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Abstract. We propose a novel approach for granting partial access on
arbitrary objects at the granularity of methods to remote clients. The
applications that we target use Remote Method Invocation (RMI). We
automatically build custom proxy objects, and give them to untrusted
clients in place of the originals. Proxy objects expose a subset of methods
to prevent potentially dangerous calls from clients. We present semantics
of our system, an implementation, and its evaluation. The creation of a
proxy object takes an order of magnitude less time than the correspond-
ing RMI lookup.

1 Introduction

Access control is a key security feature that protects sensitive information.
Strongly-typed languages such as Java help prevent arbitrary accesses to memory
and contribute to the development of secure systems. Java’s built-in security fea-
tures are fairly coarse-grained. Existing approaches, such as stack inspection [1,
2], provide the ability to grant access to only some of an object’s methods. How-
ever, they must consider all remote accesses to be untrusted as the client’s call
stack is unavailable to the server.

We present a method for providing security through proxy objects. In our
technique, developers specify which methods to allow and deny; we use this
information to automatically construct proxy objects. As they expose only a
permitted subset of methods, proxies are safe by construction and may be passed
to untrusted clients. Our system works with Remote Method Invocation (RMI).

We have implemented our system and analyzed its performance. Our sys-
tem imposes minimal overhead (see Section 5); creation of a proxy object takes
an order of magnitude less time than the corresponding RMI lookup. Our con-
tributions include an approach to automatically-generated RMI Proxy Objects
for Security, an algorithm for deriving proxy interfaces, and an experimental
evaluation of the feasibility and performance of our system.

2 Motivating Example

Our technique handles cases where a heterogeneous software system needs to
share objects with subsystems that are not fully trusted. We are able to ex-
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pose only parts of an object’s functionality to a client. This is useful when it is
undesirable or dangerous to grant the client unrestricted access.

Consider a software-as-a-service case with three parties: a software developer
(the service provider), a store owner (service client), and store customers (who
buy from the online store). The developer creates a customizable application,
ShipItems, for online commerce. The clients (store owners) purchase an account
and customize their instance of ShipItems according to their needs. They use
the application to organize and track product shipments to their customers.
Customers place orders. Figure 1 shows relations between these entities for three
stores, “Scuba 3000,” “Ed’s Electronics,” and “Shoe Palace.”

!"#$%&'()
!*+,-./000.
%1)&-1*'

234).
25'*&671#*).
%1)&-1*'

!"7'.8-5-*'.
%1)&-1*'

9+)&7('6

9+)&7('6

9+)&7('6
9+)&7('6

9+)&7('6

Fig. 1. ShipItems with Multiple Customized Instances

As the software developer cannot foresee all the business rules of store owners
(service clients), he can either guess at the rules the store owner wants and
provide rule templates for those cases, or give out full access to the Java objects.
If the store owner cannot implement her business logic using the given rules or
templates, then a human must verify every order before it goes out. This is costly
and error-prone. Alternately, the owner can access the Java objects directly.

Suppose ShipItems validates that the Postal/ZIP Code field is not empty. The
store owner will ship only within Canada. She tries to add a rule that the postal
code must conform to the Canadian format (e.g., A1B 2C3). If the developer did
not grant the owner the ability to define the formatting for this box, then the
owner must verify her rule manually. Alternatively, if given the address object,
the store owner might change the name of the object that represents Canada.
A modification to the Canada object affects every user. Likewise, by navigating
the object graph, the store owner could access other stores’ confidential data.

We could write a restrictive interface and provide this to the client, with
the data objects implementing the interface. Deriving this interface manually
is time-consuming and error-prone, and it must be kept up to date when the
original object changes. Our system supports the automatic generation of such
interfaces, based on light-weight annotations.

The developer writes the general system (ShipItems) and sells it to the store
owner, who applies her specific business rules to the system. We propose a way
to allow the store owner to programmatically apply her business rules, while
limiting her access to the Java objects.

3 Proxy Objects

Our solution enables servers to give out Java objects such that recipients cannot
adversely change the state of the system. We build custom proxy objects from
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the original Java objects, and give those to clients in place of the originals. Proxy
objects are stand-ins generated from the originals that expose a subset of the
original’s methods. We require a pre-processing step between the Java Compiler
and the RMI Compiler (see section 4).

There are three levels at which a developer may specify a policy: global, class
and method. The policy that takes effect is the one that is most specific to the
method. If a method is annotated with a policy, then that policy takes effect.
Otherwise, if the class in which the method is defined is annotated with a policy,
then the method is associated with that policy. Otherwise the global policy takes
effect for the method. The developer must specify a global policy. The global
policy can be seen as the default for the system.

We support two kinds of policies: permit and deny. A developer specifies that
his policy is permit by assocating an annotation called safe, and deny with an
annotation called unsafe. If we infer that a method has an unsafe annotation,
then it is unavailable to untrusted clients.

An object can have one or more proxies. Every proxy is associated with an
original object that resides at the server. Proxies forward method execution to
the original.

The developer annotates a method or class by adding @Safe or @UnSafe
above it. These annotations impose no requirements upon the methods or classes
they accompany; they do not affect the method’s behaviour. Below is the @Safe
annotation; @UnSafe is identical except “Safe” is replaced with “UnSafe”.

@Retention(RetentionPolicy.RUNTIME)
public @interface Safe { }

If a method is annotated safe, then untrusted clients can invoke that method
with their choice of arguments. Clients can invoke methods that are annotated
unsafe as well, but only via other methods. Clients then do not have direct
control over the arguments with which these unsafe methods are invoked. We
assume that it is safe to invoke these methods from other methods that are safe.

Consider the following example. A system has a global default permit policy
(configured at compile-time); all methods may be invoked unless marked as
unsafe. A class O is marked as default deny, and its a() method is marked as
safe to invoke. Because precedence goes from most specific to least specific, all
methods are permitted globally, except for those in O because O has a policy of
default deny. The class-level policy of O is overridden by the annotation of a(),
which is the only method in O that is visible to untrusted clients.

// Global Policy: Default Permit
@UnSafe // Class Policy: Default Deny
public class O {

@Safe // Method is safe
public int a() { ... } // Permitted method
// Unannotated method receives the annotation of its class
public void b(String s) { ... } // Denied method

}

This system has trusted clients (T ) and untrusted clients (U). Figure 2 shows
the placement of the proxy object P in the system.
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Fig. 2. Proxy Object P Guards O from Untrusted Client U

As a is safe, U can invoke a on the proxy, and the proxy invokes the cor-
responding method on the original object O. Method b is unsafe, so b cannot
be invoked on the proxy object because it does not exist. Conversely, because
trusted client T can access O directly, it is free to invoke b. However, even if b is
unsafe in general, it may be safe when invoked with specific parameters. In this
scenario, it is meaningful and appropriate for a safe method to invoke an unsafe
one, under controlled circumstances.

We can create a proxy for any object. Any class C induces a derived interface,
defined by its declared and inherited methods. So that proxy objects may be used
in place of their corresponding real objects, a proxy object P implements the
derived interface of the original class C. Our interface builder (see Section 4)
creates an interface I based on C’s derived interface. Furthermore, a method
appears in I only if it is allowed by the policy.

Our solution is impervious to attacks that use Java reflection. Consider a
proxy object that is accessed remotely using RMI. Although the proxy object
keeps a reference to the original, the original remains inaccessible, because re-
flection cannot be used on a remote object [3]. RMI hides all fields of the im-
plementation class from remote clients; fields do not appear on the client-side
stub. We require that arbitrary access to memory on the server side is not per-
mitted. We do not make assumptions about the client side virtual machine, as
it is untrusted.

3.1 Semantics of Annotation

To express the semantics of our approach precisely, we use First Order Logic [4].
To express that a method m has annotation a in its definition in class c, we adopt
the predicate annotatedMethod (m, c, a). Annotations on methods can be explicit
or inferred. The counterpart to annotatedMethod for a class is annotatedClass (c, a).
To express the global annotation, we adopt the constant globalAnnotation.
To model the inheritance and method-definition aspects of Java, we adopt the
predicates inherits (c2, c1) to express that class c2 inherits c1, and definedIn (c,m)
to express that method m is defined in the class c. We use 6= in the customary
manner. We use ¬ for negation, ∨ for disjunction, ∧ for conjunction, and ←−
for implication. Our inference rules are shown in Figure 3.

For a semantics, we specify a model, M and an environment or look-up
table, l [4]. The set of concrete values, A, that we associate with M is A =
Ac ∪ Am ∪ Aa, where Ac is the set of classes, Am is the set of methods and
Aa = {safe,unsafe}. We associate one of the values from Aa with the con-
stant globalAnnotation. We consider only environments in which our variables
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definedIn (c, m)←− annotatedMethod (m, c, a) (1)

¬annotatedMethod
`
m, c, a

′´←− annotatedMethod (m, c, a) ∧
`
a 6= a

′´
(2)

¬annotatedClass
`
c, a

′´←− annotatedClass (c, a) ∧
`
a 6= a

′´
(3)

inherits (c1, c3)←− inherits (c1, c2) ∧ inherits (c2, c3) (4)

definedIn (c2, m)←− definedIn (c1, m) ∧ inherits (c2, c1) (5)

annotatedClass (c, a)←−

(globalAnnotation = a) ∧
`
a 6= a

′´ ∧ ¬annotatedClass
`
c, a

′´
(6)

annotatedMethod (m, c, a)←−

definedIn (c, m) ∧ annotatedClass (c, a) ∧
`
a 6= a

′´
∧ ¬annotatedMethod

`
m, c, a

′´
(7)

Fig. 3. Inference Rules for Determining Safe and Unsafe for Each Method

have the following mappings for our five predicates annotatedMethod (m, c, a),
annotatedClass (c, a), definedIn (c,m), inherits (c2, c1), a 6= a′. The variables c, c1
and c2 map to elements of Ac, m to an element of Am, and a and a′ to elements
of Aa.

We begin with a model M0, with A as its universe of concrete values. In
M0, we populate the relations that make our predicates concrete with those
values that we glean from the Java code. For example, when class c2 extends (in
Java) c1, we instantiate inheritsM0 to the pairs 〈c2, c1〉 Similarly, we instantiate
annotatedMethodM0 to those 〈m, c, a〉 tuples such that the method m has the
explicit annotation a in its definition in class c.

We define M to be the least fixed point from applying the rules from Fig-
ure 3. Our algorithm α for computing M from M0 is as follows. We first apply
Rule 4 repeatedly until no more entries are added to inheritsM0 . We then re-
peatedly apply Rule 5 (which grows definedInM0), and then Rule 6 (which grows
annotatedClassM0), and finally Rule 7 (which grows annotatedMethodM0). The
result is M. Note that α indeed computes the least fixed point, because it re-
spects the topological ordering of the inference rules. It runs in worst-case time
that is quadratic in the number of classes, |Ac|.

Correctness M is sound and complete. What we mean by sound is that a method
has at most one annotation in M; we never infer any contradictions. What we
mean by complete is that a method that is defined in a class has at least one
annotation inM. Soundness follows directly from Rules 2 and 3 in Figure 3. We
make the following assertion with regards to completeness.

Proposition 1 For every method m ∈ Am and class c ∈ Ac, there exists a ∈ Aa

such that M |=l (c,m) ∈ definedInM −→ (m, c, a) ∈ annotatedMethodM.

We point out that to construct a proxy object for a class c, we do not need to
use algorithm α. We can use a “bottom-up” algorithm that is linear in |Ac|+|Am|.
We first identify all methods that are defined in c by a breadth- or depth-first
search of the inheritance graph in reverse, starting at c. Then, we can identify
the annotation of each method in c in constant-time.
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3.2 Semantics of Invocation

To express that a method m in class c may be safely invoked, we adopt the
predicate canSafelyInvoke (m, c). We use the predicate invokes (m1,m2) to indi-
cate that method m1 invokes method m2. We introduce a constant, safe, to
indicate the safe annotation. Our inference rules are shown in Figure 4. Our se-
mantics are specified as in the previous section. In our modelM, safeM = safe.

invokes (m1, m3)←− invokes (m1, m2) ∧ invokes (m1, m2) (8)

canSafelyInvoke (m, c)←− annotatedMethod (m, c, safe) (9)

canSafelyInvoke (m2, c)←− canSafelyInvoke (m1, c) ∧ invokes (m1, m2) (10)

Fig. 4. Inference rules associated with Invocation

4 Implementation

Bytecode generation and modification lie at the heart of our implementation.
We modify RMI-enabled classes and generate interface class files. We employ
an interface builder, which examines classes, and creates a modified derived
interface I. As the interface builder does not produce executable code, we can
make the interfaces without resorting to a full-featured code generation library.
Our interface building routine is based on the code by McManus [5].

I contains only safe methods, but we alter some of those methods. We leave
unmodified all methods that return a simple type (e.g., int) or a String. For
all other methods, we replace the return type with a proxy.

At run-time, we also employ a ProxyObject class, which we provide. This
class is registered as the invocation handler for all proxy objects. If the method
exists in the modified derived interface I, then the proxy passes the invocation
on to O; O executes the method as requested. If proxy objects are found in the
parameters, the invocation handler replaces those proxies with their correspond-
ing originals before forwarding the execution. The ProxyObject class is also
responsible for intercepting the return of a non-proxy object and performing the
appropriate substitution. If a method is not permitted, it did not appear in I
and hence is not available for invocation on the proxy P . Therefore, only the
methods that we consider safe may be invoked.

The interface builder runs during a compile-time preparation step that takes
place between compiling the source files and running the RMI Compiler (rmic).
No modifications to the Java compiler or rmic are necessary. Figure 5 depicts
this process on class Example.

A developer has written the Example.java file, and compiled it into a class
file using javac. We identify Example as being a remote-accessible object (it
extends UnicastRemoteObject), and give it to the proxy object compiler (poc).
The poc examines Example and derives interface IExample, which contains only
safe methods. The poc modifies Example.class so it implements IExample.
Once our modifications are complete, we invoke rmic on the resultant class files,
and the RMI compiler produces Example Stub.class. The application is now
ready to run.
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Fig. 5. Proxy Object Compiler Processing Example.java

5 Performance Analysis

To examine our system’s performance, we use micro-benchmarks. Creating a
proxy of an object with no defined methods, save those inherited from Object,
takes 0.56 ms, on average. Thereafter, each method of the object adds a small
penalty. The time to create a proxy object is linear with the number of methods.

The first time a proxy object of a particular class is created, there is an
additional, one-time, server-side cost to derive the interface. After the interface
is created and loaded, it is cached, so thereafter the cost of creating the interface
is negligible. Furthermore, testing reveals that when the interface is created
multiple times, the virtual machine optimizes or caches the derivation of the
interface after the first time it is created. However, we conducted our analysis by
restarting the Java virtual machine each time, to get consistent results. Table 1
summarizes the data for both types of tests, including the mean and standard
deviation. See also Figure 6 for a graph of the data.

Methods 0 25 50 75 100

Object Creation 0.563 1.856 3.207 4.487 5.834
Interface Build 21.51 30.43 34.67 38.85 42.15

Table 1. Mean Object Creation & Interface Build Times (in ms)
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Fig. 6. Proxy Creation (L) and Interface Derivation (R): Linear Performance with the
Number of Methods in the Object

Deriving the object’s interface is linear in the number of methods in the
object. Although the initial interface creation may be costly, we reiterate that it
is a one-time cost; once derived, the interface is cached and is never re-created.
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Finally, our tests reveal that locally invoking a proxy in place of the original
has negligible overhead. Over 1 000 000 tests, invoking the proxy took, on aver-
age, 0.002 ms longer than invoking the original. This is below the noise threshold
for our test. Therefore, the overhead of invoking a proxy is negligible.

To provide some perspective, we conducted a comparison to how long it takes
to do a Java RMI lookup of a simple example object (not a proxy). The server,
RMI registry, and client ran on the same machine and used the same network
interface. These tests reveal that over 1 000 tests, a lookup takes 89.2 ms on
average (with a standard deviation of 8.52 ms). Creation of a proxy object, even
one with 100 methods, takes an order of magnitude less than the RMI lookup.
Even deriving the interface is on the same order as the RMI lookup. Thus, our
system’s overhead is small in practice.

6 Related Work

While strong typing obviates many security concerns, access control remains a
key issue. Pandey and Hashii [6] investigate bytecode editing to enforce access
controls, but do not discuss RMI. Wallach et al [1] enforce access controls using
Abadi, Burrows, Lampson, and Plotkin (ABLP) Logic, where authorization is
granted or denied on the basis of a statement from a principal allowing or denying
access. However, their approach does not work with RMI, and, as acknowledged
by the authors, does not handle a dynamic system with classloading well.

Stack inspection can provide effective access control, but the client call stack
is unavailable to the server, and even if it were available, it would be untrust-
worthy. A stack inspection scheme would therefore have to consider all remote
accesses untrusted, while proxies can differentiate between trusted and untrusted
RMI calls. Furthermore, the time to perform a stack inspection increases linearly
with the depth of the stack [1], while the proxy object overhead is constant. Stack
inspection suffers from difficulties with results returned by untrusted code, inher-
itance, and side effects [2]. Proxy objects are more resistant to these difficulties,
because they do not trust any results from untrusted code, are designed with
inheritance in mind, and are intended as a tool to avoid harmful side effects.
Proxy objects and stack inspection have different principles of trust. In prox-
ies, a caller is trusted if it receives a reference to the original object. In stack
inspection, the callee verifies its caller and all transitive callers.

Interface derivation is already in use in practice. For instance, Bryce and
Razafimahefa [7] generate dynamic proxies to go between objects, and restrict
access to methods. These bridges do not restrict access to fields; our solution
allows only safe method invocations.

7 Conclusions

We presented a technique for method-level access control within the Java pro-
gramming language. Our technique computes whether a method is safe or unsafe
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based on program annotations. To capture the semantics of our system, we de-
scribed them using First Order Logic. Our system is designed with Java RMI.

Proxy objects have very little overhead in practice. We showed that creation
of a proxy object takes an order of magnitude less time than the RMI lookup.
Deriving the interface—a one-time cost—is on the same order as the RMI lookup.
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