
The Soot framework for Java program
analysis: a retrospective

Patrick Lam, Eric Bodden, Ondřej Lhoták,
and Laurie Hendren

October 2011

This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License.

Soot

a compiler framework for Java (bytecode),
enabling development of static analysis tools.

Map of Reported Soot Users

Outline

About Soot
About Soot’s development

Soot Workflow

source
Java

source
Scala

source
Java

messages
Error

Graphs
HTML

source
Java

output
TamiFlex

javac scalac

class files

Produce Jimple 3−address IR

Generate Bytecode

Analyze, Optimize and Tag

JastAdd parser

Java Virtual Machine

Optimized/transformed class files + attributes

Soot

Eclipse

Case Study: A Soot Application
A. Orso and A. Rao and M. J. Harrold. “A Technique for
Dynamic Updating of Java Software”. ICSM 2002.

A
Class

Preprocessor

A’
(prepro-
cessed)

Proxy
Builder

ImplClass
Builder

A’
(wrapper) A’

(interface)

A’
(state) A’

impl

Soot inside!

The preprocessor e.g. converts field reads into method calls.

Case Study: A Soot Application
A. Orso and A. Rao and M. J. Harrold. “A Technique for
Dynamic Updating of Java Software”. ICSM 2002.

A
Class

Preprocessor

A’
(prepro-
cessed)

Proxy
Builder

ImplClass
Builder

A’
(wrapper) A’

(interface)

A’
(state) A’

impl

Soot inside!

The preprocessor e.g. converts field reads into method calls.

More Selected Soot Applications

Analysis of Concurrent Programs
Symbolic Execution
Combined Static and Dynamic Analysis
Approaches (static part, plus instrumentation
for dynamic analysis)

Features Working With Soot

Part I

About Soot

Features Working With Soot

We start by describing Soot’s features, namely:
intraprocedural features;
interprocedural features; and
getting results out of Soot.

Features Working With Soot

Intraprocedural Features

Provides three-address code.
Supports implementing dataflow analyses.

Features Working With Soot

Three-Address Code

public int foo(java.lang.String) {
// [local defs]
r0 := @this; // IdentityStmt
r1 := @parameter0;

if r1 != null goto label0; // IfStmt

$i0 = r1.length(); // AssignStmt
r1.toUpperCase(); // InvokeStmt
return $i0; // ReturnStmt

label0:
return 2;

}

Features Working With Soot

Connecting with Java source

Each Jimple statement

if r1 != null goto label0; // IfStmt

belongs to:
a SootMethod, e.g. foo(String), and
a SootClass, e.g. Foo,

reflecting the structure of the original source code.

You can also get:
line number information (if available), e.g. “Foo.java:72”.
original variable names (on a best-effort basis).

Features Working With Soot

Dataflow Analysis Example: “Live Locals”

Question:

At a given program point p, which locals v will be accessed in
the future?

void foo(boolean b) {
int x = 5, y = 2;

System.out.println(x);
if (b) {
x = bar(y*2);

} else {
foo(false);

}
System.out.println(x);

}

Features Working With Soot

Dataflow Analysis Example: “Live Locals”

Question:

At a given program point p, which locals v will be accessed in
the future?

void foo(boolean b) {
int x = 5, y = 2; // {x, y, b}

System.out.println(x); // {x, y, b}
if (b) { // {x, y}
x = bar(y*2); // {x}

} else {
foo(false); // {x}

}
System.out.println(x); // {}

}

Features Working With Soot

Dataflow Analysis Example: “Live Locals”

Soot’s Eclipse plugin helps you debug your flow analysis.

Features Working With Soot

Interprocedural Features

Call graph/pointer information
(Side effect analysis)
(Reflection)

Features Working With Soot

Why Call Graphs?

Sophisticated static analyses need to answer questions like:

foo() {
A o = ...;

o.bar();

}

class A {
bar() {

/* */
}

}
class B extends A {

bar() {

/* */
}

}

“Which methods might o.bar() reach?”

Features Working With Soot

Call Graphs in Soot

Spark (part of Soot) computes call graph edges, which contain:

Source method

Source statement (if applicable)

Target method

Kind of edge

source m. source stmt. target m. kind
• • • VIRTUAL

foo() {
o.bar();

}

bar() {
/* */

}

Features Working With Soot

Points-to Analysis

A closely related question:

Could x and y be aliases in:
x.f = 5;
y.f = 6;
z = x.f;

Spark can answer this question with a call to
hasNonEmptyIntersection() on points-to sets.

Features Working With Soot

Soot Output

There are many ways to get results out of Soot:

abc: reads Java and AspectJ source, produces Java
bytecode.
model checking: generate summaries (in Java bytecode
plus modelling primitives) of system environment
behaviour.
tracematch/race condition detection: generate error
messages or warnings.
side-effect information: generate attributes encoding the
information along with the Java bytecode.

Features Working With Soot

Running unaltered versions of Soot

Use Soot as a:
disassembler to three-address code;
bytecode optimizer; or
visualizer for CFGs and analysis results, in
Eclipse.

Features Working With Soot

Extending Soot

You can write a compiler pass extending Soot, as either a
BodyTransformer, for a intraprocedural analysis; or
SceneTransformer, for a whole-program analysis.

You choose where this pass should run by putting it in a Pack.

Use Maps or attributes to share analysis results.

We explicitly disallow subclassing of IR statements, based on
past experience. (Mixins would be OK).

To run extended Soot, you create a custom main class which
calls soot.Main.main().

Dev Process & Community Reflections Reflections & Conclusions

Part II

About Soot’s Development

Dev Process & Community Reflections Reflections & Conclusions

History

Initial release in 1999–2000; Soot 1.0.0 was an intraprocedural
Java bytecode analysis framework.

Dev Process & Community Reflections Reflections & Conclusions

Soot Evolution

(credit: persocomholic/flickr)

Stepwise evolution of key features:

1 Local variable type inference, initially by Gagnon et al; later by
Bellamy et al.

2 Call graph information, initially Variable Type Analysis by
Sundaresan et al; subsumed by Spark.

Dev Process & Community Reflections Reflections & Conclusions

Support and Community

(credit: Marsyas/Wikimedia Commons)

Main agora: Soot mailing list, about 30 messages/month.
Soot Bugzilla contains some bugs.
Soot Wiki is good for recording certain types of information.
Publicly readable Subversion repository; we’d welcome
external committers.

Dev Process & Community Reflections Reflections & Conclusions

Licensing

Soot is licensed under GNU Lesser General Public License.
We recommend choosing a license that works for you.

McLab (compiler framework for MATLAB) will be released
under the Apache 2.0 license.

Dev Process & Community Reflections Reflections & Conclusions

Documentation

Documentation is critical to framework success.
API carefully designed.
Some Javadoc documentation.
Soot tutorials.
Soot Survivor’s Guide by Einarsson and
Nielsen.
Plus: Helpful error messages.

Dev Process & Community Reflections Reflections & Conclusions

Future Improvements for Soot

Some future directions where we’d like to see Soot
improvements:

faster startup and computation time;
structured interprocedural analysis support;

Dev Process & Community Reflections Reflections & Conclusions

Future Improvements for Soot

(credit: wwarby/flickr)

Some future directions where we’d like to see Soot
improvements:

faster startup and computation time;
structured interprocedural analysis support;

Dev Process & Community Reflections Reflections & Conclusions

Future Improvements for Soot

(credit: Mike Hunt/Wikimedia commons)

Some future directions where we’d like to see Soot
improvements:

faster startup and computation time;
structured interprocedural analysis support;

Dev Process & Community Reflections Reflections & Conclusions

Reflections

Soot does what we expected it to do.
a surprise: unsound and incomplete analyses.

Challenges:
keeping up with external changes (e.g. in the Java
specification);
incorporating external extensions into Soot.

Dev Process & Community Reflections Reflections & Conclusions

Useful Features for Compiler Frameworks

While Soot doesn’t have these features, they
are indispensible for compiler frameworks.

some way of avoiding redundant
re-computations, e.g. incremental
computation;
quasiquoting, for easily generating code
from templates.

Dev Process & Community Reflections Reflections & Conclusions

Reflections on Compiler Frameworks

Our suggestions for compiler frameworks and the community:

make it easy to independently release extensions
(non-monolithic structure, like CPAN);
the community must value software and data releases;
we need more venues for framework papers.

Dev Process & Community Reflections Reflections & Conclusions

Reasons for Success

Soot:
provided the right features at the right time;
was easy enough to use (availability, license,
community).

Key features:
Jimple intermediate representation;
Spark pointer analysis toolkit.

Dev Process & Community Reflections Reflections & Conclusions

Thanks!

Soot’s development was supported in part by:
Canada’s Natural Science and Engineering Research
Council
Fonds de recherche du Québec—Nature et
technologies
IBM’s Centre for Advanced Studies, and an Eclipse
Innovation Grant.

Eric Bodden is supported by CASED (www.cased.de).

Dev Process & Community Reflections Reflections & Conclusions

Contributors

Initial Designer:

Raja Vallée-Rai
Maintainers:

Patrick Lam, Feng Qian, Ondřej Lhoták, Eric Bodden

Project Advisor:
Laurie Hendren

Contributors:
Ben Bellamy John Jorgensen Chris Pickett
Will Benton Felix Kwok Patrice Pominville
Marc Berndl Patrick Lam Feng Qian
Eric Bodden Jennifer Lhotak Hossein Sadat-Mohtasham
Phong Co Ondrej Lhotak Ganesh Sittampalam
Archie Cobbs Lin Li Manu Sridharan
Torbjorn Ekman Florian Loitsch Vijay Sundaresan
David Eng Jerome Miecznikowski Julian Tibble
Etienne Gagnon Antoine Mine Navindra Umanee
Chris Goard Nomair Naeem Raja Valée-Rai
Richard Halpert Matthias Perner Clark Verbrugge

Dev Process & Community Reflections Reflections & Conclusions

Dev Process & Community Reflections Reflections & Conclusions

External contributors

Ben Bellamy at Oxford (type assigner);
Torbjörn Ekman at Oxford (Java 5 parser);
Manu Sridharan, while at Berkeley (demand-driven pointer
analysis).

Dev Process & Community Reflections Reflections & Conclusions

Notable Changes in Soot

Over the years, we and others have improved
Soot:

a single singleton;
dealing with partial programs;
better front-end parsers;
demand-driven efficiency improvements.

Dev Process & Community Reflections Reflections & Conclusions

List of Soot Users
McGill University, 3605, rue de la Montagne, Montreal, QC H3G 2M1, Canada
Rutgers University, United States
University of Washington, United States
University of Alberta, Canada
Georgia Tech, Atlanta, GA, USA
Portland State University, Portland, OR 97201, USA
Imperial College London, United Kingdom
Rensselaer Polytechnic Institute, Troy, NY 12180, USA
The Ohio State University Airport, United States
Allegheny College, 520 N Main St, Meadville, PA 16335, USA
University of Alabama, United States
University of Warwick, CV8, UK
Dortmund University of Technology, August-Schmidt-Straße 4, 44227 Dortmund, Germany
Kansas State University, Manhattan, KS 66502, USA
Drexel University, Philadelphia, PA 19104, USA
Brigham Young University, 350 Clyde Bldg N, Provo, UT 84602, USA
University of Buenos Aires - Buenos Aires, Capital Federal, Argentina
University of Waterloo, Canada
UC Berkeley, Oakland, CA, USA
University of Maryland
Hawthorne, NY, USA
University of Aarhus, Birk Centerpark 15, 7400 Herning, Denmark
imec Ieper, Ter Waarde 44, 8900 Ypres, Belgium
MIT, Cambridge, MA, USA

Dev Process & Community Reflections Reflections & Conclusions

List of Soot Users II
University of Pittsburgh, Pittsburgh, PA, USA
Strathclyde University, University of Strathclyde, Glasgow, Glasgow City G4 0, UK
Uppsala, Sweden
University of California Davis, United States
Rocquencourt, France
Cornell University, Ithaca, NY, USA
Paris, France
University of Delaware, Lewes, DE 19958, USA
Radboud University, Comeniuslaan 4, 6525 HP Nijmegen, The Netherlands
University of Geneva, Rue du Général- Dufour 24, 1211 Genève 4, Switzerland
University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
Victoria University of Wellington, Rutherford House Level 5/23 Lambton Quay, Pipitea 6011, New Zeala
Tel Aviv University, Tel Aviv, Israel
Haifa, Israel
University of Alabama, United States
École Polytechnique, Montreal, QC, Canada
University of Sannio, UniversitÃ del Sannio di Benevento, Piazza Guerrazzi, 1, 82100 Benevento, Ita
UC Irvine School of Humanities, University Dr, Irvine, CA 92697, USA
Vienna University of Technology, Karlsplatz 13, 1040 Vienna, Austria
University of Hull, Scarborough, North Yorkshire YO11, UK
EPFL, 1015 Ecublens, Switzerland
University of Nebraska-Lincoln, Lincoln, NE 68508, USA
University City, Pennsylvania, USA
Syracuse University, Syracuse, NY 13210, USA

	About Soot
	About Soot's Development

