer to
(1) manually inspect all potential points of failure (starting
with the likely points of failure), and (2) specify recovery
code to gracefully handle all remaining potential points of
failure (which she could also inspect manually).

We focus on one particular approach to runtime monitor-
ing: tracematches [2], a Java language extension. Trace-
matches are concise yet expressive; they enable developers
to specify interesting error situations. Using tracematches,
developers can specify traces of interest via regular expres-
sions of symbols with free variables, along with some code
to execute if such a trace occurs on a program execution.
A symbol’s free variables bind heap objects at runtime. A
tracematch triggers when its regular expression matches a
suffix of the current execution trace with a consistent vari-
able binding. For example, tracematches can monitor for in-
appropriate use of iterators; the regular expression “next(i)
next(i)”over the alphabet {hasNext(i), next(i)} matches
if a program calls the next() method twice on an iterator i
without any intervening call to hasNext().

Figure 1 shows our complete analysis approach for trace-
matches (an explanation follows). The fact that tracematch
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Figure 1: Our complete approach to static verification using tracematches; novel phases shown in boldface; solid arrows
represent data flow, dashed arrows possible interaction

events bind variables to heap objects at runtime is the key
challenge for any static analysis of tracematches. In the
above example, the variable i would be bound at the first
next(i) event and matched at the second next(i) event.
Because heap objects are often shared by different methods
in a program, and because any method could cause an event
on a bound object, one might think that any nontrivial static
analysis of tracematches would have to be both interproce-
dural and flow-sensitive. In previous work [7] we tried such
an approach and failed: we found that a precise analysis of
tracematches requires must-alias information for strong up-
dates. Such information is very expensive to compute at a
whole-program level. Our earlier work further showed that
an interprocedural but flow-insensitive analysis could only
eliminate the partial matches of tracematches that could not
be completed for trivial reasons, e.g. iterators which receive
calls to hasNext() but never to next().

We therefore took a step back and determined where and
how tracematches matched in our benchmarks. To our sur-
prise, many tracematches described mostly-local patterns,
often confined to a single method. This led us to the prin-
cipal finding of this paper: A suite of carefully-designed in-
traprocedural flow-sensitive analyses (top of Figure 1) can
successfully reason about tracematch states, if intelligently
combined with precise local alias information and inexpen-
sive whole-program summary information.

Note that tracematches are much harder to analyze than
typestate [19]. In typestate, the type system associates a
state with each individual object of a given type. Static
typestate analyses can therefore track the possible states of
each of a program’s allocation sites individually [11]. Many
tracematches, however, have multiple free variables. In such
situations, multiple objects share a joint state. A naive at-
tempt must therefore track the states of all combinations
of allocation sites—an exponential blowup. To avoid this
blowup, we instead encode knowledge about entire equiva-
lence classes of objects using constraints. Our abstraction
associates two kinds of information with each state q: pos-
itive information x = o (object o is in state q, bound to
tracematch variable x) and negative information x 6= o (any
object except o may be in q and bound to x). In our bench-
marks, the combination of positive and negative information
enables us to eliminate most false positives.

As the Figure shows, our static analysis can be useful in

various cases. In the ideal case (A), the analysis reports that
the program can never trigger the tracematch at runtime,
e.g. if we can prove that all iterators are checked for having
a next element before they are advanced. We use the term
shadow [15] to denote a program point corresponding to a
runtime event of interest. If no shadows remain, the program
satisfies the monitored property.

If shadows do remain, we identify potential points of fail-
ure. Such points may directly cause the tracematch body
to execute, e.g. any next-shadow in the iterator example.
Using a machine learning approach, we then classify each
potential point of failure to determine whether or not it is
a likely point of failure. The programmer can then inspect
(B) the filtered list of likely points of failure, along with use-
ful context information. In the future, we plan to provide
a visualization tool that the programmer can use to browse
(C) all potential points of failure in program code.

To enable the programmer to recover from runtime er-
rors at points where errors are unlikely to occur (but are
still possible), we provide an option to (D) generate an op-
timized instrumented program that includes runtime moni-
toring code only at points where our static analysis could not
rule out potential matches statically. Because our approach
is complete, this monitor catches all actual errors.

We have implemented our static analysis as an extension
to the AspectBench Compiler [3]. We applied the analysis
to 103 combinations of tracematches with SciMark2 [17] and
the entire DaCapo benchmark suite [5], and found that 38
of these combinations showed potential property violations.
Our static analysis ruled out all potential points of failure
in 50% of these cases; overall, it ruled out 75% of the poten-
tial points of failure. For all but 5 benchmark/tracematch
combinations, fewer than 10 such points remained.

We found actual property violations in 5 cases. In Jython
and bloat, this violation pointed out actual errors. In PMD,
we found dubious code which was fixed in a later revision.
Our machine learning algorithm correctly classified the re-
maining potential points of failure in all but 3 of 461 cases.
The contributions of this paper include:

• an analysis abstraction for tracking runtime monitor
states, including the information that an object is or
is not in a certain state, along with

• a unified set of rules for manipulating the analysis ab-
straction based on static alias information;



1 void main() {
2 Collection c1 = new LinkedList();
3 c1.add(‘‘something’’); //update(c1)
4 Collection c2 = c1;
5 c2.add(‘‘somethingElse’’); //update(c2)
6 print(c2);
7 }
8

9 void print(Collection c3) {
10 Iterator i1 = c3. iterator (); //create(c3,i1)
11 while(i1.hasNext()) { //hasNext(i1)
12 Iterator i2 = i1;
13 System.out.println(i2 .next()); //next(i2)
14 }
15 }

Figure 2: Example program with shadows

• a machine learning algorithm to identify likely points
of failure among potential points of failure; and

• an implementation of our static analyses and their
evaluation on realistically-sized benchmark programs.

We next proceed with two introductory examples before
explaining our static analysis approach in Section 3 and our
classification approach using machine learning in Section 4.
The evaluation follows in Section 5, followed by a discussion
of related work and conclusions.

2. TRACEMATCHES AT RUNTIME
In this section, we describe tracematches [2], a mechanism

for runtime monitoring; explain how a compiler creates code
that implements tracematches at runtime; and describe how
the runtime system tracks tracematch states. Although this
section presents the situation at runtime, our two illustrative
examples foreshadow our static analyses from Section 3.

Figure 2 presents our running example, a program we
would like to partially verify using tracematches. The pro-
gram populates a collection, which is then passed to the
method print for printing. We explicitly added copy state-
ments at lines 4 and 12 to emphasize the problem of aliasing.

Like many Java programs, our example uses iterators and
collections, which come with implicit API usage contracts
(see below). Tracematches can verify such contracts.

2.1 HasNext example tracematch
Figure 3 presents the HasNext verification tracematch.

This tracematch identifies suspicious traces where a program
calls i.next() twice in a row without any intervening call to
i.hasNext(). Tracematches include an alphabet of symbols,
a regular expression over this alphabet and a body.

Symbols associate abstract tracematch events with con-
crete program events. Developers define symbols using As-
pectJ pointcuts. The examples in this paper use call point-
cuts. In principle, programmers could use any AspectJ point-
cut in their tracematch symbols. However, some pointcuts,
like cflow, may make less sense in a tracematch symbol
definition than in an advice definition, since tracematches
can partly subsume the cflow construct. The let point-
cut is most useful within tracematch symbol definitions:
let(v,exp) binds an expression exp to tracematch variable
v when the symbol matches, which allows the programmer
to bind context information to a variable that is not acces-

1 tracematch(Iterator i) {
2 sym hasNext before:
3 call(∗ java. util . Iterator+.hasNext()) && target(i);
4 sym next before:
5 call(∗ java. util . Iterator+.next()) && target(i);
6

7 next next { System.err.println(”Trouble with ”+i); } }

q0start q1 q2
next next

Figure 3: HasNext tracematch and automaton: do not call
next() twice without an intervening call to hasNext().

sible via this, target or args. The let pointcut is only
available in the AspectBench Compiler.

Symbols may bind variables; line 1 of the tracematch de-
clares that symbols in the HasNext tracematch may bind an
Iterator i. Lines 2–5 define symbols hasNext and next,
which capture calls to the hasNext() and next() methods
of i. These two symbols establish the alphabet for the trace-
match’s regular expression “next next” at line 7. Any oc-
currence of the hasNext symbol on a iterator i discards par-
tial matches for i. Line 7 also holds the body of code to
be executed every time the regular expression matches. In
this work, we focus on verification tracematches, which typi-
cally encode API usage rules. Our tracematch bodies report
errors, but could instead contain error-recovery code.

In the following we distinguish the concrete program trace,
which consists of all AspectJ joinpoints (including method
calls, field assignments and the execution of exception han-
dlers), from the abstract event sequence, as seen by trace-
matches. The abstract sequence consists only of symbol
names and, as we will see later, variable bindings. This se-
quence therefore abstracts from AspectJ’s concrete joinpoint
model. The tracematch runtime matches the regular expres-
sion against each suffix of this abstract (symbol-based) ex-
ecution trace. For instance, symbols map the concrete call
sequence

hasNext() next() next() next()

to an event sequence

hasNext next next next,

which the regular expression matches twice, executing the
body at the second and third next events.

One feature of tracematches is that matches require con-
sistent variable bindings. Our example therefore would only
match if two calls to next occur on the same iterator. Hence,
with iterators i1 and i2, the call sequence we considered
earlier could actually be

i1.hasNext() i2.next() i1.next() i2.next(),

giving an abstract event sequence of

hasNext(i=i1) next(i=i2) next(i=i1) next(i=i2).

Conceptually, tracematches project the event sequence onto
distinct sub-sequences separated by variable bindings. Our
example sequence contains two projections: (1) “hasNext
next” for i=i1, and (2) “next next” for i=i2. Projection
(1) is not matched, but projection (2) is, and the runtime
would execute the tracematch body only once, at the last
call to next(), with the binding i=i2.



Tracematch implementation.
In our approach, the programmer expresses verification

properties using tracematches, and then feeds the trace-
matches and the program under test to the AspectBench
Compiler [3] (abc). abc first creates an automaton from each
tracematch’s regular expression. Figure 3 presents the au-
tomaton for HasNext below the tracematch definition. abc

then identifies instrumentation points, or shadows [15], as
described by the tracematch’s symbols. At each shadow,
the compiler adds code to update the tracematch state in
response to program events. Figure 2 includes shadows as
comments. In line with their symbol declarations, shadows
may bind tracematch variables.

Since different tracematch symbols may bind different sub-
sets of tracematch variables, heap objects may simultane-
ously be in many automaton states, and the runtime must
store mappings from variable bindings to states. It does
so by attaching a constraint to each automaton state [2].
Constraints are logical formulae which can be evaluated to
determine whether a given variable-to-object binding holds
in the given state.

The runtime system initially associates true (tt) with the
initial automaton state and false (ff) with all other states,
since all objects start at the initial automaton state. The
constraint at the initial state always remains tt because
tracematches may start a match anytime. For the HasNext

automaton, the initial configuration is (tt, ff , ff).

(tt, ff , ff)(A)
(tt, i = o(i2), ff) (C)

(tt, ff , ff)(B)

(tt, i = o(i2), ff)(C)

line 11: hasNext(i1)

line 13: next(i2)
<wrap around loop>

Figure 4: Effect of print on HasNext automaton.

As the program executes, the runtime updates constraints
as events occur. Figure 4 shows the evaluation of the Has-

Next automaton at the start of the print method from Fig-
ure 2 with initial configuration (tt, ff , ff) (A). The hasNext

shadow at line 11 has no effect on this configuration, since
q0 has no hasNext transition and all other states contain ff
(B). At line 13, the next shadow binds tracematch variable
i to the object stored in i2, denoted o(i2). The next tran-
sition from q0 to q1 in the automaton causes the following
update:

c′(q1) ≡ c(q1) ∨ ( c(q0) ∧ i = o(i2) )

≡ ff ∨ ( tt ∧ i = o(i2) )

≡ i = o(i2).

Here c(qi) denotes the original constraint at qi and c′(qi)
the constraint after executing line 13. The update results
in the configuration (tt, i = o(i2), ff) (C). Another call to
next() on the same iterator o(i2) would propagate i = o(i2)
to the final state q2, and the runtime would execute the
tracematch body. However, the example program contains
a loop, so control flow wraps around to line 11, again hit-
ting the first event hasNext(i=o(i1)). Because q1 has no
hasNext self-loop, object o(i1) cannot possibly be in q1 af-

1 pointcut collection update(Collection c):
2 ( call(∗ java. util . Collection+.add∗(..)) || ... ||
3 call(∗ java. util . Collection+.remove∗(..)) ) && target(c);
4

5 tracematch(Collection c, Iterator i) {
6 sym create after returning(i):
7 call(∗ java. util . Collection+.iterator ()) && target(c);
8 sym next before:
9 call(∗ java. util . Iterator+.next()) && target(i);

10 sym update after: collection update(c);
11

12 create next∗ update+ next { ... } }

q0start q1 q2 q3
create update

next

next

update

Figure 5: FailSafeIter tracematch and automaton: detect
updates to a Collection which is being iterated over.

ter this event, and we conjoin q1’s constraint with a nega-
tive binding i 6= o(i1). Since the incoming configuration is
(tt, i = o(i2), ff), and because o(i2) = o(i1), we get:

c′(q1) ≡ c(q1) ∧ i 6= o(i1) (1)

≡ i = o(i2) ∧ i 6= o(i1) (2)

≡ ff , (3)

which again yields the configuration (tt, ff , ff) (B). Observe
that this configuration, at line 13, has not changed from the
previous iteration.

Note that aliasing information is critical for any static
analysis that approximates the runtime configurations: in
the above example, any analysis must know that o(i2) =
o(i1) to conclude that the constraint updates inside the loop
have no effect (as in Equation (2)).

2.2 FailSafeIter example tracematch
Tracematches differ from previous approaches in that they

enable developers to bind multiple variables. Moreover, not
all symbols need to bind all variables; the only requirement
is that for each complete match and each tracematch vari-
able v there must be some matched symbol that binds v.
We demonstrate this feature with the FailSafeIter trace-
match in Figure 5. This tracematch reports cases where the
program modifies a Collection c while an Iterator i is
active on c. The figure also shows the corresponding au-
tomaton. Note that traditional typestate [19] approaches
cannot bind multiple variables and therefore cannot directly
describe or verify such properties.

3. STATICALLY DETECTING FALSE
POSITIVES

We now move to our static analysis. We first situate the
static analysis in the context of the compilation process for
tracematches and then explain our static abstraction.

3.1 Weaving process
We have implemented our analysis using the AspectBench

Compiler (abc) [3]. Figure 1 presents selected compiler stages
and illustrates where our analysis fits in. First, the com-
piler reads the program under analysis and the tracematch



definitions, and weaves the tracematches into the program.
Next, we compute a call graph and points-to information for
the whole program, using Sridharan and Bodik’s context-
sensitive, demand-driven, refinement-based points-to analy-
sis [18]. We query the points-to analysis once for every pro-
gram variable that assigns a value to a tracematch variable
(at a shadow). The points-to analysis returns a points-to
set for the variable (at this shadow), possibly annotated with
context information. Context information distinguishes mul-
tiple heap objects which are allocated at the same allocation
site, as is the case for iterators. In some rare cases, e.g. when
an object is referenced by a static field, context information
cannot be constructed. In other cases, e.g. when a pro-
gram involves complicated forms of dynamic class loading,
the context may take a long time to compute. We used
the points-to analysis’s default settings, traversing at most
75,000 nodes per query, divided amongst 10 iterations (see
[18] for an explanation of the points-to analysis). Should
the analysis exceed its quota, it simply returns a points-to
set without context information, which is potentially less
precise than a points-to set with context information.

We use the points-to information to apply a simple flow-
insensitive checker [7]. For instance, consider the HasNext

tracematch, together with a program that only calls has-

Next on some iterator i (in particular, it never calls next

on i). Clearly, HasNext can never reach the final state for
i. The flow-insensitive checker identifies and removes “or-
phan” shadows that do not contribute to a potential match
because the objects at those shadows lack critical shadows—
those required to reach a final state.

At this point, if any shadows remain, we are left with a
program where the remaining shadows all potentially con-
tribute to triggering the tracematch on at least one object.
However, there are typically still too many shadows to re-
port to the user, since the flow-insensitive analysis is quite
coarse. This paper proposes the use of flow-sensitive infor-
mation to rule out further false positives (top of Figure 1).

We rule out shadows on a per-method, per-tracematch
basis, first computing flow-sensitive alias information, then
detecting and removing all “unnecessary” shadows based on
the flow-sensitive information. Unnecessary shadows only
affect objects that never reach a final state, or are subsumed
by other shadows. Ruling out one shadow might reveal that
shadows in other methods are unnecessary. Therefore, in
principle, iterating the analysis might help, as the loop in
Figure 1 suggests. However, in practice, we have found it
sufficient to just re-run the flow-insensitive checker [7].

Finally, we re-weave the program with an optimized ver-
sion of the original runtime monitor. This monitor only pro-
cesses shadows that have not been ruled out by the static
analyses. At the same time, we emit a list of all shadows
remaining in the program. In Section 4, we will explain how
to extract potential points of failure from this list, and how
we can successfully classify these program points, so that de-
velopers can more easily find program points that are likely
to actually cause the tracematch body to execute.

3.2 Static analysis algorithm
Our flow-sensitive static analysis algorithm processes one

method at a time. For each pair of method m and trace-
match tm we apply two static analyses:

1. an intraprocedural flow-sensitive abstract interpreta-
tion of tm’s runtime configuration (3.2.1 to 3.2.4); and

2. an interprocedural flow-insensitive analysis which ana-
lyzes each final automaton configuration separately for
effects caused by other methods (3.2.5).

The first (intraprocedural) analysis determines what ef-
fect a method m could have on configurations that reach m.
The analysis computes, for each of m’s statements, all pos-
sible automaton configurations at that statement. If one of
m’s statements is associated with a configuration that has
reached a final automaton state, we know that all shadows
that generated this configuration need to be kept alive.

All other shadows are candidates for removal. However, to
ensure completeness, we still need to take the continuation
of the control flow after executing m into account: even
if m itself did not drive the tracematch automaton into a
final state, m could have generated (or discarded) a partial
match which is then completed (or prevented from being
completed) in the continuation of the execution. The second
analysis models this continuation of control flow.

3.2.1 Intraprocedural worklist algorithm
At the heart of the intraprocedural flow-sensitive analysis

lies a standard worklist algorithm for computing configura-
tions at statements, Algorithm 1.

Algorithm 1 Algorithm for computing configurations

1: let initial be the set of initial configurations
2: let tm be the tracematch to analyze
3: wl := ∅ // empty set
4: computed := ∅ // empty mapping
5: let head be the current method’s entry statement
6: for initial configuration c in initial do
7: wl := wl ∪ { (head , c) }
8: end for
9: while wl non-empty do

10: pop element (stmt , c) from wl

11: cs ′ :=
[

shadow s
at stmt

transition(c, s, tm)

12: for c′ ∈ cs ′ do
13: if c′ 6∈ computed(s) then
14: computed(s) := computed(s) ∪ { c′ }
15: for stmt ′ ∈ successors(stmt) do
16: wl := wl ∪ { (stmt ′, c′) }
17: end for
18: end if
19: end for
20: end while

At runtime, a method’s initial configuration is the con-
figuration that gets computed by the previously executing
part of the program run. At compile time, however, we do
not know this configuration because our analysis is intra-
procedural—we do not know which partial matches may
reach any method’s entry point. However, because our equa-
tions update each state independently, it is sufficient to start
with a set of configurations where each configuration sets a
different non-initial, non-final state to tt; this accounts for
all possible configurations that may reach a method’s entry.
For a four-state automaton, where the first state is initial
and the last state is final, we use these initial configurations:

{(tt, ff , ff , ff), (tt, tt, ff , ff), (tt, ff , tt, ff)}.



The algorithm then initializes the worklist with a set of
jobs, where each job associates a possible initial configu-
ration with the entry statement of the control flow graph.
The algorithm further propagates these jobs, computing new
configurations by calling the function transition for every
shadow at statement stmt . In our examples there is only
at most one shadow per statement; however, in general,
there can be multiple shadows, as multiple AspectJ point-
cuts may match overlapping sets of statements. Whenever
Algorithm 1 computes a configuration c′ at a statement, and
c′ has not previously been computed at this statement, the
algorithm creates new jobs associating c′ with each successor
statement in the control flow graph.

Algorithm 2 Algorithm transition

1: let p := (ff , . . . , ff) // empty configuration
2: let n be a copy of the current configuration c
3: let l := label(s) be the label of the current shadow s
4: for edge (qs, l, qt) in automaton of tm do
5: p(qt) := p(qt) ∨ (c(qs) ∧ bind(s)) // positive update
6: end for
7: for non-initial, non-final state q in automaton of tm do
8: if ¬∃ loop (q, l, q) in automaton of tm then
9: n(qt) := n(qt) ∧ ¬bind(s) // negative update

10: end if
11: end for
12: return (p ∨ n) //state-wise disjunction

Algorithm 2 describes the function transition, which is
the analogue of the runtime update rules for tracematches.
We have underlined the crucial calculations. The algorithm
computes a successor configuration for c in two steps. First,
we propagate disjuncts along automaton edges using the
positive update rule (line 5). We obtain the new constraint
p(qt) at the target state qt by disjoining its old value with
the constraint of the source state qs, refined with the vari-
able binding bind(s) of the current shadow. Second, we take
care of “missing loops”. If the tracematch automaton reads
a shadow s of symbol l and on a state q there is no l-loop,
then every binding that is compatible with the binding of s
has to leave state q; we implement removals via the negative
update rule (line 9). We return the state-wise disjunction of
all bindings p that were propagated and all bindings n that
remain at their current state q due to self-loops on q.

3.2.2 Abstraction using object representatives
The crucial difference between Algorithm 2 and the run-

time treatment arises when computing the underlined posi-
tive and negative update rules in Algorithm 2. At runtime,
a conjunction x = o1∧x 6= o1 is a contradiction and reduces
to ff . At compile time, to prevent spurious matches which
could reach the final automaton state (false positives), we
would also like to deduce ff whenever possible. However, at
compile time, we have no access to runtime objects, which
make it more difficult to find contradictions.

We therefore approximate runtime objects with object rep-
resentatives [8]. Object representatives are static represen-
tatives of heap objects, which we compute from a combi-
nation of (1) the flow-insensitive context-sensitive whole-
program points-to analysis (which we re-use from previous
stages), (2) a flow-sensitive intraprocedural must-not-alias
analysis, and (3) a flow-sensitive intraprocedural must-alias
analysis. Points-to and must-not-alias information allows us

r1 ≈ r2 May-alias
r1 = r2 Must-alias
r1 6= r2 Must-not-alias

Figure 6: Aliasing relations between object representatives
r1 and r2.

to determine that two object representatives r1 and r2 can-
not possibly represent the same runtime object. We denote
this relationship by r1 6= r2. Furthermore, we say that two
object representatives are equal, and write r1 = r2, if the
representatives are must-aliased; that is, the representatives
must represent the same runtime object. Finally, if two ob-
ject representatives are neither must-aliased nor must-not-
aliased, they are may-aliased, and we write r1 ≈ r2. Figure
6 summarizes object representative notation for easy refer-
ence. In the following, we will distinguish a runtime object
o(x) referenced by variable x from the object representative
r(x) that we use to model this object at compile time.

Precise information about the aliasing relationship be-
tween object representatives is crucial to our approach. Re-
call the HasNext tracematch from Section 2, and consider
configuration (tt, ff , ff) at the start of the print method
from Figure 2. This is exactly the same situation as in Fig-
ure 4, but we now consider the compile-time abstraction.
Because object representatives closely model runtime ob-
jects, states propagate exactly like at runtime, except that
we bind object representatives (i = r(i2)) instead of ob-
jects (i = o(i2)). Consider the edge from (C) to (B). At
runtime we regain the configuration (tt, ff , ff) because o(i1)
and o(i2) are the same object. At compile time, we use our
must-alias analysis to decide that r(i1) = r(i2). Object
representatives therefore enable us to compute, at compile
time, the same configurations as at runtime (Figure 4).

(tt, tt, ff)(A)

(tt, i 6= r(i1), ff)(B)

(tt, tt, ff)(C)

(tt, tt, ff) (C)

line 11: hasNext(i1)

line 13: next(i2)
<wrap around loop>

Figure 7: Effect of print on HasNext automaton.

Figure 7 shows the situation for the second initial config-
uration that we propagate, (tt, tt, ff). This configuration
“loops” just like the configuration in Figure 4: the must-
alias analysis gives r(i1) = r(i2), so at line 13 we compute
c′(q1) ≡ i 6= r(i1) ∨ i = r(i2) ≡ tt. Because the print

method can never reach the final state regardless of the ini-
tial configurations, we can conclude that print can never
trigger the tracematch.

Table 1 summarizes the rules that we can use in the pres-
ence of aliasing information. With seven of these rules, alias-
ing information enables us to deduce that certain constraints
are redundant or contradictory and therefore that the shad-
ows that generated these constraints cannot contribute to
reaching a final state. The rule shown in gray does not ben-
efit from this information. When we conjoin two negative



r1 6= r2 x = r1 x 6= r1

x = r2 ff x = r2
x 6= r2 x = r1 x 6= r1 ∧ x 6= r2

(a) Resulting disjuncts when r1 and r2 must-not-alias

r1 = r2 x = r1 x 6= r1

x = r2 x = r1 ≡ x = r2 ff
x 6= r2 ff x 6= r1 ≡ x 6= r2

(b) Resulting disjuncts when r1 and r2 must-alias

Table 1: Analysis-aware reduction rules.

(tt, ff , tt, ff)(A)

(tt, c = r(c3) ∧ i = r(i1), c 6= r(c3) ∨ i 6= r(i1), ff)(B)

(. . . , c 6= r(c3) ∧ i = r(i2))(C)

line 12: create(c3,i1)

line 13: next(i2)

Figure 8: Effect of print on FailSafeIter automaton.

bindings for potentially different values, we must store both
negative bindings (as is the case at runtime).

3.2.3 Unique-shadow analyses and rules
During the course of our experiments we found that two

additional rules enabled us to avoid spurious false positives
in the presence of multiple bound variables. Consider again
the print method from Figure 2, but instead with the Fail-
SafeIter tracematch from Figure 5. The print method
contains a create shadow binding both c3 and i1 at line 10
and a next shadow binding i2 at line 13. Assume that we
start the static analysis with (tt, ff , tt, ff) (A) as shown in
Figure 8. The create shadow would give the configuration
(B) after line 12. Because of the next edge from q2 to q3

(Figure 5), the next shadow at line 13 would then update
the configuration ff at the final state q3 to

( c 6= r(c3) ∧ i = r(i2) ) ∨ ( i 6= r(i1) ∧ i = r(i2) ).

Must-alias information discards the second disjunct, yielding

(C)|q3 : c 6= r(c3) ∧ i = r(i2)

which means that the next shadow might trigger the fi-
nal state q3 on some collection (but not r(c3)) and iterator
r(i2). Now, we as programmers know that r(i2) can only
be associated with the collection r(c3): each Iterator ob-
ject binds to exactly one Collection object. However, the
analysis seen so far has no way to infer that

i = r(i2)⇒ c = r(c3). (4)

Inferring this equation would allow us to reduce (C)|q3 to ff ,
proving that print never violates the FailSafeIter prop-
erty. A key insight is that equation (4) holds if we can es-
tablish that all shadows in the program that bind i to r(i2)
must also bind c to r(c3) (if they bind c at all). If this holds,
then (C)|q3 = ff , which guarantees that the print method
never violates the tracematch.

Algorithm 3 presents the generic approach, the “unique-
ness check”. We apply this check whenever computing con-

Algorithm 3 Algorithm contradictsUniqueBinding

1: let x = r(v) be the incoming binding, bind(s).
2: bindLab := ∅
3: for edge (qs, l, qt) in the automaton of tm do
4: if x may be unbound at qs and l binds x then
5: bindLab := bindLab ∪ { l }
6: end if
7: end for
8: bindShadows := {s | s shadow, label(s) ∈ bindLab}
9: for positive binding y = r(w) in current disjunct do

10: if ∀s ∈ bindShadows . s may bind (x = r(v))
=⇒ s cannot bind (y = r(w)) then

11: return true
12: end if
13: end for
14: for negative binding y 6= r(w) in current disjunct do
15: if ∀s ∈ bindShadows . s may bind (x = r(v))

=⇒ s must bind (y = r(w)) then
16: return true
17: end if
18: end for
19: return false

junctions in the underlined update rules of Algorithm 2. As-
sume that the binding of the current shadow is bind(s) and
{x = r(v)} ⊆ bind(s). The check first determines the set
of all shadows in the entire program that may possibly bind
x. Next (lines 9-13), if there already exists a positive bind-
ing y = r(w) in the current disjunct, and for all shadows
binding x, we have x = r(v) =⇒ y 6= r(w), then this con-
tradicts the binding x = r(v)∧y = r(w), which we are trying
to generate. Therefore we return true, which will instruct
Algorithm 2 to reduce the conjunction to ff . Lines 14-19
perform the inverse check for an existing negative binding.
Note that this algorithm is interprocedural. Nevertheless,
the algorithm usually computes its result in a few millisec-
onds, due to its low complexity and the fact that all of its
inputs have previously been computed.

This concludes our discussion of constraint update rules.
Next we describe how we can actually eliminate shadows
based on the analysis results.

3.2.4 Tracking shadows with shadow histories
When the intraprocedural worklist algorithm terminates,

it leaves us with a set of possible configurations at each state-
ment. If any of these configurations has a constraint at a
final state that is different from ff , this means that this au-
tomaton configuration may have triggered the tracematch
body at runtime. We therefore need to keep all shadows
alive that may have lead to this configuration being gener-
ated. But how can we determine which shadows we must
keep alive? We chose to record shadow information on-the-
fly. Whenever Algorithm 2 performs a positive or negative
update for a shadow s, generating a new binding b (of the
form x = i or x 6= i) which cannot be avoided by any of the
reduction rules, we attach to b the information that b was
generated by s. We call this shadow information b’s shadow
history. If our analysis later eliminates b, e.g. due to one
of the reduction rules, we drop the corresponding entry in
the history as well. This is possible because our reduction
rules have implied that s was unnecessary. After the worklist
algorithm finishes, the necessary shadows are the shadows



in the history of all (positive and negative) bindings at all
final states of all configurations at every statement in the
method. The remaining shadows are unnecessary, at least
at an intraprocedural level, and can therefore in principle be
removed. However, to maintain completeness we must also
consider interprocedural control flow and data flow.

3.2.5 Conservative assumptions made for complete-
ness

The analysis algorithm which we presented above is in-
traprocedural, i.e. it only considers one method at a time.
To compute“complete”results for a method m, we must also
account for all program events which may occur:

1. before the execution of m,

2. within methods called by m,

3. after the execution of m.

We have already handled (1): since we initialize our ab-
straction with the set of all possible initial configurations,
with a different non-initial, non-final state set to tt each
time, we over-approximate all possible events before m.

We solve (2) as follows. We first determine whether m
calls only“harmless”methods—methods which cannot affect
m’s automaton state. Consider HasNext: if (a) m only uses
an iterator o(i1); (b) m calls m′, which only uses iterator
o(i2); and (c) r(i1) 6= r(i2), then we know that m′ cannot
jeopardize the completeness of the analysis results for m. To
determine harmlessness, we ask the flow-insensitive analysis
from [7] to enumerate all shadows that have bindings that
are compatible with the binding of any shadow in m. Next,
whenever Algorithm 1 processes a configuration c at a state-
ment stmt , and stmt may (transitively) call a method with
a compatible shadow, we “taint” c. Algorithm 1 then further
propagates taintedness: successor configurations of tainted
configurations are also tainted. Then, after Algorithm 1 fin-
ishes, we protect all shadows at any statement that holds
a tainted configuration from being removed. While this ap-
proximation is conservative, it is complete: we never remove
shadows based on possibly incomplete configurations.

Algorithm 4 handles all potential traces following m. In-
tuitively, it checks that m cannot leave the tracematch au-
tomaton in a configuration which may reach a final state in
some other method. Recall that the intraprocedural work-
list algorithm computes a set of possible configurations after
each statement. We form endConf, the set of all configura-
tions at each exit statement of m. For each configuration
c ∈endConf and each automaton state q, we determine the
labels haveLbls of all shadows in the rest of the program
that are compatible with any shadow in history(c(q)). (We
do not need to regard shadows in m itself because these
have already been handled by our selection of initial con-
figurations.) If there exists an automaton path from q to a
final state qF and all labels of this path are in haveLbls, i.e.
exist somewhere in the program, with compatible bindings,
we must retain all shadows in history(c(q)), as c(q) could po-
tentially reach qF . Note that this algorithm subsumes the
simple intraprocedural case: when q = qF , then such a path
exists trivially, namely the empty path.

Although the analysis for each method will always termi-
nate, and usually terminates within a second, some large
methods with complicated aliasing relationships may take
too long to analyze. We therefore allow programmers to

Algorithm 4 Algorithm completeContinuation

1: endConf = {c ∈ computed(stmt) | stmt exit node of m}
2: for c ∈ endConf do
3: for state q of the automaton of tm do
4: haveLbls = { l | ∃ shadow s . method(s) 6= m .

∃ sh ∈ history(c(q)) .
s compatible with sh ∧ l = label(s)}

5: if ∃ path p from q to final state qF ∧
∀(qs, l, qt) ∈ p . l ∈ haveLbls then

6: retain all shadows in history(c(q))
7: end if
8: end for
9: end for

abort the analysis after it processes a specified number, N , of
worklist jobs; the compiler then retains all of that method’s
shadows. For our experiments we chose N=3000. This N
aborts the analysis on only 12 of 1053 methods. Our analy-
sis would not have found an exact result for these methods
in any case, due to their complicated aliasing relationships.

The output of our analysis is a list of potential points of
failure, i.e. shadows that can immediately trigger a trace-
match body. For each such point we also report the point’s
“context shadows”, i.e. shadows that contribute to the par-
tial match which is subsequently completed by the point of
failure. For HasNext, each remaining next shadow would be
a potential point of failure, while next and hasNext shadows
on aliased iterators are context shadows.

For our concrete example in Figure 2, our analysis re-
moves all shadows for the HasNext tracematch, because the
intraprocedural analysis never reaches the final state (Fig-
ures 4 and 7), and there are no shadows in other meth-
ods (the continuation) that could drive partial matches to
a final state. For FailSafeIter, the analysis first removes
the shadow at line 5 in main because it is subsumed by the
shadow at line 3. Then the analysis removes all shadows
in print. Our uniqueness check prevents the intraprocedu-
ral analysis from hitting the final state (Section 3.2.3). The
continuation only contains update-shadows, which cannot
drive any of the configurations at print’s exit statements to
a final state. When we then re-iterate the flow-insensitive
checker [7], it removes the orphan shadow at line 3 as well.

4. AUTOMATIC CLASSIFICATION
Although our static analysis removes many false posi-

tives, factors like dynamic class loading and interprocedu-
ral data flow can still lead to imprecise analysis results; on
our benchmark set, we still report 461 points of potential
interest. To help the developer focus on the most important
points first, we modified our analysis to report the approx-
imations it made in each particular case—that is, why it
reported each positive—and used this information as a fea-
ture vector for a machine learning algorithm. We then in-
spected all 461 program points by hand and marked actual
matches, giving us training data. Some actual matches only
occurred due to delegation, for instance at an (unchecked)
call inner.next() within wrapper.next(). Such calls are
uninteresting for error detection because clients use inner

correctly whenever they use wrapper correctly. We there-
fore marked such matches as false positives. We also ran
the respective benchmarks with monitoring instrumentation



to validate the results gained by manual inspection. Inter-
estingly, most matches we had identified manually were not
exercised by the benchmark harness. We then used the Weka
machine learning toolkit [21] to create decision trees which
would distinguish false positives from true positives. We
will present a detailed discussion of our methodology and
the results of our machine learning approach in Section 5.

5. EXPERIMENTS
We evaluated the effectiveness of our analysis and classifi-

cation algorithm using the 99 combinations of nine trace-
matches with the ten benchmarks of the current version
2006-10-MR2 of the DaCapo benchmark suite [5] and with
SciMark2 [17]. SciMark2 uses stopwatches to collect execu-
tion times and we applied four additional tracematches to
validate the correct use of these stopwatches. Altogether
this leads to a total of 103 tested tracematch/benchmark
combinations. Table 2 briefly describes our tracematches.

For many of the 103 benchmark/tracematch combinations,
the flow-insensitive analysis from previous work [7] detected
that the tracematch never triggers. However, 38 combina-
tions have remaining potential points of failure. We applied
our flow-sensitive analysis and classification to these cases.

Potential and actual points of failure.
Columns two and three of Table 3 present the number of

potential points of failure remaining after the flow-insensitive
analysis (fi) [7] and the new flow-sensitive analysis presented
in this paper (fs). Note that we are able to rule out all po-
tential points of failure in 19 of the 38 cases. On average,
the flow-sensitive stage removed 58% of all potential points
of failure, or 75% of false positives. Column four shows
the number of actual points of failure, as identified through
manual inspection. For benchmarks with many remaining
potential points of failure, we assist the programmer through
our machine-learning-based filtering and ranking.

Filtering and ranking using decision trees.
We extended our static analysis to attach up to seven fea-

tures to each potential point of failure. A feature is present
at a point of failure if the static analysis encounters the fea-
ture on the point of failure itself or on a “context shadow”
(see end of Section 3). Although our feature vectors contain
seven features, the decision tree Weka generated only uses
four of these features to classify points of failure. ABORTED

means that the intraprocedural analysis was aborted after
3000 worklist iterations (see end of Section 3). CALL means
that the static analysis retained a shadow due to tainting
at unsafe method calls (Section 3.2.5). DELEGATE identifies
shadows at delegating calls (Section 4). NO_CONTEXT means
that one of the shadows holds points-to sets without con-
text information—that is, the demand-driven analysis failed
to find context information in its time budget. For our data
set, Weka computes the decision tree shown in Figure 9.

The tree tells us that it is best to classify a potential
point of failure as FALSE_POSITIVE if any of CALL, ABORTED,
DELEGATE or NO_CONTEXT are attached.

Weka evaluates its classifiers with 10-fold stratified cross-
validation to ensure that the classifiers do not over-fit the
data. Cross-validation is a statistical technique that allows
the estimation of error without distinct training and testing
sets. Cross-validation estimates the error by using a subset
of a data set as training data and then applying the trained

benchmark-tracematch PPF fi PPF fs APF filtered

antlr-HasNextElem 11
antlr-Reader 5
bloat-FailSafeIter 282 245
bloat-HasNext 308 82 1 1
bloat-Writer 26
chart-FailSafeIter 41 23
chart-HasNext 41
eclipse-ASyncIterC 3
eclipse-ASyncIterM 5
eclipse-FailSafeEnum 5 2
eclipse-FailSafeIter 3 1
eclipse-HasNextElem 17 7 5 6 (+1)
eclipse-HasNext 4 1 1 1
eclipse-LeakingSync 1 1
eclipse-Reader 2 1
fop-FailSafeEnum 2 1
fop-FailSafeIter 1
fop-HasNextElem 4
fop-HasNext 2
jython-FailSafeEnum 1 1
jython-FailSafeIter 12 8
jython-HasNextElem 21 12
jython-HasNext 12 2
jython-Reader 2 1 1 0 (-1)
lucene-FailSafeEnum 3
lucene-FailSafeIter 17
lucene-HasNextElem 7
lucene-HasNext 17
pmd-FailSafeEnum 2
pmd-FailSafeIter 104 63
pmd-HasNextElem 3
pmd-HasNext 119 6 4 3 (-1)
pmd-Reader 5
xalan-HasNextElem 1
scimark-ResetRead 2 2
scimark-StartResume 1
scimark-StartStart 2 2
scimark-StopStop 2

sum 1096 461 12 11

Table 3: Potential points of failure (PPF) after flow-
insensitive analysis (fi, [7]) and flow-sensitive analysis (fs,
this paper); actual points of failure (APF); PPF remaining
after filtering (filtered), false positives/negatives in brackets

model to the remainder of the data set. Ten-fold stratified
cross-validation is a cross-validation technique that has been
proven statistically stable [13].

Under cross-validation, 458 of the 461 instances are cor-
rectly classified, while three of the instances are misclassified
(one false positive and two missed true positives). In these
cases, our feature vectors do not contain enough information
to deduce the correct answer. The last column of Table 3
shows the number of filtered points of failure. Note that we
manage to filter out all 449 false positives for benchmarks
that have no actual points of failure.

The most striking feature of the decision tree is the fact
that CALL almost always indicates a false positive. Hence our
tracematch properties are almost always violated intrapro-
cedurally; our test data only contains one interprocedural
violation. The reason is that, in our benchmarks, most
actual violations occur on the HasNext and HasNextElem
tracematches, which bind iterators and enumerations, which
hardly ever leak out of their defining method. We believe
that it might be useful to train the machine learning algo-
rithm for each tracematch separately, but leave this question
to future work, as it would require yet more benchmarks.



ASyncIterC only iterate a synchronized collection c when owning a lock on c
ASyncIterM only iterate a synchronized map m when owning a lock on m
FailSafeEnum do not update a vector while iterating over it
FailSafeIter do not update a collection while iterating over it
HasNextElem always call hasNextElem before calling nextElement on an Enumeration
HasNext always call hasNext before calling next on an Iterator
LeakingSync only access a synchronized collection using its synchronized wrapper
Reader do not use a Reader after its InputStream was closed
Writer do not use a Writer after its OutputStream was closed
ResetRead on a stopwatch, do not call reset followed by read without calling start in between
StartResume on a stopwatch, do not call start followed by resume without calling stop in between
StartStart on a stopwatch, do not call start twice without calling stop in between
StopStop on a stopwatch, do not call stop twice without calling start or resume in between

Table 2: The generic and domain specific tracematch patterns we used

CALL = 0
| ABORTED = 0
| | DELEGATE = 0
| | | NO_CONTEXT = 0: TRUE_POSITIVE (11.0/1.0)
| | | NO_CONTEXT = 1: FALSE_POSITIVE (4.0/1.0)
| | DELEGATE = 1: FALSE_POSITIVE (10.0)
| ABORTED = 1: FALSE_POSITIVE (30.0)
CALL = 1: FALSE_POSITIVE (406.0/1.0)

Figure 9: Decision tree computed by Weka

benchmark-tracematch PPF un-filtered APF ranks

bloat-HasNext 82 1
eclipse-HasNextElem 7 1,2,3,4,6
eclipse-HasNext 1 1
jython-Reader 1 1
pmd-HasNext 6 1,2,3,4

Table 4: PPF un-filtered; ranks of APF in list of PPFs

When we present the un-filtered list to the user, we rank
it such that potential points of failure that have fewer of the
four negative features attached than others appear further
up the list. The last column of Table 4 shows the ranks that
we assign to actual points of failure. As the results show,
actual points of failure are ranked close to the top. Very
compelling is bloat-HasNext: without filtering, its actual
point of failure ranks on place 1 of 82, with filtering enabled,
it is the only reported point of failure—a perfect match.

Generally, we propose the following work flow: the devel-
oper runs our static analysis on a program; if there remain
a small number of potential points of failure, then the devel-
oper can verify each of these points manually and get a com-
plete analysis result. However, if there remain many points,
then the developer can inspect just the top or filtered results
and let runtime monitoring handle the remaining cases.

Suspicious code and defects.
Using our filtered results we identified the following de-

fects and pieces of suspicious code in our benchmarks by
manually inspecting the program code. In pmd-HasNext
a method passes an iterator i to another method. The
callee method then extracts i’s first element without further
checks. While this is not an actual bug, the undocumented
precondition (that i has a next element) on the callee might
cause problems for long-term software maintenance. Inter-
estingly, PMD’s developers fixed the method in a later ver-
sion of PMD by using Java5’s for-each loops, which avoid
the explicit use of iterators. The actual point of failure in
jython-Reader indicates an actual defect. The code may
close Reader objects and then read from them. The devel-

opers “cured” this defect by returning null from the method
that reads from the Reader, in case of an IOException. bloat
extracts two elements from a collection without any checks,
leading to an actual match in the bloat-HasNext benchmark.

Analysis times.
We ran our analyses on IBM’s J9 VM (build 2.3, J2RE

1.5.0 IBM J9 2.3 Linux amd64-64), with 3GB of maximal
heap space on a machine with a AMD Athlon 64 X2 Dual
Core Processor 3800+ running Ubuntu 7.10 with kernel ver-
sion 2.6.22-14. We found out that on average only 4% of
the total compilation and analysis time was spent in our
novel flow-sensitive analysis. On average, 50% of the time
was spent on computing points-to sets. The remaining 46%
were spent on normal compiler passes. An average total
compilation, including all analyses, took 6 minutes. By far
the worst case was bloat-FailSafeIter, where we had to ap-
ply the flow-sensitive analysis to 240 methods, significantly
more than the average of 18 methods. This resulted in a
total runtime of eight minutes and 17 seconds for the flow-
sensitive stage, or 40% of this benchmark’s total compilation
time of 20:51. Algorithm 1 processed 1.3 jobs per statement
and loop on average, with a variance of 0.63.

The version of the AspectBench Compiler that we used is
available as revision 4790 in the compiler’s Subversion repos-
itory and integrated into abc release 1.3.0. We uploaded all
benchmarks, tracematches and raw data to:

http://www.aspectbench.org/benchmarks

6. RELATED WORK
We compare our work to software for anomaly detection,

to typestate-based approaches and PQL, to another recent
static analysis for tracematches, as well as a shape analysis
and the restrict pointer annotation.

Java Anomaly Detector (JADET).
Wasylkowski, Zeller and Lindig propose the Java Anomaly

Detector (JADET) for detecting object usage anomalies in
programs [20]. JADET first generates common usage pat-
terns from the program, considering control flow, one object
at a time. The tool lists uncommon usages contradicting
the pattern, ranked by confidence. The authors show that
seven uncommon usages in their benchmarks are actual de-
fects. While useful, JADET’s analysis is not complete.

JADET’s mining phase makes the tool fully automated.
Tracematches require specifications, but can validate more
complicated usage patterns, namely patterns involving mul-
tiple objects like FailSafeIter. Furthermore, regular ex-



pressions are more expressive than JADET’s pattern lan-
guage, which only allows relationships of the form “event e
may precede event f ”. Extending JADET to tracematch-like
patterns would be an interesting project.

Typestate.
Typestate properties [19] have been enjoying renewed in-

terest. Typestate describes the state of heap objects but, as
in JADET, one at a time. Because of this restriction, type-
state is less general than tracematches. All of the following
approaches are complete, i.e. never miss true positives.

DeLine and Fähndrich [9] check typestate specifications
statically, in the presence of aliasing. The authors imple-
mented their approach in the Fugue tool for specifying and
checking typestates in .NET-based programs.

Fink et al. present a static analysis for runtime checking of
typestate properties [11]. Their approach, like ours, uses a
staged analysis which starts with a flow-insensitive pointer-
based analysis, followed by flow-sensitive checkers. Their
analyses all rely on the fact that typestate specifies proper-
ties of a single object at a time. Like us, Fink et al. aim
to verify properties fully statically. However, our approach
enables the use of specialized instrumentation and recovery
code, while their approach emits a compile-time warning.
Also, tracematches let developers specify the properties to
be verified, while Fink et al. do not say how developers might
specify their properties.

Bierhoff and Aldrich [4] recently presented an intrapro-
cedural approach which enables the checking of typestate
properties in the presence of aliasing. Their system propa-
gates access permissions with references, which permits rea-
soning about the scope of the program that has access to
any given reference. The authors use reference counters to
reclaim permissions and enhance precision. Their abstrac-
tion is based on linear logic, and it can relate the states of
one object (e.g. an iterator) with the state of another object
(e.g. a collection) using access permissions, but only if that
object is stored in a field. In our approach, objects do not
have to be related in the heap. A key difference between
their approach and ours is that they require annotations de-
scribing access permissions at method boundaries, while we
have found that worst-case assumptions coupled with side-
effect information are surprisingly powerful.

Dwyer and Purandare use existing typestate analyses to
specialize runtime monitors [10]. Their work identifies safe
regions in the code using an out-of-the-box typestate analy-
sis. Safe regions can be methods, single statements or com-
pound statements (e.g. loops). A region is safe if its de-
terministic transition function does not drive the typestate
automaton into a final state. They then summarize the ef-
fect of a region and update the typestate with the region’s
effects all at once. Our static analysis does not attempt
to determine regions; we instead decide if each method is
safe, independently, and combine this information with an
approximation of the effect of the rest of the program. Our
static analysis enables the compiler to estimate the points at
which a program may violate the safety property described
in a tracematch.

Extended typestate analysis for tracematches.
Naeem and Lhoták recently proposed an entirely differ-

ent approach to evaluating tracematches ahead-of-time [16].
Our design decision was to re-use our fast flow-insensitive

analysis from earlier work [7] and add must-alias information
and local flow-sensitivity for relatively little compile-time
cost. Naeem and Lhoták instead designed a new context-
sensitive flow-sensitive whole-program analysis from scratch.
Their approach is potentially more precise because they can
track must-alias information across procedure boundaries,
and because their call-graph is flow-sensitive. However, since
they do not use global points-to analysis, they also flag some
false positives that our approach avoids. It would be an in-
teresting piece of future work to see how one can combine the
best aspects of both approaches to gain maximal precision
at minimal cost.

Program Query Language.
The Program Query Language [14] resembles tracematches

in that it enables developers to specify properties of Java
programs, where each property may bind free variables to
runtime heap objects. PQL supports a richer specification
language than tracematches: it uses stack automata rather
than finite state machines. PQL proposes a flow-insensitive
approach (like [7]); no flow-insensitive analysis can remove
the shadows that interest us here.

Shape analysis and pointer analysis.
Hackett and Rugina propose a region-based shape analy-

sis that uses tracked locations [12]. A tracked location is an
abstract configuration that characterizes the state of a single
heap location. The authors’ approach is similar to ours in
that it consists of two layers: (1) a region abstraction that
encapsulates whole-program points-to information, and (2)
a shape abstraction that encapsulates local knowledge about
a single location’s shape in an individual configuration. The
analysis propagates configurations through the whole pro-
gram, gaining precision through additional context informa-
tion, and querying the global heap abstraction during this
process. This interprocedural approach is possible in their
analysis because it determines the shape of each single heap
location individually. The authors’ abstract configurations
therefore each encode knowledge about a location, which
does not depend on the configurations of other locations.
Tracematches with multiple variables, however, track states
for multiple objects simultaneously; it is therefore not feasi-
ble to track the state of each object independently, which led
to our use of constraints. Another difference is that Hackett
and Rugina’s region abstraction contains may-alias infor-
mation only. The authors store must-alias information in
the shape abstraction. We instead encapsulate both may-
alias and must-alias information inside object representa-
tives. This decouples pointer analysis from the abstraction,
allowing each to evolve separately.

Aiken et al. propose the program annotation restrict [1].
Programmers can augment a statement s with an annota-
tion restrict p = v {s} to denote that s only accesses the
object referenced by pointer p directly through the name p,
not through aliases. Such annotations allow program anal-
yses to perform strong updates on the restricted pointer p

even without global knowledge. As the authors show, the
necessary program annotations can often be inferred. In our
work we used object representatives to model aliasing rela-
tionships. We can perform strong updates because object
representatives provide must-alias queries and because we
use a side-effects analysis (Section 3.2.5) to decide whether
pointers are restricted in the above sense.



7. CONCLUSIONS & FUTURE WORK
Analyzing tracematches ahead-of-time is clearly a non-

trivial problem. Because tracematches can refer to multiple
objects and at various places in the program, one might ex-
pect that an interprocedural flow-sensitive analysis would
be required. We were surprised to find that combining in-
expensive whole-program summary information with a suite
of carefully-designed intraprocedural flow-sensitive analyses
was successful for the majority of our benchmarks. Our
ranking and filtering approach helped greatly in distinguish-
ing actual points of failure from remaining false positives.
As an alternative to inspecting all remaining 461 remaining
potential points of failure, our machine learning algorithm
identified almost exactly the program points of interest. It
was equally straightforward to instruct our verification tool
to instrument the program under test with an optimized run-
time monitor to guard unlikely points of failure. We believe
that this combined approach will greatly support program-
mers in finding erroneous uses of application interfaces in
their programs. We further believe that machine learning
approaches like ours can be generally useful for weeding out
false positives caused by overly conservative approximations.

This work poses some interesting research questions that
we wish to address in the near future. We are currently
conducting a case study that aims to identify which kinds
of specification patterns naturally exist in application inter-
faces of some well-known open-source projects. We plan to
express these patterns using tracematches, which should give
us insight into the usefulness of tracematches as a property
specification language, and should furthermore significantly
enlarge our database of tracematches.

Furthermore, we are extracting the essence of the analysis
algorithms presented here, to determine how well these algo-
rithms can be applied to other specification languages. Our
flow-insensitive checkers from earlier work [7] apply directly
to other languages [6]. To generalize the results of this pa-
per, we would need to adapt the abstract automaton config-
urations to the concrete runtime model used to evaluate the
specification language in question. Other specification lan-
guages might need alternatives to constraints—either more
or less sophisticated abstractions.

Finally, we will investigate how to present our analysis
results to the user. We anticipate that connecting our anal-
ysis to an integrated development environment will enable
developers to quickly visualize potential points of failure.
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