
Collaborative runtime veri�
ation withtra
emat
hesEri
 Bodden1, Laurie Hendren1, Patri
k Lam1, Ond°ej Lhoták2, Nomair A. Naeem2

1 M
Gill University, Montréal, Québe
, Canada
2 University of Waterloo, Waterloo, Ontario, CanadaAbstra
t. Perfe
t pre-deployment test 
overage is notoriously di�
ult toa
hieve for large appli
ations. With enough end users, many more test 
aseswill be en
ountered during an appli
ation's deployment than during testing.The use of runtime veri�
ation after deployment would enable developers todete
t and report on unexpe
ted situations. Unfortunately, the prohibitiveperforman
e 
ost of runtime monitors prevents their use in deployed 
ode.In this work we study the feasibility of 
ollaborative runtime veri�
ation,a veri�
ation approa
h whi
h distributes the burden of runtime veri�
ationonto multiple users. Ea
h user exe
utes a partially instrumented programand therefore su�ers only a fra
tion of the instrumentation overhead.We fo
us on runtime veri�
ation using tra
emat
hes. Tra
emat
hes are aspe
i�
ation formalism that allows users to spe
ify runtime veri�
ation prop-erties via regular expressions with free variables over the dynami
 exe
utiontra
e. We propose two te
hniques for soundly partitioning the instrumen-tation required for tra
emat
hes: spatial partitioning, where di�erent 
opiesof a program monitor di�erent program points for violations, and temporalpartitioning, where monitoring is swit
hed on and o� over time. We evaluatethe relative impa
t of partitioning on a user's runtime overhead by apply-ing ea
h partitioning te
hnique to a 
olle
tion of ben
hmarks that wouldotherwise in
ur signi�
ant instrumentation overhead.Our results show that spatial partitioning almost 
ompletely eliminates run-time overhead (for any parti
ular ben
hmark 
opy) on many of our test 
ases,and that temporal partitioning s
ales well and provides runtime veri�
ationon a �pay as you go� basis.1 Introdu
tionIn the veri�
ation 
ommunity it is now widely a

epted that, espe
ially for largeprograms, veri�
ation is often in
omplete and hen
e bugs still arise in deployed 
odeon the ma
hines of end users. However, veri�
ation 
ode is rarely deployed, dueto large performan
e penalties indu
ed by 
urrent runtime veri�
ation approa
hes.Consequently, when errors do arise in produ
tion environments, their 
auses areoften hard to diagnose: the available debugging information is very limited.Tra
emat
hes [1℄ are one me
hanism for spe
ifying runtime monitors. Tra
e-mat
hes enable developers to state sequen
es of program events and a
tions to takeif the exe
ution mat
hes the sequen
e. Events bind obje
ts in the heap; a tra
emat
honly triggers if all of the events o

ur on a 
onsistent set of obje
ts.



A

ording to resear
hers in industry [13℄, larger industrial 
ompanies would likelybe willing to a

ept runtime veri�
ation in deployed 
ode if the overhead is below5%. In previous work on tra
emat
hes, we have shown that, in many 
ases, stati
analysis 
an enable e�
ient runtime monitoring by improving both the spe
i�
a-tion [3℄ and program under test [6℄. Most often, our te
hniques 
an redu
e runtimeoverhead to under 10%. However, our evaluation also showed that unreasonably largeoverheads�sometimes more than 100%�remained for some 
lasses of spe
i�
ationsand programs. Other te
hniques for runtime monitoring also in
ur similar runtimeoverheads; for instan
e, the Program Query Language [10℄ 
auses up to 37% over-head on its ben
hmark appli
ations (although it is intended to be a debugging toolrather than a tool for monitoring deployed programs), and JavaMOP [7℄ in
urs upto 13% overhead on non-pathologi
al test 
ases for runtime monitoring.In this work, we atta
k the problem of runtime veri�
ation-indu
ed overhead byusing methods from remote sampling [9℄. Be
ause 
ompanies whi
h produ
e largepie
es of software (whi
h are usually hard to analyze) often have a

ess to a largeuser base, one 
an generate di�erent kinds of partial instrumentation (�probes�) forea
h user. A 
entralized server 
an then 
ombine runtime veri�
ation results fromruns with di�erent probes. Although there are many advantages to a sampling-basedapproa
h, we are interested in using sampling to redu
e instrumentation overheadfor individual end users. We have developed two approa
hes for partitioning theoverhead, spatial partitioning and temporal partitioning.Spatial partitioning works by partitioning the instrumentation points into di�er-ent subsets. We 
all ea
h subset of instrumentation points a probe and ea
h useris given a program instrumented with only one probe. This works very well inmany 
ases, but in some 
ases a probe may 
ontain a very hot�that is, expensive�instrumentation point. In those 
ases, the unlu
ky user who gets the hot probe willexperien
e most of the overhead.Temporal partitioning works by turning the instrumentation on and o� periodi-
ally, redu
ing the total overhead. This method works even if there are are very hotprobes, be
ause even those probes are only enabled some of the time. However, sin
eprobes are disabled some of the time, any runtime veri�
ation properties of interestmay be ignored while the probes are disabled.In both spatial and temporal partitioning, the remaining instrumentation mustoperate 
orre
tly and, in parti
ular, must never report false positives. The key pointis that our transformations must never remove instrumentation points that 
an re-move 
andidate bindings; identifying su
h instrumentation points 
an be di�
ult fortra
emat
hes, whi
h may bind one or more obje
ts and require ea
h event to mat
hthe same obje
ts. We have found a simple me
hanism for redu
ing the number ofthese instrumentation points that appears to work well on our ben
hmarks.We explored the feasibility of our approa
h by applying our modi�ed tra
emat
h
ompiler to ben
hmarks whose overheads persisted after the stati
 analysis in [6℄.We �rst experimented with spatial partitioning. We found that some ben
hmarkswere very suited to spatial partitioning. In these 
ases, ea
h probe produ
ed loweroverhead than the 
omplete instrumentation, and many probes 
arried less than 5%overhead. However, in other 
ases, some probes were so hot that they a

ounted for



almost all of the overhead; spatial partitioning did not help mu
h in those 
ases. Wealso experimented with temporal partitioning and examined runtimes when probeswere enabled for 10, 30, 50, 70, 90 and 100 per
ent of the time. As expe
ted, wefound that the overhead in
reased steadily with the proportion of time that theprobes were enabled, so that one 
an gain limited runtime monitoring by runningprobes only some of the time.The remainder of this paper is stru
tured as follows. In Se
tion 2, we give ba
k-ground information on tra
emat
hes and des
ribe the instrumentation for evaluatingtra
emat
hes at runtime. In Se
tion 3, we explain the spatial and temporal parti-tioning s
hemes. We evaluate our work in Se
tion 4, dis
uss related work in Se
tion5 and �nally 
on
lude in Se
tion 6.2 Ba
kgroundThe goal of our resear
h is to monitor exe
utions of programs and ensure thatprograms never exe
ute pathologi
al sequen
es of events. In this proje
t, we monitorexe
utions using tra
emat
hes. A tra
emat
h de�nes a runtime monitor using aregular expression over an alphabet of user-de�ned events in program exe
utions.The developer is responsible for providing a tra
emat
h to be veri�ed and de�nitionsfor ea
h event, or symbol, used in the tra
emat
h. He provides de�nitions for symbolsusing Aspe
tJ [8℄ point
uts. Point
uts often spe
ify patterns whi
h mat
h names of
urrently exe
uting methods or types of 
urrently exe
uting obje
ts. Point
uts mayalso bind parts of the exe
ution 
ontext. For instan
e, at a method-
all point
ut, thedeveloper may bind the method parameters, the 
aller obje
t, and the 
allee obje
ts,and may refer to these obje
ts when the tra
emat
h mat
hes. If a tra
emat
h doesnot bind any variables, then it redu
es to verifying �nite-state properties of theprogram as a whole.1 tracematch(Iterator i) {2 sym next before:3 call(* java.util.Iterator+.next()) && target(i);4 sym hasNext before:5 call(* java.util.Iterator+.hasNext()) && target(i);67 next next { /* emit error message; may access variable i */ }8 } Figure 1. Tra
emat
h 
he
king that hasNext() is always 
alled before next()Figure 1 presents an example tra
emat
h. The tra
emat
h header, in line 1,de
lares a tra
emat
h variable i. Lines 2�5 de
lare two symbols, next and hasNext,whi
h establish the alphabet for this tra
emat
h's regular expression. The next sym-bol mat
hes 
alls to an Iterator's next() method and binds the target obje
t of themethod 
all to i. The hasNext symbol mat
hes 
alls to Iterator.hasNext(), on thesame iterator i. Line 7 de
lares the tra
emat
h's pattern (regular expression) andbody. The pattern, next next, states that the tra
emat
h body must exe
ute aftertwo 
onse
utive 
alls to next(), as long as no hasNext() 
all intervenes.



A 
ru
ial point about the semanti
s of tra
emat
hes' regular expressions is thatintermediate events mat
hing an expli
itly-de
lared symbol 
annot be ignored ; thatis, any o

urren
e of a non-mat
hing symbol in an exe
ution invalidates relatedpartial mat
hes. In our example, a sequen
e next hasNext next (all on the sameiterator, of 
ourse) would not mat
h. (Avgustinov et al. dis
uss the semanti
s oftra
emat
hes in detail in [2℄.)The implementation of tra
emat
hes uses �nite state ma
hines to tra
k the statesof a
tive partial mat
hes. The 
ompiler tra
ks variable-to-obje
t bindings with 
on-straints ; ea
h state q in the �nite state ma
hine has an asso
iated 
onstraint thatstores information about groups of bound heap obje
ts that must or must not bein state q. Constraints are stored in Disjun
tive Normal Form as a set of disjun
ts.Ea
h disjun
t maps from tra
emat
h variables to obje
ts. Note that the runtime
ost of this approa
h 
omes from the large number of simultaneously-bound heapobje
ts, and that the number of tra
emat
h variables does not 
ontribute to theruntime 
ost.
q0start q1 q2

next nextnext, hasNext
Figure 2. Finite state ma
hine for the tra
emat
h of Figure 1Figure 2 presents the automaton for the HasNext pattern; we 
an observe thattwo 
alls to next (on the same i) will 
ause the automaton to hit its �nal state q2.Note that state q1 
arries a dashed self-loop. We 
all this loop a skip-loop. Skip loopsremove partial mat
hes that 
annot be extended to 
omplete mat
hes: they delete apartial mat
h whenever an observed event invalidates that partial mat
h.As an example, assume that state q1 is asso
iated with the 
onstraint {[i 7→

i1], [i 7→ i2]}; that is, the program has exe
uted next() on
e, and only on
e, onea
h of the iterators i1 and i2, following the most re
ent 
all to hasNext() on ea
hof i1 and i2. If the program then exe
utes hasNext() on i2, then another 
all to
next() on i2 
an no longer trigger an immediate mat
h. Hen
e the skip-loop labelled
hasNext will redu
e the 
onstraint on the intermediate state q1 to {[i 7→ i1]}; theimplementation dis
ards the disjun
t for i2 at q1. (In the tra
emat
h semanti
s, theskip-loop implements a 
onjun
tion of the 
onstraint at q1 with the binding i 6= i2.)The tra
emat
h 
ompiler weaves 
ode to monitor tra
emat
hes into programsat appropriate event lo
ations. For every stati
 
ode lo
ation 
orresponding to apotential event exe
ution, the 
ompiler therefore in
ludes instrumentation 
ode thatalso updates the appropriate disjun
ts. This instrumentation 
ode is 
alled a shadow.In this paper, we use a previously-published stati
 analysis that removes shadowsif they 
an be shown to never 
ontribute to 
omplete mat
hes [6℄; for instan
e, aprogram whi
h 
alls hasNext() but never next() would never trigger the �nal stateof the HasNext automaton, so the hasNext shadows 
an removed.



3 Shadow partitioningsCollaborative runtime veri�
ation leverages the fa
t that many users will exe
utethe same appli
ation many times to redu
e the runtime veri�
ation overhead forea
h user. The two basi
 options are to (1) redu
e the number of a
tive shadows forany parti
ular run; or (2) redu
e the (amortized) amount of work per a
tive shadow.To explore these options, we devised two partitioning s
hemes, spatial and temporalpartitioning. Spatial partitioning (Se
tion 3.1) redu
es the number of a
tive shadowsper run, while temporal partitioning (Se
tion 3.2) redu
es the amortized workloadper a
tive shadow over any parti
ular exe
ution.Our partitioning s
hemes are designed to produ
e false negatives but no falsepositives. Our monitoring may miss some pattern mat
hes (whi
h will be 
aughteventually given enough exe
utions), but any reported mat
h must a
tually o

ur.3.1 Spatial partitioningSpatial partitioning redu
es the overhead of runtime veri�
ation by only leaving ina subset of a program's shadows. However, 
hoosing an arbitrary subset of shadowsdoes not work; in parti
ular, arbitrarily disabling skip shadows may lead to falsepositives. Consider the following 
ode with the HasNext pattern.1 for(Iterator i = c.iterator(); i.hasNext();)2 Object o = i.next();In this 
ase, if the iterator i only exists in this loop, one safe spatial partitioningwould be to disable all shadows in the program ex
ept for those in the loop. However,disabling the hasNext skip shadow on line 1 and enabling the next shadow on line2 on a 
olle
tion with two or more obje
ts gives a false positive, sin
e the monitor�sees� two 
alls to next() and not the 
all to hasNext() whi
h prevents the mat
h.Enabling arbitrary subsets of shadows 
an also lead to wasted work. Disabling the
next shadow in the above example and keeping the hasNext shadow would, of 
ourse,lead to overhead from the hasNext shadow. But, on their own, hasNext shadows 
annever lead to a 
omplete mat
h without any next shadows.We therefore need a more prin
ipled way of determining sensible groups of shad-ows to enable or disable. In previous work, we have des
ribed the notion of a shadowgroup, whi
h approximates 1) the shadows needed to keep tra
emat
hes triggerableand 2) the skip-shadows whi
h must remain enabled to avoid false positives. We willnow summarize the relevant points; the 
omplete details are given in [6℄. We startby de�ning the notion of a stati
 joinpoint shadow.De�nition 1 (Shadow). A shadow s of a tra
emat
h tm is a pair (labs, binds),where labs is the label of a de
lared symbol of tm and binds is a variable binding,modelled as a mapping from variables to points-to sets. A points-to set is a setof obje
t-
reation sites in the program. The points-to set pts(v) for a variable v
ontains the 
reation sites of all obje
ts whi
h 
ould possibly be 
reated at runtimeand assigned to v.In the example 
ode above, the hasNext shadow in line 1 would be denoted by
(hasNext, {i 7→ {i1}}), assuming that we denote the 
reation site of iterator obje
tsthat might be bound by this shadow by i1.



De�nition 2 (Shadow group). A shadow group is a pair of 1) a multi-set of shad-ows 
alled label-shadows and 2) a set of shadows 
alled skip-shadows . All shadowsin label-shadows are labelled with labels of non-skip edges on some path to a �nalstate, while all shadows in skip-shadows are labelled with a label of a skip-loop.We use a multi-set for label-shadows to re
ord the fa
t that the automaton mightnot rea
h its �nal state unless two or more shadows with the same label exe
ute.For instan
e, the HasNext pattern only triggers after two next shadows exe
ute; themultipli
ities in the multi-set en
ode the number of times that a parti
ular symbolneeds to exe
ute before the tra
emat
h 
ould possibly trigger.De�nition 3 (Consistent shadow group). A 
onsistent shadow group g is ashadow group for whi
h all variable bindings of all shadows in the group have points-to sets with a non-empty interse
tion for ea
h variable.For our HasNext example, a 
onsistent shadow group 
ould have this form:label-shadows = [(next , i 7→ {i1, i2}), (next , i 7→ {i1})],skip-shadows = {(hasNext , i 7→ {i1}), (hasNext , i 7→ {i1, i3})}This shadow group is 
onsistent�it may lead to a mat
h at runtime�be
ause thevariable bindings for i 
ould potentially point to the same obje
t, namely an obje
t
reated at 
reation site i1. The shadow group holds two label shadows (labelledwith the non-skip labels next). If the label shadows had disjoint points-to sets, thenno exe
ution would bind the tra
emat
h variables to 
onsistent obje
ts, and theshadow group would not 
orrespond to a possible runtime mat
h. In addition, theshadow group holds all skip-shadows that have points-to sets that overlap with thelabel-shadows in the shadow group.Con
eptually, a 
onsistent shadow group is the stati
 representation of a possibly
omplete mat
h at runtime. Every 
onsistent shadow group may potentially 
auseits asso
iated tra
emat
h to mat
h, if the label shadows exe
ute in the proper order.Furthermore, only the skip shadows in the shadow group 
an prevent a mat
h basedon the shadow group's label shadows.Our de�nition of a shadow group is quite well-suited to yielding sets of shadowsthat 
an be enabled or disabled in di�erent spatial partitions. We therefore de�nea probe to be the union of all label-shadows and skip-shadows of a given 
onsistentshadow group. (In 
onstru
ting probes from shadow groups, we dis
ard the multi-setstru
ture of the label shadows and 
ombine the label-shadows and skip-shadows intoa single set). Probes �make sense� be
ause they 
ontain a set of shadows that 
anlead to a 
omplete mat
h and they are sound be
ause they also 
ontain all of theskip-shadows that 
an prevent that mat
h. (We will explain why skip-shadows are
ru
ial for probes in Se
tion 3.2). Note that di�erent probes may overlap; indeed, asSe
tion 4 shows, many similar probes share the same hot shadows.We 
an now present our algorithm for spatial partitioning.� Compute all probes (based on the �ow-insensitive analysis from [6℄).� Generate byte
ode with two arrays: one array mapping from probes to shadowsand one array with one entry per shadow.



� When emitting 
ode for shadows, guard ea
h shadow's exe
ution with appropri-ate array look-ups.The arrays, along with some glue 
ode in the Aspe
tJ runtime, allow us to dy-nami
ally enable and disable probes as desired. In the 
ontext of spatial partitioning,we 
hoose one probe to enable at the start of ea
h exe
ution; however, our infras-tru
ture permits experimentation with more sophisti
ated partitioning s
hemes.3.2 Temporal partitioningWe found that spatial partitioning was e�e
tive in distributing the workload ofruntime veri�
ation in many 
ases. However, in some 
ases, we found that a singleprobe 
ould still lead to large overheads for some unlu
ky users. Two potentialreasons for large overheads are: 1) a shadow group may 
ontain a large number ofskip-shadows, if all those shadows have overlapping points-to sets, leading to largeprobes; or 2) if shadows belonging to a probe are repeatedly exe
uted within a tightloop whi
h would otherwise be quite 
heap, any overhead due to su
h shadows wouldqui
kly a

umulate. The HasNext pattern is espe
ially prone to 
ase 2), as 
alls to
next() and hasNext() are 
heap operations and almost always 
ontained in loops.In su
h situations, one way to further redu
e the runtime overhead is by sampling:instead of monitoring a given probe all the time, we monitor it from time to time andhope that the program is exe
uted long enough that any violations eventually get
aught. However, it is unsound to disable an entire probe and then naïvely re-enableit again on the same run: missing a skip shadow 
an lead to a false positive.Consider the following 
ode and the HasNext pattern:
for(Iterator i = c.iterator(); i.hasNext();)

Object o = i.next();If we disabled monitoring during the 
all to hasNext, we 
ould get a false positiveafter seeing two 
alls to next, sin
e the intermediate 
all to hasNext went unnoti
ed.Be
ause false positives arise from disabling skip-shadows, one sound solution is tosimply not disable skip-shadows at all. Unfortunately, the exe
ution of skip-shadows
an be quite expensive; we found that leaving skip-shadows enabled also leaves a lotof overhead, defeating the purpose of temporal partitioning.However, we then observed that if a state s holds an empty 
onstraint (i.e.no disjun
ts), then skip-shadows originating at s no longer need to exe
ute1. Weimplemented this optimization for our temporal partitioning and found it to be quitee�e
tive: Se
tion 4 shows that our temporal partitioning, with this optimization,does not in
ur mu
h partitioning-related overhead; most of the overhead is due onlyto the exe
uting monitors. Intuitively, this optimization works be
ause, while allnon-skip shadows are disabled, no new disjun
ts are being generated. Hen
e, theasso
iated 
onstraint will be
ome empty after few�often, just one�iterations ofthe skip-shadow, pra
ti
ally degenerating the skip-shadow to a no-op.1 This optimization is only safe if all variables are known to be bound at s. However, forall patterns we used in this work, and for almost all patterns we know, this is the 
asefor all states. Our implementation stati
ally 
he
ks this property and only applies theoptimization if it holds.



We implemented the temporal partitioning as follows.� Generate a Boolean �ag per tra
emat
h.� When emitting 
ode for shadows, guard ea
h non-skip shadow with the appro-priate �ag.� Change the runtime to start up an additional instrumentation 
ontrol thread.The 
ontrol thread swit
hes the instrumentation on and o� at various time in-tervals. Figure 3 presents the parameters that the instrumentation 
ontrol threada

epts; non-skip edges are enabled and then disabled after ton millise
onds. Next,after another to� millise
onds, the non-skip edges are enabled again.Note that the Boolean �ag we generate is independent of the Boolean array weuse for spatial partitioning. If both spatial and temporal partitioning are used, a non-skip shadow is only enabled if both the Boolean array �ag (from spatial partitioning)for this parti
ular shadow and the Boolean �ag (from temporal partitioning) for itstra
emat
h are enabled. A skip shadow will be enabled if the Boolean array �ag forits tra
emat
h is enabled.
on

off

t
off

t
on

t
off

t
on

t
on

i
on

· t
off

i
off

·

Figure 3. Parameters for temporal partitioning, with in
rease period of n = 2The thread 
an also s
ale the a
tivation periods: every n periods, it 
an s
ale
ton by a fa
tor ion and to� by io�. This te
hnique�a well-known te
hnique fromadaptive systems su
h as just-in-time 
ompilers�allows us to keep non-skip edgesenabled for longer as the program runs longer, whi
h gives our temporal partitioninga better 
han
e of 
at
hing tra
emat
hes that require a long exe
ution time to mat
h.Be
ause we in
rease the monitoring periods over time, the 
ost of monitoring s
aleswith the total exe
ution time of the program.4 Ben
hmarksTo demonstrate the feasibility of our approa
h, we applied our modi�ed tra
emat
h
ompiler to �ve of the hardest ben
hmark/tra
emat
h 
ombinations from previ-ous evaluations [6℄. These ben
hmarks 
ontinue to exhibit more than 10% of run-time overhead, even after we applied all available stati
 optimizations. They all
onsist of tra
emat
hes that verify properties of frequently used data stru
tures,su
h as iterators and streams, in the appli
ations of version 2006-10 of the Da-Capo ben
hmark suite [5℄. As usual, all our ben
hmarks are available on http:

//www.aspectbench.org/, along with a version of abc implementing our optimiza-tion. In the near future we also plan to integrate this implementation into the main
abc build stream. Table 1 explains the tra
emat
hes that we used.



pattern name des
riptionFailSafeIter do not update a 
olle
tion while iterating over itHasNextElem always 
all hasNextElem before 
alling nextElement on an EnumerationHasNext always 
all hasNext before 
alling next on an IteratorReader don't use a Reader after its InputStream was 
losedTable 1. Tra
emat
hes applied to the DaCapo ben
hmarksben
hmark 
lasses methods 
omplete overhead # probesantlr/Reader 307 3517 471.45% 4
hart/FailSafeIter 706 8972 25.08% 742lu
ene/HasNextElem 309 3118 12.53% 6pmd/FailSafeIter 619 6163 44.36% 426pmd/HasNext 619 6163 66.53% 32Table 2. Number of 
lasses and methods per ben
hmark (taken from [5℄), plus overheadof the fully instrumented ben
hmark, and number of probes generated for ea
h ben
hmark4.1 Spatial partitioningWe evaluated spatial partitioning by applying the algorithm from Se
tion 3.1 to our�ve ben
hmark/tra
emat
h 
ombinations, after running the �ow-insensitive stati
analysis des
ribed in [6℄. Table 2 shows the runtime overheads with full instrumen-tation. All of these overheads ex
eed 10%, and the overhead for antlr/Reader is almost500%. Table 2 also presents the number of probes generated for ea
h ben
hmark.

0

20

40

60

80

100

ru
nt

im
e 

ov
er

he
ad

54

 686 5

5

4
415

5
26

antlr/Reader
chart/FailSafeIter

lucene/HasNextElem
pmd/FailSafeIter

pmd/HasNext Figure 4. Runtime overheads per probe in spatial partitioning (in per
ent; bars indi
ate
lumps of probes, labelled by size of 
lump)Under the spatial partitioning approa
h, our 
ompiler emits instrumented ben
h-marks whi
h 
an enable or disable ea
h probe dynami
ally. We tested the e�e
t of



ea
h probe individually by exe
uting ea
h ben
hmark with one probe enabled at atime; this gave us 1210 ben
hmark 
on�gurations to test. For our experiments, weused the Sun Hotspot JVM version 1.4.2_12 with 2GB RAM on a ma
hine with anAMD Athlon 64 X2 Dual Core Pro
essor 3800+. We used the ­s large option ofthe DaCapo suite to provide extra-large inputs, whi
h made it easier for us to mea-sure 
hanges in runtimes. Figure 4 shows runtime overheads for the probes in ourben
hmarks. Dots indi
ate overheads for individual probes. For some ben
hmarks,many probes were almost identi
al, sharing the same hot shadows. These probestherefore also had almost identi
al overheads. We grouped these probes into 
lumpsand present them as a bar, labelled with the number of probes in the 
lump.Our results demonstrate that, in some 
ases, the di�erent probes manage tospatially distribute the overhead quite well. However, spatial partitioning does notalways su�
e. For pmd/FailSafeIter, 9 probes out of 426 have overheads ex
eeding5%, while for 
hart/FailSafeIter, 56 su
h 
ases exist, out of 742 probes in total. Onthe other hand, the lu
ene/HasNextElem and pmd/HasNext ben
hmarks 
ontain onlyone hot probe ea
h; spatial partitioning is unlikely to help in these 
ases.Finally, antlr/Reader still shows high overheads, but these overheads are mu
hlower than the original overhead of 471.45%. Interestingly, the four di�erent over-heads do not add up to 471.45%. Upon further investigation, we found that twoprobes generate many more disjun
ts than others. In the fully instrumented pro-gram, ea
h shadow in ea
h probe has to look up all the disjun
ts, even if they aregenerated by other probes, whi
h might lead to overheads larger than the sum ofthe overheads for ea
h individual probe. We are 
urrently thinking about whetherthis observation 
ould lead to an optimization of the tra
emat
h implementation ingeneral. (Disjun
t lookup is des
ribed in greater detail in [4℄.)We 
on
lude that spatial partitioning 
an sometimes be e�e
tive in spreadingthe overhead among di�erent probes. However, in some 
ases, a small number ofprobes 
an a

ount for a large fra
tion of the original total overhead. In those 
ases,spatial partitioning does not su�
e for redu
ing overhead, and we next explore ourtemporal partitioning te
hnique for improving runtime performan
e.4.2 Temporal partitioningTo evaluate the e�e
tiveness of temporal partitioning, we measured ten di�erent
on�gurations for ea
h of the �ve ben
hmark/tra
emat
h 
ombinations. Figure 5presents runtimes for ea
h of these 
on�gurations. The DaCapo framework 
olle
tsthese runtimes by repeatedly running ea
h ben
hmark until the normalized standarddeviation of the most re
ent runs is suitably small.Diamond-shaped data points depi
t measurements of runtimes with no tempo-ral partitioning; the left data point in
ludes all probes (maximal overhead), whilethe right data point in
ludes no probes (no overhead). The gap between the rightdiamond data point and the gray baseline, whi
h denotes the runtime of the 
om-pletely un-instrumented program, shows the 
ost of runtime 
he
ks. Note that spatialpartitioning will always 
ost at least as mu
h as the right diamond.The 
ir
le-shaped data points present the e�e
t of temporal partitioning. Wemeasured the runtimes resulting from enabling non-skip edges 10, 30, 50, 70, 90



0 20 40 60 80 100

% of execution time that non-skip shadows are disabled

20

40

60

80
ru

nt
im

e 
(s

)
temporal partitioning
no partitioning
base execution time

(a) antlr-Reader 0 20 40 60 80 100

% of execution time that non-skip shadows are disabled

40

42

44

46

48

50

ru
nt

im
e 

(s
)

temporal partitioning
no partitioning
base execution time

(b) 
hart-FailSafeIter

0 20 40 60 80 100

% of execution time that non-skip shadows are disabled

48

50

52

54

ru
nt

im
e 

(s
)

temporal partitioning
no partitioning
base execution time

(
) lu
ene-HasNextElem 0 20 40 60 80 100

% of execution time that non-skip shadows are disabled

50

55

60

65

70

75

ru
nt

im
e 

(s
)

temporal partitioning
no partitioning
base execution time

(d) pmd-FailSafeIter

0 20 40 60 80 100

% of execution time that non-skip shadows are disabled

50

60

70

80

ru
nt

im
e 

(s
)

temporal partitioning
no partitioning
base execution time

(e) pmd-HasNext 0 20 40 60 80 100

% of execution time that non-skip shadows are disabled

1

2

4

sl
ow

do
w

n

antlr
chart
lucene
pmd/FailSafeIter
pmd/HasNext

(f) temporal partitioning for allben
hmarks, log s
aleFigure 5. Results of temporal partitioning for �ve ben
hmark/tra
emat
h 
ombinations



and 100 per
ent of the time. Our �rst experiment sought to determine the e�e
t of
hanging the swapping interval for temporal partitioning.At �rst, we exe
uted four di�erent runs for ea
h of those seven 
on�gurations,with four di�erent in
rease periods n. We doubled the duration of the on/o� intervalsevery n = 10, 40, 160 and 640 periods. As expe
ted, n has no measurable e�e
t onruntime performan
e. We therefore plotted the arithmeti
 mean of the results overthe di�erent in
rease periods. The full set of numbers is available on our website.Figure 5 (f) overlays the results from all of our ben
hmark/tra
emat
h 
ombi-nations. Note that the shape of the overhead 
urve is quite similar in all of the
on�gurations. In all 
ases, temporal partitioning 
an properly s
ale down from100% overhead, when all non-skip edges are always enabled, to just above 0%, whennon-skip edges are never enabled. We were surprised to �nd that the de
rease inruntime overhead did not s
ale linearly with a de
rease in monitoring intervals. Thisdata suggest that there might exist a �sweet spot� where the overhead is 
onsistentlylowest 
ompared to the employed monitoring time.The relationship between �no temporal partitioning� with all probes enabled andthe 100% measurement with temporal partitioning enabled might seem surprisingat �rst: we added additional runtime 
he
ks for temporal partitioning, and yet, inthe 
ases of 
hart-FailSafeIter, lu
ene-HasNextElem and pmd-FailSafeIter, the 
ode ex-e
utes signi�
antly faster. We believe that this speedup is due to the skip-loop opti-mization that we implemented for temporal partitioning: this optimization is appliedeven when non-skip edges are enabled, thereby improving overall performan
e.The far right end of the graphs shows that the overhead of the runtime 
he
ksfor spatial and temporal partitioning are virtually negligible. They are not zero but
lose enough to the baseline to not hinder the appli
ability of the approa
h.5 Related workOur work on 
ollaborative runtime veri�
ation is most 
losely related to the work ofLiblit et al. for automati
 bug isolation. The key insight in automati
 bug isolationis that a large user 
ommunity 
an help isolate bugs in deployed software usingstatisti
al methods. The key idea behind Cooperative Bug Isolation is to use sparserandom sampling of a large number of program exe
utions to gather information.Hen
e, one 
an amortize the 
ost of exe
uting assertion-dense 
ode by distributingit to many users, ea
h user only exe
uting a small randomly sele
ted number ofassertions. This minimizes the overhead experien
ed by ea
h user. Although ea
hexe
ution report in isolation gives only very limited information, the aggregate ofall su
h reports provides a wealth of debugging information for analysis and a high
han
e of �nding violations of an assertion, if they exist.Pavlopoulou et al. [12℄ des
ribe a residual test 
overage monitoring tool whi
hstarts o� by instrumenting all the 
ode. As di�erent parts of the program are ex-e
uted, the 
ode is periodi
ally re-instrumented, with probes added only in pla
eswhi
h have not been 
overed by the testing 
riteria. Probes from frequently exe
utedregions are therefore removed in the �rst few re-instrumentation 
y
les, redu
ing theoverhead in the long term sin
e the program spends more and more time in 
oderegions without any probes. Su
h an adaptive instrumentation should be appli
able



to our setting, too. To avoid false positives, one would have to disable entire shadowgroups at a time.Patil et al. [11℄ propose two di�erent approa
hes to minimize overhead due toruntime 
he
king of pointer and array a

esses in C programs. Customization usesprogram sli
ing to de
ouple the runtime 
he
king from the original program exe
u-tion. The se
ond approa
h, shadow pro
essing, uses idle pro
essors in multipro
essorworkstations to perform runtime 
he
king in the ba
kground. The shadow pro
ess-ing approa
h uses two pro
esses: a main pro
ess, whi
h exe
utes the original userprogram, i.e. without any run-time 
he
king, and a shadow pro
ess whi
h followsthe main pro
ess and performs the intended dynami
 analysis. The main pro
esshas minimal overhead (5%-10%), mostly arising from the need for syn
hronizationand sharing of values between the two pro
esses. Su
h an approa
h would not workfor arbitrary tra
emat
hes, whi
h might arbitrarily modify the program state, but
ould work for the veri�
ation-oriented tra
emat
hes we are investigating.Re
ently, Mi
rosoft, Mozilla, GNOME, KDE and others have all developed opt-inservi
es for reporting 
rash data. When a program 
rashes, re
overy 
ode generatesand transmits a report summarizing the state of the program. Re
ently, Mi
rosoft'ssystem has been extended to gather data about abnormal program behaviour inthe ba
kground; reports are then automati
ally sent every few days (subje
t touser permission). Reports from all users 
an then be aggregated and analyzed forinformation about 
auses of 
rashes.We brie�y mention a number of alternative approa
hes for spe
ifying proper-ties for runtime veri�
ation. The Program Query Language [10℄ is similar to tra
e-mat
hes in that it enables developers to spe
ify properties of Java programs, whereea
h property may bind free variables to runtime heap obje
ts. PQL supports ari
her spe
i�
ation language than tra
emat
hes, sin
e it is based on sta
k automatarather than �nite state ma
hines. Monitoring-Oriented Programming [7℄ is a generi
framework for spe
ifying properties for runtime monitoring; developers use MOPlogi
 plugins to state properties of interest. PQL, MOP, and related approa
hes, 
anall bene�t from 
ollaborative runtime veri�
ation te
hniques.6 Con
lusion and future workIn this paper we have presented two te
hniques for implementing 
ollaborative run-time veri�
ation with tra
emat
hes. The main idea is to share the instrumentationover many users, so that any one user pays only part of the 
ost of the runtime ver-i�
ation. Our paper has des
ribed the spatial and temporal partitioning te
hniquesand demonstrated their appli
ability to a 
olle
tion of ben
hmarks whi
h exhibithigh instrumentation overheads.Spatial partitioning allo
ates di�erent probes�
onsistent subsets of instrumen-tation points�to di�erent users; probes generally have lower overheads than theentire instrumentation. Our experimental evaluation showed that spatial partition-ing works well when there are no parti
ularly hot probes.Temporal partitioning works by periodi
ally enabling and disabling instrumenta-tion. We demonstrated a good 
orresponden
e between the proportion of time thatprobes were enabled and the runtime overhead.



We are 
ontinuing our work on making tra
emat
hes more e�
ient on manyfronts, in
luding further stati
 analyses. We are also 
ontinuing to build up ourben
hmark library of base programs and interesting tra
emat
hes and will applythe te
hniques in this paper to the new ben
hmarks as they are 
reated.Referen
es1. Chris Allan, Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren, Sas
haKuzins, Ond°ej Lhoták, Oege de Moor, Damien Sereni, Ganesh Sittampalam, and Ju-lian Tibble. Adding Tra
e Mat
hing with Free Variables to Aspe
tJ. In Obje
t-OrientedProgramming, Systems, Languages and Appli
ations, pages 345�364. ACM Press, 2005.2. Pavel Avgustinov, Oege de Moor, and Julian Tibble. On the semanti
s of mat
hingtra
e monitoring patterns. In Seventh Workshop on Runtime Veri�
ation, Van
ouver,Canada, Mar
h 2007. To appear in Le
ture Notes on Computer S
ien
e.3. Pavel Avgustinov, Julian Tibble, Eri
 Bodden, Ond°ej Lhoták, Laurie Hendren, Oegede Moor, Neil Ongking
o, and Ganesh Sittampalam. E�
ient tra
e monitoring. Te
h-ni
al Report ab
-2006-1, http://www.aspe
tben
h.org/, Mar
h 2006.4. Pavel Avgustinov, Julian Tibble, and Oege de Moor. Making tra
e monitors feasi-ble. In ACM Conferen
e on Obje
t-Oriented Programming, Systems, Languages, andAppli
ations, 2007. To appear.5. S. M. Bla
kburn, R. Garner, C. Ho�man, A. M. Khan, K. S. M
Kinley, R. Bentzur,A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump,H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanovi¢, T. VanDrunen, D. von Din
klage,and B. Wiedermann. The DaCapo ben
hmarks: Java ben
hmarking development andanalysis. In OOPSLA '06: Pro
eedings of the 21st annual ACM SIGPLAN 
onferen
eon Obje
t-Oriented Programing, Systems, Languages, and Appli
ations, pages 169�190,New York, NY, USA, O
tober 2006. ACM Press.6. Eri
 Bodden, Laurie Hendren, and Ond°ej Lhoták. A staged stati
 program analysis toimprove the performan
e of runtime monitoring. In European Conferen
e on Obje
t-Oriented Programming, July 2007.7. Feng Chen and Grigore Rosu. MOP: An e�
ient and generi
 runtime veri�
ationframework. In ACM Conferen
e on Obje
t-Oriented Programming Systems, Languagesand Appli
ations (OOPSLA), 2007. To appear.8. Gregor Ki
zales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Je�rey Palm, andWilliam G. Griswold. An overview of Aspe
tJ. In J. Lindskov Knudsen, editor, Eu-ropean Conferen
e on Obje
t-oriented Programming, volume 2072 of Le
ture Notes inComputer S
ien
e, pages 327�353. Springer, 2001.9. Ben Liblit, Alex Aiken, Ali
e X. Zheng, and Mi
hael I. Jordan. Bug isolation viaremote program sampling. In Pro
eedings of the ACM SIGPLAN 2003 Conferen
e onProgramming Language Design and Implementation, San Diego, California, June 2003.10. Mi
hael Martin, Benjamin Livshits, and Moni
a S. Lam. Finding appli
ation errorsusing PQL: a program query language. In Pro
eedings of the 20th Annual ACM SIG-PLAN Conferen
e on Obje
t-Oriented Programming, Systems, Languages and Appli-
ations, pages 365�383, 2005.11. Harish Patil and Charles Fis
her. Low-
ost, 
on
urrent 
he
king of pointer and arraya

esses in C programs. Softw. Pra
t. Exper., 27(1):87�110, 1997.12. Christina Pavlopoulou and Mi
hal Young. Residual test 
overage monitoring. In ICSE'99: Pro
eedings of the 21st International Conferen
e on Software Engineering, pages277�284, Los Alamitos, CA, USA, 1999. IEEE Computer So
iety Press.13. Wolfgang Grieskamp (Mi
rosoft Resear
h), January 2007. Personal 
ommuni
ation.


