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ABSTRACT
Modern software is often developed over many years with hundreds
of thousands of commits. Commit metadata is a rich source of so-
cial characteristics, including the commit’s time of day and the ex-
perience and commit frequency of its author. The “bugginess” of
a commit is also a critical property of that commit. In this paper,
we investigate the correlation between a commit’s social charac-
teristics and its “bugginess”; such results can be very useful for
software developers and software engineering researchers. For in-
stance, developers or code reviewers might be well-advised to thor-
oughly verify commits that are more likely to be buggy.

In this paper, we study the correlation between a commit’s buggi-
ness and the time of day of the commit, the day of week of the com-
mit, and the experience and commit frequency of the commit au-
thors. We survey two widely-used open source projects: the Linux
kernel and PostgreSQL.

Our main findings include: (1) commits submitted between mid-
night and 4 AM (referred to as late-night commits) are significantly
buggier and commits between 7 AM and noon are less buggy, im-
plying that developers may want to double-check their own late-
night commits; (2) daily-committing developers produce less-buggy
commits, indicating that we may want to promote the practice of
daily-committing developers reviewing other developers’ commits;
and (3) the bugginess of commits versus day-of-week varies for dif-
ferent software projects.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement; D.2.9 [Software Engineering]: Management

General Terms
Human Factors, Management, Measurement, Reliability
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Bug Detection, Empirical Study, Source Control System
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1. INTRODUCTION
Software users demand high software reliability. However, as

software complexity increases, bug counts and rates inevitably rise,
which undermine software reliability. The modern software devel-
opment paradigm further complicates the situation: many modern
software projects, including the Linux kernel, PostgreSQL, Eclipse,
and Apache, are developed by tens to thousands of developers, over
decades, in a distributed manner. The software often receives tens
of thousands or hundreds of thousands of commits (Section 3).
Developers with different programming experience, time commit-
ments, working hours, programming styles, and from diverse cul-
tures across the world, work on the same software project at differ-
ent times and in different time zones. They join and leave projects
at their own pace over periods of decades. Code developed in the
modern paradigm can therefore have different social characteristics
from older, more homogeneously-developed projects; these charac-
teristics can best be measured by going beyond the code itself and
into the social characteristics of the code.

Software social characteristics provide a rich and unique source
of information for us to understand software and its bugs. As an
example, it would be helpful to know if a commit’s timestamp (in-
cluding features such as time of day, day of week, etc.) affects
the quality of that commit — are commits submitted after midnight
buggier than other commits? Such correlations may be useful for
predicting what commits are more likely to be buggy so that we
can budget more testing effort on these commits, following prior
studies [3, 4, 6, 8, 12, 13, 15, 17, 23, 24], which predict buggy
locations based on code complexity, code locations, the amount of
in-house testing, historical data, socio-technical networks, etc. A
second interesting question is whether more experienced develop-
ers are more or less likely to write buggy commits.

Contributions.
In this paper, we study the social characteristics of modern soft-

ware development to understand the correlation between these so-
cial characteristics and the bugginess of commits to the software—
the likelihood that a particular commit is later fixed, as determined
by the fixing author. Specifically, we study the latest versions of
the Linux kernel and PostgreSQL, which have 222,332 and 31,098
commits, respectively. We study the correlation between a com-
mit’s bugginess and the time of day of the commit, the day of week
of the commit, and the experience and commit frequency of the
commit authors. In addition, we study several other commit char-
acteristics, such as comment-only fixes and bug lifetimes. To the
best of our knowledge, we are the first to study the correlation be-
tween the commit time of day and the commit correctness.

To study the correlation between commit time and commit bug-
giness, we start from bug-fixing commits, commits that fix software



bugs, and then mine the version control history to discover when
the corresponding bugs were introduced [19]. Our methodology
enables us to observe circumstances where bugs are more likely to
be introduced. Note that we simply use “bug” to denote code that
is later changed, even though such code may objectively be correct;
we expand on this discussion later, in Section 2.

It is difficult to find bug-fixing commits in the sea of software
commits. Prior work [19] defines a bug-fixing commit to be a
commit whose commit message contains a bug ID that links to a
bug report in a bug database. While this approach works for some
projects, like Mozilla, it does not work for software whose commit
messages rarely contain links to bug reports, like the Linux kernel.
We have observed that only 2.3% of the bug-fixing commits in the
Linux kernel are linked to a bug report. We address this problem
by applying heuristics that scan commit messages; they do not rely
on any links between bug commits and bug reports to extract bug-
fixing commits. Our heuristics have a precision of 86%-87% in
identifying bug-fixing commits (Section 3).

Our major findings are summarized below (§ denotes the section
where the finding and its implications are discussed):
• Finding 1 (§3.1): About a quarter (23.7–25.5%) of all the com-

mits in the Linux kernel and PostgreSQL are labelled buggy—
they require further developer activities to fix them.

• Finding 2 (§3.2): Commits that are checked into the software
repository around midnight (between 0:00–4:00 AM) are more
likely to be incorrect than average, while commits in the morn-
ing (7:00 AM–noon) are more likely to be correct. The result
indicate that developers may want to double-check the code they
write for these late-night commits (0:00–4:00 AM). It may also
be beneficial for the version control system to warn the develop-
ers of late-night commits to improve software reliability.

• Finding 3 (§3.3): Developers who commit to the repository on
a daily basis write less-buggy commits, while developers who
appear to work on a project as part of their day-job are more
likely to produce bugs, indicating that we may want to promote
the practice of daily-committing developers reviewing other de-
velopers’ commits.

• Finding 4 (§3.5): In contrast to a prior finding that Friday com-
mits are buggier [19], our results on the Linux kernel and Post-
greSQL show that the bugginess differences of commits that are
checked in on different days of week are small. We found that
the bugginess per day-of-week for commits varies for different
software projects, implying that bugginess prediction based on
day-of-week may need to be calibrated on a per-project basis.

2. EXPERIMENTAL METHODS
Our overall goal is to investigate the properties of “buggy”, or

bug-introducing, commits. We define a bug-introducing commit
to be any commit for which there exists a later bug-fixing commit
that purports to fix the bug. A single bug-fixing commit may fix
bugs introduced in multiple bug-introducing commits. Despite our
terminology, a bug-introducing commit is not necessarily bad code;
it is possible that the later fix is adaptive or perfective, updating
the code to work with changes in third-party code, or reflecting a
change in requirements.

2.1 Core Methodology
Following [19], our methodology has three steps: 1) enumerat-

ing bug-fixing commits; 2) identifying the lines changed in each
bug-fixing commit; and 3) finding the commits which were respon-
sible for the previous (buggy) version of each of the changed lines.

Commit : 2 c d c 0 3 f e . . .
Author : A l i c e < a l i c e @ p r o j e c t . com>
Message : I f i x e d a bug !

@@ −100 ,1 +100 ,1 @@
− i f ( i <= 128) {
+ i f ( i < 128) {

Figure 1: An example bug-fixing commit

f 4 c e 7 1 8 c . . . 100 i f ( i <= 128) {

Figure 2: git blame output for the bug-fixing commit

Commit : f 4 c e 7 1 8 c . . .
Author : Bob < bob@pro jec t . com>
Message : I hope t h i s works .

@@ −100 ,0 +100 ,5 @@
+ i f ( i <= 128) {
+ d o _ a s c i i ( i ) ;
+ e l s e {
+ do_un icode ( i ) ;
+ }

Figure 3: Associated bug-introducing commit for the example

We describe each of these steps in more detail. First, to detect bug-
fixing commits, c, we searched the commit messages for the key-
word “fix” (as do [18]). In our experience, most developers indicate
that a change is a fix by including the keyword “fix” in the commit
message. Section 3 explains how we verified this intuition, and our
results show that the precision of this heuristic for identifying bug-
fixing commits is 86%–87%. Next, we computed diffs for each file
changed in c, omitting comments, and recorded the line numbers
Lc which c changed. Finally, we searched the repository meta-
data (as implemented by the “git blame” command) to identify the
bug-introducing commits, c′, which changed the lines Lc. In this
step, we used git blame’s -w option, which ignores whitespace in
attributing responsibility for a code change, which addresses some
inaccuracies that exist in other version control systems such as CVS
and Subversion, as discussed by Kim et al [11].

Example.
Figure 1 presents an example of a bug-fixing commit. Commits

consist of a commit id, which is a hash of the commit’s contents,
represented as a hexadecimal number1; an author, identified by a
name/email address pair; a commit message, which contains the
keyword “fix”; and a diff, showing the lines the commit modified.

First, we find the commit in Figure 1 by searching the commit
logs for the keyword “fix”, which is indeed a substring of the com-
mit message, “I fixed a bug!”. Next, we observe that the commit
modifies line 100 of an (unidentified) file—in this case, the origi-
nal author used less-than-or-equal (<=) instead of strictly-less-than
(<), and the bug-fixing commit changes the comparison operator to
the presumably-correct one. Finally, we perform a “git blame” on
this commit, which shows the commit responsible for the previous
version of line 100. Figure 2 presents plausible “git blame” output,
which shows that the source of the bug fixed in Figure 1 is the com-

1Following common practice, we drop trailing digits of the commit
id: our commits have ids with unique first-8-digits.



mit whose id begins with f4ce718c, as shown in Figure 3. We flag
this commit as a bug-introducing commit and store both the bug-
introducing commit f4ce718c and its bug-fixing commit 2cdc03fe
in our database, along with an association between these two com-
mits. If a bug was introduced by multiple commits, then all of these
bug-introducing commits are stored in our database.

Any change in c which removes or modifies an existing line of
code is easy to attribute to a previous commit c′, since the affected
line of code existed in c′. However, a change in c which adds a new
line of code has no corresponding change in any previous revision,
since that line did not previously exist. In that case, we attribute re-
sponsibility to the commit which introduced the line just before
the new line. This heuristic does not work for bug-introducing
changes in newly-introduced files. Fortunately, our data show that
such changes are extremely rare, so ignoring them should not affect
the validity of our study.

2.2 Data Collected
Executing the above algorithm gives us data about the bug-fixing

and bug-introducing commits in each repository, as well as about
the authors of these commits. We record the following data for
each commit: author (as a name/email pair); adjusted local time (as
described below); number of lines changed; and number of times
the commit introduced a bug later corrected (which is derived data;
we record it to simplify later database queries). We also record a
relation connecting bug-introducing commits and bug-fixing com-
mits. For each author, we record the name, email(s) and commit
frequency classification (defined below). We define a bug’s lifetime
to be the time from the earliest commit which introduced the bug
to the bug-fixing commit.

We compute each author’s commit frequency classification, based
on the frequency of an author’s commits to a particular project,
and author experience at commit time for each patch, based on the
elapsed time between that author’s first commit to the project and
the commit time.

The author commit frequency classification describes the author’s
most-common frequency between two consecutive commits by that
author: daily, weekly, monthly, other (less than 20 commits and
more than 1 commit), and single (only 1 commit). For the au-
thor commit frequency classification, we count consecutive com-
mits within 30 minutes of each other as one commit. As a sub-
class of the daily committer classification, we also use a heuristic
to identify committers who appear to work on the repository as part
of their day job, namely those for which 85% of commits are be-
tween 8 AM and 4 PM Monday to Friday (see Section 2.3 for more
discussion on this heuristic). This is to separate developers who
must work on the code from those who are motivated by interest.

Author experience reports the amount of time since an author’s
first commit to a project. To study the correlation between commit
bugginess and author experience, we calculate the author’s expe-
rience at the time of the commit. For example, author X’s first
commit to the Linux kernel was on March 28, 2009, so that com-
mit is by an author with 0 days of experience. Then, the second
commit was on April 13, 2009, so it is by an author with 16 days of
experience. We bin the commits by author experience and present
the percentage of buggy commits for each author experience bin.

Time zone adjustments.
All PostgreSQL commits prior to September 18, 2010 (when the

project switched to the Git version control system) contain times-
tamps only in UTC (Coordinated Universal Time), meaning that no
local time zone information was recorded. To enable us to reason
about time-of-day effects for committers, who work in local time

zones, we used publicly-available information (such as the Post-
greSQL contributor-information page, which lists locations for fre-
quent contributors, as well as time zones included in mailing list
messages) to deduce time zones for all 34 PostgreSQL commit-
ters. We then used the Python time zone utilities to convert the
time for each commit (which was in UTC for CVS commits, and
in local times for Git commits) into a local time for the committer.
We assume that each committer is indeed in the time zone we have
estimated for that committer; we discuss this threat to validity in
greater detail below.

2.3 Threats to Validity
We discuss several threats to validity and how we address them,

including general threats to construct validity and external validity,
and specific threats to our particular methodology, including repos-
itory threats, recall and precision threats, and author identification
threats.

General threats.
Construct validity requires that we correctly identify bug-fixing

and bug-introducing commits. To assess threats to construct valid-
ity, we determine our confusion matrix by randomly sampling 200
commits from each project and manually verifying whether or not
they are indeed fixes. False positives and false negatives contribute
to precision and recall; Section 3 presents our evaluation of preci-
sion and recall in greater detail.

While we believe that the commits from the software that we ex-
amined well represent commits in open source software, we do not
intend to claim external validity and draw any general conclusions
about all software. Like any other characteristic study, our findings
should be considered together with our evaluation methodology.

Repository data threats.
We expect our methodology to properly account for developers

in different time zones. Git records each developer’s local time
(and time zone) with a commit, thereby avoiding potential impreci-
sions in our time-of-day results. This works well for the Linux ker-
nel repository, which is a native Git repository as of 2005. (Older
Linux repository information does not accurately record time-of-
day information for commits.) In that repository, the local time
might be inaccurate if a developer commits from a server in a dif-
ferent time zone; however, because Git was designed to work best
when developers commit to local workstations, we expect that most
of the 8000 Linux kernel contributors will commit locally on a ma-
chine with accurate local time. The accuracy of the commit times
for the PostgreSQL repository depends on the accuracy of our time
adjustment algorithm for the part of the history that was originally
a CVS history. We believe that committers do not often change
time zones2 and that they usually work from their home time zone,
but the validity of our adjustment does depend on the validity our
assumptions about home time zones. We present all of our results
in the local time of the committer, when relevant.

We ignore Git merge commits, which record metadata about in-
tegration between different maintainers’ trees. PostgreSQL does
not use merge commits. Merge commit will never introduce or fix
bugs; that will be attributed to one of the specific commits being
merged.

Because the PostgreSQL repository was converted from CVS to
Git, the accuracy of the conversion is another potential threat to
2We were able to identify one move of a committer from Ontario,
Canada to California, and incorporated that move into our adjust-
ments, but did not find evidence of many such moves in our set of
PostgreSQL contributors.



validity. In particular, CVS does not have a notion of atomic multi-
file commits, while Git does, and our methodology relies on the
existence of such commits. The PostgreSQL conversion used the
standard cvs2git tool, with customizations for their particular
repository [5]. The existence of these customizations lead us to
believe that the conversion was performed with care, mitigating
threats to validity from repository corruption. Also, note that the
conversion to Git obviates the need to mine transactions from CVS
histories, as in [25].

We excluded commits that merge different branches from our
study, because including these merging commits would double-
count a commit, once for the original commit and once for the
merging commit. Note that merging commits account for only
6.25% of all commits.

Threats due to imperfect recall.
Because our methodology only identifies bugs which have later

been corrected, it will omit recently-introduced bugs, as well as
longer-running bugs which have not yet been corrected. Further-
more, our recall of 71% for PostgreSQL and 73% for the Linux
kernel means that our methodology does not manage to identify
some of the bug fixes in the repository histories.

While these threats imply that our results will omit some bugs,
we do not believe that this omission affects our validity. There
is no reason to believe that there are important differences in the
characteristics we measure for fixed and unfixed bugs, nor between
fixes labelled “fix” and fixes without that label. In other words,
we believe that our sample is representative of bug-introducing and
bug-fixing commits for these software projects.

Threats to commit characteristics.
The next family of threats concerns commit characteristics, in-

cluding the attributed time and author information for a commit.
These threats do not apply to the Linux kernel repository, as the
Linux kernel community uses the merge functionality of Git to pre-
serve commit metadata from external contributors. The implica-
tions of Linux’s Git merges on our data are that 1) the commit time
reflects the initial author’s commit decision, and 2) the attributed
author of a commit actually wrote the commit.

Most PostgreSQL patches are committed by someone other than
the author of the patch: the set of PostgreSQL committers is quite
small, so external PostgreSQL commits will always be attributed to
a member of the PostgreSQL team. Although Git can record both
the author and committer of a patch, the PostgreSQL community is
currently requiring that the “author” field of a patch always equal
its “committer” field. Third-party commits add uncertainty about
when a patch was originally written, and confound our data about
patch authors. We believe, however, that even for PostgreSQL, it is
reasonable to ascribe responsibility for the patch to its committer,
who would presumably review a patch before committing it.

Developers work on a patch over a possibly discontiguous time
interval. However, the final commit only indicates the endpoint
of that interval. The bug database may contain more information
about the starting point of the interval (e.g. it records when a bug is
assigned to a developer), but still does not capture any information
about the work patterns of the developer within the interval. Some
Git repositories, including some Linux kernel sub-repositories, do
contain more information about intermediate local commits by de-
velopers, which can help understand the evolution of a commit.
There may be correlations between a patch’s evolution and its code
quality, and we intend to investigate these issues in future work.

Finally, we discuss threats to our author classification. Some
Linux kernel authors commit from several email addresses and with

variations in their names. To clean our author data, we first merge
authors with different names but the same email addresses. Then,
we merge authors who share the same full name. This is not an
issue for PostgreSQL: when they converted their repository to Git,
they also normalized all author email addresses, so that each author
has a single email address.

Our day-job classification for authors is based on the fixed hours
of 8 AM–4 PM and Monday–Friday days of the week. Many soft-
ware companies have flexible hours; however, we expect that devel-
opers who are directed to work on a project as their day job would
still have the bulk of their commits between those hours. The day-
job classification applies only to the Linux kernel committers; no
PostgreSQL committers satisfy our day-job criterion. Note that this
classification attempts to measure whether developers are working
on the project of their own volition or not: some Linux committers
are paid to work on Linux, but commit at all hours of the day. We
believe that, in such cases, the committer has substantial autonomy
in choosing what to work on, and is not being directed to work on
specific parts of the project. Similarly, even though most of the
core PostgreSQL team have PostgreSQL-related employment, we
believe that they are not directed to work on PostgreSQL, which
would account for the observation that most of their commits to
PostgreSQL occur outside normal working hours.

Our author experience only counts the participation of an author
to a particular project; a highly-experienced developer may be clas-
sified as an inexperienced developer for one of our projects due to
a short history of contributions to that project. Therefore, the au-
thor experience in this paper should be interpreted as the author’s
experience with the target project. It would be possible to survey
developers’ participation across multiple projects by studying the
public record, but such a study is beyond the scope of this paper.

3. RESULTS
In this section, we present the results obtained from carrying out

our methodology, and discuss some of the implications of our re-
sults. Most of our results investigate the effect of an independent
variable (time-of-day and developer experience/frequency classi-
fications) on the likelihood of a commit to be a bug-introducing
commit, or bugginess. We also describe our findings with respect
to the day of the week, which allows us to compare our results
to those in [19]. We also discuss our finding that some bug-fixing
commits only changed comments. Finally, we explain the precision
and recall of our methodology and how we computed these figures.

3.1 Project Characteristics
We chose two large open-source software repositories for our

investigations: Linus Torvalds’s mainline Linux kernel and Post-
greSQL. Table 1 summarizes the characteristics of our repositories.
The row “lines of code” refers to the current size of the code in the
repository. The row “# bug-introducing” shows that 23.7–25.5%
of the commits are buggy, which is slightly lower than the previ-
ously reported figure of nearly 40% for a commercial switching
system [18]. Note that the PostgreSQL repository was carefully
converted from CVS using cvs2git in September 2010. We dis-
cussed the quirks of the PostgreSQL repository in Section 2.

3.2 Time-of-day
Figure 4 presents our results correlating the time-of-day of a

commit with its bugginess. The graphs compare the time-of-day
of each commit, in the committer’s local time on a 24-hour clock,
to the percentage of bug-introducing commits. The solid horizon-
tal line indicates the overall percentage of buggy commits in each
project; bars shorter than the line indicate that commits at that hour
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Figure 4: Percentage of buggy commits (bars) and total number of commits (circles) versus time-of-day
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Figure 5: Subsequent bug fixes per commit (bars) and total commits (circles) versus time-of-day

Linux kernel PostgreSQL
First commit April 16, 2005 July 9, 1996
Cloned November 21, 2010 January 24, 2011
Lines of code over 5 million over 750,000
Number of authors 8,594 34
Number of commits 222,332 31,098
# bug-introducing 56,681 (25.5%) 7,366 (23.7%)
# bug-fixing 57,028 4,399

Table 1: Characteristics of the Linux kernel and PostgreSQL
repositories.

were less likely to be buggy, while bars taller than the line indicate
hours with more-buggy commits. The graphs also contain the raw
number of commits at each hour, indicated by circles.

Figure 4, which summarizes bugginess percentages, shows a no-
ticeable increase in the amount of commits which introduce a bug
between 00:00 (midnight) and 04:00 (4 AM). After 04:00, com-
mits tend to be less buggy than average, gradually increasing un-
til noon. In the Linux kernel, commits between noon and mid-
night fluctuate around the average bugginess level, while the Post-
greSQL commits are generally above the average bugginess level
between 16:00 (4 PM) and 20:00 (8 PM), and then below the av-
erage bugginess level between 20:00 (8 PM) and 00:00 (midnight).

Figure 5, which shows the number of subsequent bug-fixing com-
mits for each bug-introducing commit (indicating how difficult it
was to correct a bug), follows the trends from Figure 4. Note that
even the smallest total number of commits, for any hour, is 139
for PostgreSQL (and an order of magnitude higher for the Linux
kernel), so that all of the depicted bug introduction rates are mean-
ingful.

We also investigated correlations between the time-of-day and
the number of bug-fixing commits, rather than the bug-introducing
commits that we showed above. The proportion of total commits
that are bug-fixing commits stayed almost constant, independent of
the hour; the graphs (not shown) have exactly the same shape as
that of the circles in Figure 4. This suggests that the fact that a
commit is bug-fixing is independent of its other characteristics.

Table 2 presents p-values evaluating the statistical significance of
the per-hour commit bugginess for Linux and PostgreSQL. The null
hypothesis is that each hour has the same probability as the overall
bugginess for each project. Typically, a p-value less than 0.05 in-
dicates that the null hypothesis is rejected, and the corresponding
result is considered to be statistically significant. Therefore, our
p-value results show that the differences in bugginess of different
hours are statistically significant. Concretely, the p-values allow us
to conclude that commits introduced between 00:00 (midnight) and
04:00 (4 AM) are buggier than average with statistical significance.



P-value
Hour Linux kernel PostgreSQL

0 9.62E-18 0.245
1 4.59E-18 0.00205
2 1.62E-19 0.00748
3 0.197 0.0382
4 0.232 0.0348
5 0.173 0.133
6 0.0116 0.464
7 1.56E-15 0.308
8 2.62E-26 0.0494
9 4.54E-20 3.80E-6

10 3.25E-11 0.00108
11 6.88E-6 0.00179
12 6.13E-7 2.63E-4
13 0.0255 0.258
14 0.00447 0.114
15 0.366 0.386
16 0.436 2.40E-5
17 0.00929 0.0456
18 0.301 0.00176
19 0.471 2.70E-4
20 0.0695 0.00314
21 4.91E-6 0.311
22 0.00115 0.00433
23 2.42E-4 0.0509

Table 2: Linux kernel and PostgreSQL bugginess p-values

Discussion.
Code does not spontaneously improve if left to “mature” for 4

hours; our results do not indicate causation, but instead demon-
strate a correlation between code committed early in the morning
and increased bugginess. We do not speculate about the cause of
this correlation; however, the results in Section 3.4 imply that this
correlation holds for both inexperienced and experienced develop-
ers. Our results do suggest that developers, being aware of such
a correlation, may want to double-check code before performing
late-night commits (midnight–4:00 AM). It may also be beneficial
for version control systems or IDEs to warn developers about the
perils of late-night commits. Our p-values indicate that our ob-
served bugginess differences between late-night/early-morning and
all other commits are statistically significant.

Our results also suggest that tired developers (midnight–4 AM)
are more likely to miss corner cases in a pre-commit review (for
PostgreSQL) or while finalizing their patch (for the Linux kernel).
Furthermore, we can observe that commits before noon are least
likely to be bug-introducing; perhaps committers are most careful
in those hours.

3.3 Developer Characteristics
We next present our findings with respect to developers’ commit

frequency and experience. Developers’ commit frequency summa-
rizes the frequency of a developer’s contributions to a project, while
developer experience tracks how long a developer has contributed
to a particular project.

3.3.1 Commit Frequency Classification
As we described in Section 2.2, one of the ways that we classify

developers is according to frequency, i.e. most-common interval
between consecutive commits—daily, weekly, monthly, other, or
single. This information is only interesting for the Linux kernel, as
almost all (28/34) of PostgreSQL’s committers are daily. We com-
puted the bugginess rates for each of these classes of developers
and plot author classification versus bug-introduction percentage
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Figure 6: Linux percentage of buggy commits (bars) and num-
ber of commits (circles) versus author classification

in Figure 6. The graph also presents the number of commits by
each class. Note that the Linux kernel has 49 day job authors, who
provide quite a few of the total commits, 801 daily authors, who
account for the overwhelming majority of commits, 238 weekly,
288 monthly, 3562 other (less than 20 commits and more than 1
commit), and 3664 single-commit authors.

Our results show that the Linux kernel developers who commit
changes daily, but not as their day job, produce the largest num-
ber of commits and the smallest number of bug-introducing com-
mits, followed by the single-commit authors (whose patches would
presumably be simple or closely-reviewed). The day job, weekly,
and monthly committers all produce slightly more bug-introducing
commits than average.

Discussion.
A possible cause for the difference between day-job and daily

committers is that day-job developers might be required to make
changes by their employers, while the daily developers are moti-
vated purely by interest, and unlikely to be pressured to fix bugs on
any particular schedule.

3.3.2 Developer Experience
Figure 7 compares author experience at time of commit to the

bugginess of the commit. It also presents the total number of com-
mits by author experience. Note that a plurality of Linux commits
are by authors with fewer than 120 days of experience. Both the
Linux and PostgreSQL data show that bugginess decreases with
increased author experience. For Linux, authors with at least 960
days of experience tend to produce commits that are less buggy
than average, while the similar point for PostgreSQL occurs at 3000
days. The PostgreSQL data also shows a spike at the right, which
implies surprisingly high bugginess in code recently committed by
the original authors.

Discussion.
Our data shows that, in general, the more experienced the de-

velopers are, the less likely that their commits are buggy. With-
out further data, this correlation does not prove that the developer
experience caused more experienced programmers’ commits to be
less buggy. While we believe the above causation to hold, other
interpretations are possible; perhaps more experienced developers
wrote more complex code, whose bugs are harder to discover and
less likely to be reported. Nonetheless, our results show that, given
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Figure 7: Percentage of buggy commits (bars) and total number of commits (circles) versus author experience

the fact that a commit is from a more experienced developer, one
can be more confident about the correctness of the commit. Such a
correlation could be exploited to help predict buggy code locations.

One can observe a decline in the total number of commits with
experience. We believe that this is due to our sliding scale for au-
thor experience. Consider an author who has committed for 5 years.
His or her commits do not show up in a single circle at the 1800-
day mark; instead, they are distributed throughout the 5 years of
the commits, so that a commit on the author’s second birthday gets
reported as a commit at day 700. One would therefore expect more
commits from “inexperienced” developers, since all developers go
through an inexperienced phase, while only a small number of de-
velopers reach the more experienced phase.

We do not understand the spike in percentage of buggy com-
mits to the right of the PostgreSQL graph. Possible reasons include
the shift to Git, which is a known historical event, or, more spec-
ulatively, perhaps PostgreSQL recently undertook major ongoing
architectural revisions, carried out by the experienced developers.

3.4 Combined Time-of-day and Experience
Figure 8 combines data from Section 3.2 and 3.3.2 and correlates

time-of-day with commit bugginess for inexperienced and experi-
enced developers, plotted separately, for Linux. We used a cutoff of
2 years to separate inexperienced and experienced developers; this
cutoff divides the number of commits into two approximately-equal
groups. Horizontal lines in the figure represent overall bugginess.

We can see that inexperienced developers tend to do more com-
mits between midnight and 2 AM than experienced developers,
who do more commits between 8 AM and 4 PM. However, there is
a common trend for both; late night commits (especially between
midnight and 2 AM) are more buggy and early morning commits
(between 6 AM and noon) are less buggy.

Discussion.
This result suggests that the correlation between time-of-day ver-

sus bugginess is independent of experience for Linux developers; it
occurs for both inexperienced and experienced developers. It also
shows that experienced developers are much less likely to commit
a bug; the average bugginess for experienced Linux developers is
around 21%, versus to 30% for inexperienced developers.

3.5 Day-of-week
Our next experiment attempted to replicate the results in [19],

and correlates the day of the week of a commit with its buggi-

ness. Figure 9 compares the day of the week with the bugginess
of the commits on that day (bars), and also displays the total num-
ber of commits per day (circles). Here, the solid horizontal line
presents the overall bugginess of all commits to each project. Fig-
ure 10 presents the number of subsequent bug-fixing commits for
each bug-introducing commit per day-of-week.

Our results, which use a disjoint set of repositories from those
in [19], found about the same bugginess and number of introduc-
tions for each day in the Linux kernel repository, with the low-
est bugginess on Sunday and highest on Monday; for the Post-
greSQL repository, we observe a slight decrease in bugginess on
Tuesday, and a noticeable increase on Sunday. These results are
statistically significant with a p-value less than 0.05. Note that, for
Linux, Saturday and Sunday each have about half as many com-
mits as the other days of the week (commits peak on Tuesday and
steadily decrease through Friday). For PostgreSQL, commits fluc-
tuate through the days of the week and decrease to about 70% of
the weekday volume on the weekend.

Discussion.
We found that commits on different days of week have about the

same bugginess, which does not agree with results from the prior
study on two different open source projects [19]. We also found
that the bugginess per day-of-week for commits varies for different
software projects, implying that bugginess prediction based on day-
of-week may need to be calibrated on a per-project basis.

3.6 Bug Lifetimes
Recall that the bug lifetime is the amount of time elapsed be-

tween the bug-introducing commit and its bug-fixing commit. Fig-
ure 11 shows bug lifetimes for the Linux kernel and PostgreSQL,
grouped in 120 day intervals. We found the average bug lifetime
for the Linux kernel is 1.38 years with a standard deviation of 1.35
years. The average bug lifetime for PostgreSQL is 3.07 years with
a standard deviation of 3.19 years. Note that the distribution of bug
lifetimes is similar for both projects; many bugs are fixed within a
120 day period and the overall lifetime appears to decrease expo-
nentially.

Discussion.
PostgreSQL may have a longer average bug lifetime due to being

a smaller, less complex project with a smaller user base. We found
the sources of the long-time bugs include race conditions, incorrect
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Figure 8: Percentage of buggy commits (bars) and total number of commits (circles/triangles) versus time-of-day for inexperienced
and experienced Linux kernel developers
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Figure 9: Percentage of buggy commits (bars) and total commits (circles) versus day-of-week

calculations and rare corner cases; such cases are intuitively more
likely to be found with a larger user base.

3.7 Comment-only Commits
A surprisingly large number of bug-fixing commits reported 0

changed lines of code. We performed a random sample on 50 of
these commits for each project and found that almost all of them
only changed comments in the source code, which we did not count
as changed lines of code. For the Linux kernel 2.15 ± 0.10%3

of the bug-fixing commits (1,226 commits4) were on comments
only. We followed the same procedure for PostgreSQL and found
2.97± 0.45% (about 131 commits) of bug-fixing commits were on
comments only. These hundreds and thousands of comment-only
commits show that developers spend a nontrivial amount of time
purely maintaining the correctness of comments; these numbers do
not even consider the amount of time that developers incidentally
update comments along with the code.

3.8 Validation
To validate our results, we estimated the precision and recall of

our technique for identifying bug-fixing commits on both projects.
3We report the margin of error with 95% confidence level.
4Estimated based on the percentage of comment-only commits and
the total number of bug-fixing commits.

As our algorithm for identifying the associated bug-introducing
commits was a straightforward application of git blame, we did
not systematically verify its performance. (A brief manual inspec-
tion of bug-introducing commits did not reveal any anomalies.) For
both projects, we randomly sampled 200 commits and manually
verified the results. Table 3(a) and 3(b) summarize our findings.

Predicted
Fix ¬Fix

Actual Fix 48 18
¬Fix 7 127

(a) Linux kernel

Predicted
Fix ¬Fix

Actual Fix 30 12
¬Fix 5 153

(b) PostgreSQL

Table 3: Confusion matrices

We evaluated the precision—that is, the proportion of identified
bug-fixing commits which do indeed fix bugs—and found that, for
the Linux kernel, 48 of the 55 bugs that we automatically identi-
fied as bug-fixing commits did indeed fix bugs, while 7 did not;
for PostgreSQL, 30 of 35 identified fixes were indeed fixes. Some
misclassifications included: 1) a commit message which fixed a
merge commit was classified as a fix; 2) apparently garbled com-
mit messages which included the keyword “fix” for no good reason;
3) changes which were reverted (in the alleged “fix”) but then re-
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Figure 10: Subsequent bug fixes per commit (bars) and total commits (circles) versus day-of-week
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Figure 11: Histogram of bug lifetime counts

added in a later version; 4) poor uses of version control systems
which included many different changes in a single commit, includ-
ing a fix as a small part of the commit; and 5) refactoring changes,
which moved or renamed functions; these could arguably be con-
sidered to be fixes to a buggy initial design.

Our recall—the proportion of bug-fixing commits in the entire
sample that our technique identifies—is 73% for Linux and 71%
for PostgreSQL.

4. RELATED WORK
We survey work related to our study of factors affecting bug-

giness (namely, day-of-week); prior work on empirical studies of
commits; studies of bugginess in distributed software development;
and empirical studies on bug lifetime.

Day of Week of Commits.
The most closely related work to ours, Śliwerski et al [19], stud-

ied the day of the week of commits for two totally different projects,
Eclipse and Mozilla, and found that the commits on Fridays are
buggiest. This paper differs from the work of Śliwerski et al in the
following three key aspects. Firstly, we investigated how the com-
mits’ time of day correlates with the bugginess of commits, which
has not been studied before, to the best of our knowledge. Sec-
ondly, we studied developer characteristics, including correlations

between commit bugginess and developers’ commit frequency, as
well as developers’ experience, which the previous work did not
consider. Finally, we used different data collection techniques.
Specifically, we did not rely on the link between a commit and a
bug report to extract bug-fixing commits, which enabled us to study
software for which such links are not maintained or not well main-
tained by the developers. For example, we found that only 2.3% of
the Linux kernel’s bug-fixing commits are linked to a bug report,
by manually examining a random sample of our bug-fixing com-
mits. While using links between bug reports and bug commits may
increase the precision of extracting bug-fixing commits, our results
demonstrate that high precision can be obtained without using such
links: the precision of our bug-fixing commit extraction techniques
are 87% for the Linux kernel and 86% for PostgreSQL.

Empirical Studies on Commits.
Many empirical studies have been conducted to understand and

leverage different aspects of commits [7, 9, 14, 18, 21], which stud-
ied the distributions of commit sizes and how commit sizes cor-
relate with other metrics such as different development activities,
commit classifications, etc.

Hindle et al [9] classified commits into different categories, one
of which is non-functional commits (e.g., modification of com-
ments, documentation, etc.). Our study differs from [9] in that we
specifically investigated comment-fixing commits. For example,



a refactoring commit would be considered to be a non-functional
commit by the previous study, but not a comment-fixing commit
in this paper. iComment [22] only showed that FreeBSD contains
many comment-fixing commits; it is not a comprehensive study on
comment-fixing commits. We estimate that about 1,200 and 130
commits (Section 3.7) in the Linux kernel and PostgreSQL, respec-
tively, only fix comments, and do not modify the code, showing that
developers spent time maintaining the correctness of comments.

Distributed Software Development and Code Quality.
Several previous studies sought to understand how distributed

software development affects code quality [1, 16, 20] in open source
and commercial software. While the two projects we studied are
open-source and developed in a distributed fashion, the goal of this
paper differs from those studies—we aim to understand the correla-
tion between code bugginess and social characteristics of commits,
e.g., commits’ time of day, commits’ day of week, developers’ ex-
perience, and developers’ commit frequencies, etc.

Bug Lifetime.
Engler et al [2] examined the bug lifetime of the Linux kernel in

2001. Our study on the bug lifetime complements theirs by analyz-
ing recent commits to the Linux kernel from 2005-2010. Kim and
Whitehead [10] examined the bug lifetimes in PostgreSQL. Neither
of the two previous studies investigated social characteristics such
as commit time and author experience.

5. CONCLUSIONS AND FUTURE WORK
This paper analyzed 57,028 and 4,399 bug-fixing commits in two

large and widely-used open-source software projects, the Linux
kernel and PostgreSQL, to study the correlation between commit
correctness with several commit social characteristics, such as the
time-of-day of commits, the day-of-week of commits, developer
experience, and developers’ commit frequency. We presented sev-
eral interesting findings, including: (1) late-night commits (be-
tween midnight and 4:00 AM) are buggier than average, while
morning commits (7:00 AM–noon) are less buggy, suggesting that
developers may want to double-check late-night commits before
committing, and that it may be beneficial for the version control
system to warn the developers of late-night commits to improve
software reliability; (2) the bugginess of commits per day-of-week
varies for different software projects, implying that the bugginess
prediction based on the day-of-week of commit metric may need
to vary on a project-by-project basis; and (3) developers who com-
mit to a project on a daily basis write fewer buggy commits for
that project, while day-job developers are more likely to produce
bugs, indicating that we may want to promote the practice of daily
committing developers code-reviewing other developers’ commits.
We believe such results are valuable to the software engineering
community and software developers.

In the future, we would like to study commit times with respect
to individual developers to understand, for example, whether a de-
veloper’s commits outside of his/her normal committing hours are
buggier than average for that developer. To extend our developer
experience study, we can add developers’ contributions to other
open-source projects to better understand a developer’s overall pro-
gramming experience. In addition, we plan to study more software
projects written in different programming languages to further un-
derstand how social characteristics affect commit correctness. As
there may be interesting correlations between a commit’s evolution
and its code quality, we intend to study such correlations in the
future.

6. REFERENCES
[1] C. Bird, N. Nagappan, P. T. Devanbu, H. Gall, and

B. Murphy. Does distributed development affect software
quality? In ICSE, pages 518–528, 2009.

[2] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf.
Bugs as deviant behavior: A general approach to inferring
errors in systems code. SIGOPS OSR, 35(5):57–72, 2001.

[3] T. Graves, A. Karr, J. Marron, and H. Siy. Predicting fault
incidence using software change history. IEEE TSE, 2000.

[4] L. Guo, Y. Ma, B. Cukic, and H. Singh. Robust prediction of
fault-proneness by random forests. In ISSRE, 2004.

[5] R. Haas. So, why isn’t PostgreSQL using Git yet?
http://rhaas.blogspot.com/2010_09_01_archive.html.

[6] A. E. Hassan. Predicting faults using the complexity of code
changes. In ICSE, pages 78–88, 2009.

[7] L. Hattori and M. Lanza. On the nature of commits. In ASE,
pages 63–71, 2008.

[8] I. Herraiz, J. M. González-Barahona, G. Robles, and D. M.
Germán. On the prediction of the evolution of libre software
projects. In ICSM, pages 405–414, 2007.

[9] A. Hindle, D. M. German, and R. Holt. What do large
commits tell us?: A taxonomical study of large commits. In
MSR, pages 99–108, 2008.

[10] S. Kim and E. Whitehead Jr. How long did it take to fix
bugs? In MSR, pages 173–174, 2006.

[11] S. Kim, T. Zimmermann, K. Pan, and E. Whitehead.
Automatic identification of bug-introducing changes. In ASE,
pages 81–90, 2006.

[12] A. Meneely, L. Williams, W. Snipes, and J. Osborne.
Predicting failures with developer networks and social
network analysis. In SIGSOFT/FSE, pages 13–23, 2008.

[13] T. Menzies, Z. Milton, B. Turhan, B. Cukic, Y. Jiang, and
A. B. Bener. Defect prediction from static code features:
current results, limitations, new approaches. ASE, 2010.

[14] A. Mockus and L. G. Votta. Identifying reasons for software
changes using historic databases. In ICSM, 2000.

[15] A. Mockus, D. M. Weiss, and P. Zhang. Understanding and
predicting effort in software projects. In ICSE, 2003.

[16] N. Nagappan, B. Murphy, and V. R. Basili. The influence of
organizational structure on software quality: An empirical
case study. In ICSE, pages 521–530, 2008.

[17] T. Ostrand, E. Weyuker, and R. Bell. Predicting the location
and number of faults in large software systems. IEEE TSE,
31(4), 2005.

[18] R. Purushothaman and D. E. Perry. Toward understanding
the rhetoric of small source code changes. IEEE TSE, 2005.
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