Finding Patterns in Static Analysis Alerts

Improving Actionable Alert Ranking

Quinn Hanam, Lin Tan, Reid Holmes, and Patrick Lam
University of Waterloo
200 University Ave W
. Waterloo, Ontario
ghanam,lintan,rtholmes,patrick.lam@uwaterloo.ca

ABSTRACT

Static analysis (SA) tools that find bugs by inferring pro-
grammer beliefs (e.g., FindBugs) are commonplace in to-
day’s software industry. While they find a large number of
actual defects, they are often plagued by high rates of alerts
that a developer would not act on (unactionable alerts) be-
cause they are incorrect, do not significantly affect program
execution, etc. High rates of unactionable alerts decrease
the utility of static analysis tools in practice.

We present a method for differentiating actionable and
unactionable alerts by finding alerts with similar code pat-
terns. To do so, we create a feature vector based on code
characteristics at the site of each SA alert. With these fea-
ture vectors, we use machine learning techniques to build an
actionable alert prediction model that is able to classify new
SA alerts.

We evaluate our technique on three subject programs us-
ing the FindBugs static analysis tool and the Faultbench
benchmark methodology. For a developer inspecting the top
5% of all alerts for three sample projects, our approach is
able to identify 57 of 211 actionable alerts, which is 38 more
than the FindBugs priority measure. Combined with pre-
vious actionable alert identification techniques, our method
finds 75 actionable alerts in the top 5%, which is four more
actionable alerts (a 6% improvement) than previous action-
able alert identification techniques.

Categories and Subject Descriptors

D.2.8 [Software Engineering]: Testing and Debugging—
Testing tools

General Terms

Reliability, human factors

Keywords

Static analysis, bug detection, alert classification, machine
learning, alert patterns

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

MSR ’14, May 31 — June 1, 2014, Hyderabad, India

Copyright 2014 ACM 978-1-4503-2863-0/14/05 ...$15.00.

1. INTRODUCTION

Static analysis (SA) tools are widely used to find bugs in
software before they have a chance to manifest as run time
faults. The most popular static analysis tools look through
static code and infer a wide variety of bugs, security holes
and bad programming practice [11]. Unlike more formal
methods, this type of static analysis provides no guarantee
that it has found all bugs that it checks for or that the bugs
it does find are real [6].

The widespread adoption of SA for entire codebases by
commercial software companies [9, 27] is evidence that SA
is economically beneficial. However, SA suffers from high
false positive rates [5]. Many of the alerts generated by SA
suggest errors are present when in fact no errors exist. So
despite its widespread use, high rates of false positives in SA
still prevent many users from adopting these tools [19].

The terms ‘true positive’ and ‘false positive’ can be am-
biguous in static analysis. If we define a true positive as any
code that contains errors, the definition fails to cover warn-
ings that identify bad practice or places where a bug could
be easily be introduced. Alternatively, we could define a true
positive as any warning identified by SA, because at the very
least the warning has flagged a source of bad practice. This
fails for situations where a programmer writes code that per-
forms as intended and does not wish to modify. We therefore
use the term actionable alert (AA) to define a SA alert that
the programmer would act on to resolve and unactionable
alert (UA) to define a SA alert that the programmer would
not act on to resolve [15].

Because of the prevalence of unactionable alerts in SA
warnings, considerable work has attempted to predict wh-
ether alerts are actionable or not; Heckman and Williams
survey this literature [15]. Of particular importance in this
research are the set of characteristics used to predict what
SA alerts are actionable or unactionable. Heckman and
Williams refer to these characteristics as alert characteristics
(AC) [15], a term which we adopt in this paper.

Through our research investigating actionable and unac-
tionable alert rates in SA tools, we make the observation
that for any program, a number of actionable and unac-
tionable alerts emerge that follow similar patterns. That is,
developers frequently employ source code patterns that are
unactionable but are repeatedly flagged by SA tools. Simi-
larly, developers may also use a code pattern that is always
actionable. We call these patterns alert patterns. These
findings are supported by discussions with commercial SA
tool developers. In their case, where a low false positive
rate is important to get clients to adopt a tool, it is common

1 static final SimpleDateFormat cDateFormat
2 = new SimpleDateFormat (“yyyy-MM-dd”);

Figure 1: Motivating Example 1 - Harmless shared
instance variable, immutable? or unmodified after
construction?

to manually find patterns that result in many unactionable
alerts and use these patterns to modify the SA tool to ig-
nore the pattern. This is time consuming because the SA
developer must manually re-program their tools for every
unactionable alert.

In this paper we propose a novel approach to predicting
actionable and unactionable alerts by finding alert patterns.
We use features of the source code at and near the source
of the SA alert to extract ACs and find code patterns. We
discuss our AC set in detail in section 3. Using these ACs
along with a priori knowledge about which code patterns
are actionable, we rank alerts according to the likelihood
that they are actionable. This reflects a situation where a
developer has limited time before the next release and needs
to decide which alerts she should fix first.

We evaluate our technique by answering the following;:

RESEARCH QUESTION 1 Do SA alert patterns exist?

RESEARCH QUESTION 2 Can we use SA alert patterns to
improve actionable alert ranking over previous techniques?

We implement our technique as an Eclipse [24] plugin and
evaluate it on FindBugs [26, 18] alerts generated for Tom-
cat6 [3], Apache Log4j [2] and Apache Commons [1]. We
show that SA alert patterns do exist (RQ1). Our approach
also effectively reorders the alerts provided to the developer.
By examining only the top 5% of alerts (113/2,249) the de-
veloper is able to identify 57 of the actionable alerts while
FindBugs only ranks 19 actionable alerts in the top 5%.

We show that SA alert patterns can improve actionable
alert ranking (RQ2) by combining with previous actionable
alert prediction techniques. Without using version histories,
we find 75 actionable alerts, or four more (a 6% improve-
ment) than previous actionable alert prediction techniques
(which use version histories).

This paper makes the following contributions:

1. It defines the notion of SA alert patterns.

2. It describes a technique for discovering SA alert pat-
terns using code pattern ACs and provides an Eclipse
plugin implementation of the technique. The code pat-
tern ACs are not used in previous work.

3. It shows that our technique alone predicts 38 more AAs
than the standard Findbugs ranking in the top 5% of
alerts and four (6%) more than previous techniques
when combined with ACs from previous techniques.

2. MOTIVATING EXAMPLES

To demonstrate the concept of alert patterns, we provide
three concrete examples from running the FindBugs SA tool
on revision 1497967 (June 2013) of the Apache Tomcat 6
webserver.

1 public int read(byte[]b,int offset ,int len)
2 {

3 if (log.isTraceEnabled ()) {

4 log.trace(“read () ” + b + 7

5 + (b==null ? 0: b.length)

6 + “ 7 4+ offset + ¢ 7 4+ len);

7}

8

Figure 2: Motivating Example 2 - Harmless implicit
toString() call on an array: occurs in logging code.

try { socket.close (); }
catch (Exception ignore)
try { reader.close (); }
catch (Exception ignore)

=N =

{3
{

Figure 3: Motivating Example 3 - Intentional ignor-
ing of exceptions on calls to close().

Motivating Example 1 Consider Figure 1, which shows
code that defines the member variable cDateFormat. Run-
ning FindBugs with this code results in the following alert:
“STCAL: Sharing a single instance across thread boundaries
without proper synchronization will result in erratic behaviour
of the application”. In this case, the alert is correct and this
statement could potentially result in a concurrency error.
However, in practice this SimpleDateFormat object is never
written to beyond its construction. As long as this is the
case, there is no need to provide synchronized access to the
object.

The work it would take to provide synchronized access
to the object, as well as the increased complexity of the
resulting program outweigh the possibility of a concurrency
error being introduced in the future. By our definition of
unactionable alert, since the Tomcat6 developers have not
taken action to resolve this potential issue (FindBugs is used
by Tomcat6 developers [4]), the alert is likely unactionable.

This type of declaration of SimpleDateFormat is flagged
as an alert seven times in the FindBugs anslysis of revision
1497967 of Tomcat 6. We can automatically identify these
alerts as unactionable by looking for member variables of
type static final SimpleDateFormat in statements that
are flagged by FindBugs with alert type STCAL.

Motivating Example 2 Figure 2 shows (abbreviated)
code from Tomcat 6 which reads a message in the form of
a byte array. Running FindBugs with this code results in
the following alert: “USELESS_STRING: This code invokes
toString on an array, which will generate a fairly useless re-
sult such as [C@16f0472.”. Indeed, the toString method is
being called on byte array b, which emits a memory address.
However, we believe that this behaviour is intentional, espe-
cially since the output of b.toString() appears in logging
code, where it might actually be useful to disambiguate dif-
ferent byte arrays.

In fact, any call to toString on an array within log.tr-
ace() is likely to be an unactionable alert. We can auto-
matically identify this unactionable alert pattern by look-
ing for calls to toString on an array inside the method
log.trace(). There are 29 occurrences of this unactionable
alert pattern in Tomcat6 r1497967.

public void end() throws Exception {
Object child = digester.peek(0);
Object parent = digester.peek(1);

// Call the specified method

IntrospectionUtils . callMethodl (child ,
methodName, parent, paramType,
digester.getClassLoader ());

NSO W~

XSO W~

public void end() throws Exception {
Object child = digester.peek(0);
Object parent = digester.root;

// Call the specified method

IntrospectionUtils.callMethodl (parent ,
methodName, child , paramType,
digester.getClassLoader ());

Figure 4: An alert (NP_NONNULL_PARAM_VIOLATION) pattern with semantic and syntactic differences.
The code on the left is from SetTopRule.java in Tomcat6 while the code on the right is from SetRootRule.java.

Motivating Example 3 Figure 3 shows code from Tom-
cat6 which closes Socket and ObjectReader objects. Run-
ning FindBugs on this code results in the following alert on
lines 2 and 4: “This method might ignore an exception.”

This is a case of an unactionable alert, as the program
is performing exactly as the developer intends. Since both
resources socket and reader are being closed, the program
is clearly done using them. One can easily see that if either
are null or there is an error while closing the resources, the
program can ignore the exception and assume the connection
is closed with only minor consequences if the connection
fails to close (i.e. trying to determine what went wrong
is not worth the developer’s effort in this situation). We
can automatically identify this unactionable alert pattern by
finding calls to Socket.close() or ObjectReader.close()
within the preceding try statement of the offending catch
block.

3. DETECTING ALERT PATTERNS

Automatically detecting alert patterns presents a number
of challenges. Alerts may be tightly bound to their con-
text. That is, two actionable or unactionable alerts may
have major semantic and syntactic differences that inhibit
their being linked.

Observe the example from Tomcat6 r418016 in Figure
4. FindBugs generates the same alert (NP_NONNULL_-
PARAM_VIOLATION) at line 6 of both pieces of code. This
alert indicates that one of the parameters of the method call
might be null, but it will be dereferenced inside the method
being called. Both code segments perform a similar function:
they call the method of an object in the digester stack.
However, there are semantic and syntactic differences. The
class is specified in the third parameter of callMethodl on
line 7. Syntactically, in the code on the left from SetTo-
pRule.java, a variable named child is passed while in the
code on the right, the variable parent is given. Semantically
the code on the left calls a method from the object at the
top of the digester stack, while in the code on the right the
method is called on the root object.

Furthermore, the defining characteristic for each alert pat-
tern may be different for each alert type and there may even
be multiple alert patterns within an alert type.

To account for semantic and syntactic differences, we use
a machine learning approach to detect alert patterns. Given
a set of items that need to be classified, machine learning
algorithms take a set of features (ACs in our case) for each
item (known as a feature vector) and predicts a class for
each item. In our case, the machine learning algorithm pre-
dicts whether a SA alert is actionable or unactionable. The

Warning
Statement
Slices

Statement Class
Feature h Hierarchy
Extraction
v
Machine Learner [« Training Set

SA Warning
Class (AA/UA)

Figure 5: Activity diagram showing the method we
use to classify SA alerts given slices for each alert.

classification of the given items (called the test set) is based
on prior knowledge of the class of items in another set of
feature vectors (called the training set).

Given a set of SA alerts, Figure 5 shows an overview of our
method to detect actionable and unactionable alert patterns
in those alerts:

1. We calculate a set of related statements by slicing the
program at the site of the alert (discussed further in
Section 3.1).

2. Using the statements from step 1 and the class hierar-
chy for the subject program, we extract a set of ACs.

3. A machine learning algorithm pre-computes a model
with which to classify new alerts as actionable or un-
actionable. The model is trained using previously clas-
sified alerts. Alerts are classified by the developer or
inferred by the version history.

4. Using the model from step 3, the machine learning
algorithm ranks each alert, with those more likely to
be actionable at the top.

Source Code

i

Abstract
Syntax Tree

)

Pointer

Call Graph Analysis

SA
Warnings

Slicer

Warning
Statement
Slices

L

J

Figure 6: Activity diagram showing the method we
use to generate SA alert slices.

3.1 Generating Alert Characteristics

Our alert pattern detection technique extracts ACs from
the source code regions flagged by SA alerts. We begin by
extracting statements that are potentially relevant to the
alert. For each alert we reduce the number of statements
to inspect by generating a backwards program slice [29] for
each alert. A backwards program slice takes a statement in
source code (called a seed statement) and determines which
statements could have affected the outcome of the seed state-
ment. We use the statements flagged with alerts by SA as
seeds for program slice construction.

Figure 6 shows an overview of generating program slices
using SA alerts as seed statements. The program’s source
code is parsed into an abstract syntax tree (AST), which is
then used to build a call graph and pointer analysis. The
call graph and pointer analysis, along with the SA alerts as
seed statements are used to construct backwards slices for
each alert.

Next, we extract characteristics from the statements se-
lected by the slicer. The first column of Table 1 shows the
list of statement types that we handle from the set of state-
ments produced by program slicing (except for “Non-Seed
Statements”, which we explain later). We recognize five dif-
ferent statement types:

e Call statements
(e.g., System.out.println("Hello World!");)

New object heap allocations
(e.g., new String("Hello World!")),

e Binary operations (e.g., i + 1;)

Field access (e.g., array.length)
e Catch statements (e.g., catch(Exception e)).
The second column of Table 1 shows the list of ACs that

we extract from each statement type. Below are descriptions
of each characteristic.

e Call Name — The name of the method being called.

e Call Class — The name of the class containing the
method being called.

e Call Parameter Signature - The signature for the
method parameters.

e Return Type — The signature for the method’s re-
turn type.

e New Type — The class of the object being created.

e Concrete Type — The class of the concrete type of
the object being created.

e Operator — The operator for the binary operation.

e Field Access Class — The class containing the field
being accessed.

e Field Access Field — The name of the field being
accessed.

e Catch — Indicates that a catch statement is present.

For example, again consider the code in Figure 4 where
a FindBugs warning exists on line 6 in both pieces of code.
Line 6 is used as the seed statement for calculating a back-
wards program slice, which will produce the set of state-
ments at lines {2,3,6}. In the code on the left, lines 2 and 3
both contain a method call (statement type “Call” in Table
1). The following ACs are extracted:

Call Name: peek

Call Class: org.apache.commons.digester.Digester
Call Parameter Signature: (int)

Return Type: java.lang.Object

In the code on the right, the ACs above are extracted at
line 2, but at line 3 a “Field Access” is encountered with the
following ACs extracted:

e Field Access Class: java.lang.Object
e Field Access Field: root

Line 6 also contains a call statement in both pieces of code
from which we extract:

e Call Name: callMethodl

e (Call Class: org.apache.tomcat.util.IntrospectionUtils

e Call Parameter Signature: (java.lang.Object;
java.lang.String; java.lang.Object; java.lang.String;
java.lang.ClassLoader)

e Return Type: java.lang.Object

Since the AC sets are similar (the ACs from lines 2 and
6 match) in both pieces of code, the machine learning al-
gorithm can recognize a similar code pattern and use the
classification of one alert to classify the other.

Some alerts flag fields, methods and classes, for which we
cannot produce a program slice because we do not have a
seed statement. In these cases, we extract ACs from the
field, method or class definitions. These ACs are show in
the “Non-Seed Statement” section at the bottom of Table 1.

3.2 Speeding Up Analysis

Generating full call graphs, points-to analysis and pro-
gram slices can take quite some time and may be impractical
for larger programs given limited computing resources. To
speed up our analysis and limit memory consumption, we
make the following optimizations:

Limiting Call Graph and Slice Size. We make the
assumption that most patterns that define code clones can
be found within or nearby the method that the alert occurs

Table 1: Statement ACs

Seed Statements

Statement Type | Alert Characteristic

Call Name

Call Class

Call Call Parameter Signature

Return Type

New New Type

New Concrete Type

Operator

Binary Operation
Field Access Class

Field Access Field Access Field

Catch Catch

Non-Seed Statements

Statement Type | Alert Characteristic

Name

Field Type

Visibility

Is Static/Final

Visibility

Method Return Type

Is Static/Final/Abstract/Protected

Visibility

Class Is Abstract/Interface/Array Class

in. Using this assumption, we exclude all external classes
(i.e. classes from libraries that are included in the project).

We create smaller slices by using context-sensitive thin
slicing as described by Sridharan, Fink and Bodik [23].
Thin slices track only statements that have a direct effect
on the seed statement. For example, if we use the method
println(data) as our seed, whatever operations produce
or modify the variable data are included in the thin slice,
but not operations that produce or modify their containing
objects. This significantly limits the size of the slice.

Limiting Alert Characteristic Vector Size. Because
program slices can be very large, we limit the size of the
feature vector by only using features from the five nearest
statements prior to the seed in each slice (where five is the
distance from the alert). This means we only look at the
five statements in the slice that are adjacent to to the seed
statement. The distance from the alert is set to five based
on manual inspection of a number of alerts that we consider
to have similar patterns.

We also only include statements that we believe are rel-
evant to detecting code clones. Currently, this includes the
statements in Table 1.

While these assumptions may not be correct in some cases,
we feel they are necessary for the AC generation to run in
a reasonable amount of time and limit the size of the fea-
ture vector for better machine learning performance. Our
assumptions are supported by positive results for RQ1 dis-
cussed in Section 6. In the future, we would like to study
the impact of these assumptions.

3.3 C(lassification

To classify new SA alerts, we need to keep track of action-
able and unactionable alerts that have been classified, along
with the AC vectors for each alert. This requires a train-
ing phase where the developer looks through a number of
SA warnings and classifies them as actionable or unaction-

able, or the classes of prior alerts are inferred from version
histories (as we do in section 5.1).

Over time, the developer will build a training set for the
tool to differentiate actionable and unactionable alerts. Clas-
sifying warnings can be automated by detecting which alerts
are closed from one SA to the next without any input from
the developer. If there are already a number of alert pat-
terns in the program when the tool is first run, the developer
may classify a subset of the alerts and allow the tool to au-
tomatically classify the rest, thus reducing the developer’s
workload.

We use machine learning techniques to classify SA alerts.
We test our AC set using multiple machine learning algo-
rithms in Section 6.

4. METHOD

We implement our AC extraction technique as an Eclipse
plugin. For static analysis, we use the T.J. Watson Libraries
for Analysis (WALA) [28] and the Eclipse JDT [10] library
for AST generation.

To answer RQ1 and RQ2, we look at the following metrics:
percent of actionable alerts found, precision, recall and F-
measure.

The first metric we use measures how many actionable
alerts a developer would see if she inspected the top N% of
alerts in a ranked list. We express this as a percentage of
the total number of AAs so that we have a fair comparison
across test subjects (which may contain different numbers
of AAs).

Given a set of ranked alerts R, a set of actionable alerts
A (where A C R) and integer N where 0 < N < 100, let
%AAN be the percent of actionable alerts found if we inspect
the top N% of alerts in R . To get %AAN, we select the top
N% of alerts in R and call this set Ry. We then extract all
actionable alerts from Ry into a new set called Rnva. %AAN
is then |Rnal|/|A| * 100. For example, consider a situation
where A contains 10 actionable alerts (|A| = 10) and R
contains 200 alerts (|R| = 200). If N=10 then we inspect 20
alerts (|R1o| = 20). If there are five actionable alerts within
Rlo (|R10A| = 5), then %AAN = 5/10 * 100 = 50%. This
formula is shown below.

Rnal
%AAN = | * 100
|A]

We also measure precision, recall and F-measure for both
classes AA and UA. Precision is a measure of how accurate
a classifier is. Recall measures the number of alerts of a
given class that a classifier is able to correctly classify. The
F-measure is a weighted average of precision and recall.

We also calculate a weighted average of precision, recall
and F-measure across both classes (AA and UA). For this
metric, precision, recall and F-measure are weighed accord-
ing to the number of alerts in each class and averaged. Given
the precision, recall or F-measure for actionable ([P,R,F]A)
or unactionable ([P,R,F]U) classes, the number of actionable
alerts (AA) and the number of unactionable alerts (UA), the
weighted average is:

[P,R,F]A * AA + [P,R,F]U « UA
AA + UA

Weighted Avg =

| Alert ID [[Statement 1 Features] | [Statement 2 Features] | ... | [Statement D Features] |

Figure 7: Sample feature vector.

4.1 Feature Vector Construction

We place our statement ACs in a feature vector according
to which statement they occur in. Because of this, the order
in which statements appear in the code matters. Figure 7
demonstrates how we construct our feature vector, where D
is the distance from the alert as defined in section 3.2.

4.2 Classification

To classify SA alerts, we use the machine learning utility
Weka [25]. We use three different classification algorithms
to classify the feature vectors: decision tree (ADTree), naive
Bayes and Bayesian network (BayesNet). The selection of
these three classifiers is based on our experience classifying
alerts from the FaultBench v0.1 [17, 13] benchmark. For all
classifiers we use the default parameters.

S. EVALUATION

We evaluate our technique on the three subject programs
listed in Table 2: Apache Tomcat6, Apache Commons Col-
lections and Apache Logging for Java (Log4j). These sub-
jects are selected because of their size (they are large enough
to have many static analysis warnings), age (they have source
code histories spanning multiple years before FindBugs came
into widespread use) and the fact that they have Subversion
(a version control system) repositories (using one single ver-
sion control system for all subjects makes implementing our
evaluation easier).

5.1 Ground Truth

We first need a method to accurately classify alerts as ac-
tionable or unactionable. To do this we use the FaultBench
v0.3 [16] method proposed by Heckman and Williams [13].
This technique uses the source code history of a project to
determine if alerts are actionable or unactionable. This pro-
cess is described below:

1. Select a number of revisions across a subject project’s
history.

2. Run a static analysis tool (FindBugs) on each revision
to generate a list of alerts for each revision.

3. Find alerts that are closed over the course of the project
history:

e An alert is opened in the first revision it appears.

e An alert is closed in the first revision after the
open revision where the alert is not present (ex-
cept in the case where it is not present because
the file containing it is deleted).

4. Alerts that are closed are classified as actionable, while
alerts that are open following the last revision analysed
are classified as unactionable.

We chose this methodology because by definition, an ac-
tionable alert is an alert that a developer resolves by modify-
ing the program (at some point it will disappear from static
analysis). If it is unactionable, the alert will never disap-
pear. If an alert is removed because the file containing the

alert is deleted, we consider the alert status as unknown and
remove it from the list.

5.2 A Baseline for Comparison

To evaluate our technique, we need a baseline to compare
to. We use two baselines in our evaluation: FindBugs pri-
ority ranking and machine learning based actionable alert
ranking.

Baseline 1 For our first baseline we use the default Find-
Bugs ranking. FindBugs assigns a priority measure (high,
medium or low) to each alert [12]. High priority alerts
should be more likely to manifest as failures than low pri-
ority alerts, so we assume that high priority alerts are more
actionable than low priority alerts. Using this assumption,
we sort alerts according to the priority measure (higher pri-
ority alerts get ranked higher) and randomize the order of
alerts with the same priority. To eliminate any bias from
randomization, we take the average of %AAN across 100
runs.

Baseline 2 For our second baseline, we use our machine
learning approach to alert ranking (Section 4.2), but exclu-
sively use ACs from prior research. There are many papers
that are dedicated to finding or ranking actionable alerts
(e.g., [15]). We use the set of ACs used by Heckman and
Williams [14] for predicting actionable alerts. We chose this
AC set because we feel it is the most comprehensive to date
for techniques using machine learning.

The ACs we use for this baseline are listed in Table 3.
We omit some ACs used in [14] from this baseline. These
ACs and the logic behind their omission are described below
(with AC names as defined by Heckman and Williams):

1. Number of alert modifications - This AC requires
information not available at the alert opening and ther-
efore not available in a practical application.

2. Total open alerts for revision - In our evaluation
programs, relatively few alerts are closed and this AC
essentially encodes the revision number.

3. Alert lifetime - This AC indirectly encodes whether
or not an alert is closed in future revisions and gives
a classifier a trivial way to classify alerts as actionabe
or unactionable.

4. Staleness - This AC requires information not avail-
able at the alert opening and therefore not available in
a practical application.

We retrieve these ACs from the sources listed in the Gro-
up column of Table 3. The SA Tool ACs are retrieved from
our FindBugs analysis of each revision from Section 5.1. Ja-
vaNCSS [20] is run on each revision to retrieve source code
metrics. Finally, we analyse the log files of the Subversion
repositories for each subject and calculate source code his-
tory metrics.

6. RESULTS

Table 4 shows the FindBugs alerts produced from our
FaultBench implementation. TA represents the total num-
ber of unique alerts generated across all revisions of the sub-
ject. The AA column lists the number of those alerts that

Table 2: Subject Programs

Subject | Start Revision | End Revision | Revisions | Revision Interval | Size (KLOC)
Tomcat6 June 2006 February 2008 11 2 months 110-122
Commons | April 2001 July 2008 14 6 months 4-43

Log4j December 2001 November 2007 | 11 6 months 12-19

Table 3: Alert Characteristics
Group Alert Characteristic
Warning Class
Warning Type
Project
Package
File
Class
Method
Method Signature
Field
Field Signature
Priority
Total Alerts for Revision
Classes in Package
Functions in Package
Package NCSS
Functions in Class
Class NCSS
Function NCSS
Function CCN
Open Revision
Prior Revision
Highest Contributing Developer
File Creation Revision
File Last Modified Revision
File Age
Project Added Lines
Project Deleted Lines
Project Growth
Project Total Modified Lines
Package Added Lines
Package Deleted Lines
Package Growth
Package Total Modified Lines
Package Percent Modified Lines
File Added Lines
File Deleted Lines
File Growth
File Total Modified Lines
File Percent Modified Lines

SA Tool

Java NCSS

Subversion

Table 4: FaultBench classified alerts showing action-
able alerts (AA), unactionable alerts (UA) and un-
classified alerts (DA)

Subject Total Alerts | AA | UA | DA
Tomcat6 1971 | 178 | 1733 60
Commons 329 50 102 | 177
Log4j 237 24 162 51

are classified as actionable, the UA column shows the num-
ber of alerts classified as unactionable and DA are alerts that
were closed because the file they were contained in was re-
moved. We classify 2,249 alerts in total and use these alerts
in our experiments. 252 of these are AA and 1997 are UA.
288 alerts are not classified (DA) and are not used in our
experiments.

Table 5 shows a breakdown of the alerts after generating
the alert slices and extracting ACs. Columns one and two
(Total Alerts and DA) are taken from Table 4. Statement
Level alerts are alerts which flag a line containing a state-
ment which can be used as a seed statement for generating a
program slice. Field, method and class level alerts flag fields,
methods and classes and therefore cannot be used as seed
statements for generating a program slice. For these we use
characteristics of the field, method or class (e.g., name, visi-
bility, type) shown in the bottom half of Table 1. The Error
column indicates statement flagging alerts for which we were
unable to produce a program slice (because of cases we do
not yet handle or errors during static analysis). For example,
alerts flagging statements in classes created at runtime are
in this category because they do not have a statically-known
name and cannot be identified through the class hierarchy.

To answer RQ1, we look at the the ability of statement
ACs by themselves to predict AAs and UAs. Table 6 shows
the classification results using only statement ACs. Columns
two to four show the percent of actionable alerts in the top
10, 20 and 30 percent of all warnings. Columns five through
seven show the precision (AP), recall (AR) and F-measure
(AF) for actionable alerts. Columns eight through 10 show
the precision (UP), recall (UR) and F-measure (UF) for un-
actionable alerts. Finally, columns 11-13 show the weighted
precision (WP), recall (WR) and F-measure (WF).

‘We find that statement ACs perform significantly
better than a random ordering and conclude that
alert patterns do exist. If alert patterns exist, then for
our first metric (%AAnN) the classifier performance using
statement ACs should perform better than a random order-
ing. Using a random ordering, we would expect our %AAN
metric to evaluate to 0.1 for N=10%, 0.2 for N=20% and 0.3
for N=30%. Table 6 shows a significant improvement over
random for all classifiers. Take Tomcat6 and the ADTree
classifier. For N=10%, ADTree discovers three times as
many actionable alerts as would be expected for a random
sorting while for N=20% that number is still over twice as
many. Since alert patterns exist, we can use them to en-
hance alert ranking and provide developers with a better
indication of which alerts they should investigate first.

The results in Table 6 also show the precision and recall
for the classifiers using only statement ACs. The average
weighted precision (across all projects and classifiers) is 0.81,
the average weighted recall is 0.76 and the average weighted
F-measure is 0.77. We find that while precision and recall
for predicting actionable alerts is low (possibly because of
the low ratio of actionable to unactionable alerts), we can

Table 5: Alerts after extracting statement ACs

Subject Total Alerts | DA | Statement Level | Field Level | Method Level | Class Level | Error
Tomcat6 1971 60 494 712 233 73 399
Commons | 329 177 | 51 32 35 13 21
Log4j 237 51 66 50 17 5 48
Table 6: Metrics from 10-fold cross validation using only statement ACs.
%AAN, N = Unactionable Actionable Weighted
10 20 30 Precision | Recall | F Precision | Recall | F Precision | Recall | F
Tomcat6
ADTree 0.36 | 0.42 | 0.52 || 0.93 1.00 0.96 || 1.00 0.31 0.47 || 0.93 0.93 0.91
Naive Bayes | 0.40 | 0.49 | 0.61 || 0.93 0.93 0.93 || 0.38 0.41 0.39 || 0.88 0.87 0.87
BayesNet 0.33 | 0.51 | 0.60 || 0.94 0.92 0.93 || 0.38 0.43 0.41 || 0.88 0.87 0.88
Commons
ADTree 0.13 | 0.29 | 0.49 || 0.77 0.73 0.75 || 0.53 0.58 0.55 || 0.69 0.68 0.68
Naive Bayes | 0.24 | 0.49 | 0.64 || 0.83 0.47 0.60 || 0.45 0.84 0.59 || 0.71 0.60 0.60
BayesNet 0.18 | 0.42 | 0.58 || 0.79 0.81 0.80 || 0.62 0.58 0.60 || 0.73 0.73 0.73
Logging
ADTree 0.31 | 0.46 | 0.46 || 0.90 1.00 0.95 || 0.00 0.00 0.00 || 0.82 0.91 0.86
Naive Bayes | 0.23 | 0.46 | 0.54 || 0.94 0.43 0.59 || 0.10 0.62 0.17 || 0.84 0.45 0.55
BayesNet 0.15 | 0.38 | 0.54 || 0.91 0.87 0.89 || 0.11 0.15 0.13 || 0.83 0.80 0.82

effectively use the classifier’s probability distribution to rank
the alerts.

For ADTree, the recall for Tomcat6 and Logging is 100%.
Because there is a high number of UAs compared to AAs, it
is effective for the classifier to classify most alerts as UA (re-
sulting in a low recall for AAs). We might tune the precision
and recall by setting a lower threshold on the probability dis-
tribution (e.g., instead of using a 50% confidence threshold,
we say the classifier only needs to be 40% confident to clas-
sify a warning as actionable and 60% confident to classify a
warning as unactionable). For RQ2, we rank alerts by the
probability distribution.

We answer RQ2 in two parts: First we compare our method
to Baseline 1 (FindBugs priority ranking). Second, we com-
pare our method to Baseline 2 (machine learning based alert
ranking).

Using only statement ACs (those from Table 1),
our method discovers 38 more AAs than Baseline 1
in the top 5% of all alerts across our three subject
programs. Figure 8 shows the ranking results for our three
subject programs using the ADTree classifier. The y-axis
shows the %AAN described in section 4, while the x-axis
shows the value of N (% of warnings inspected). Our tech-
nique using only statement ACs is labelled Statement while
FindBugs priority ranking is labelled Baseline 1. As an ex-
ample, observe the graph for Tomcat6. When x=5, state-
ment ACs discover 33% (or 51/153) of all AAs while Find-
Bugs priority ranking discovers 10% (or 15/153) of all AAs.
Across all three subject programs, statement ACs discover
57 AAs in the top 5% of alerts and Baseline 1 discovers 19.
This result shows that our technique by itself out-performs
FindBugs priority ranking and that it could be an effective
tool to enhance alert ranking.

Using statement ACs combined with SATool (Find-
Bugs) ACs and JavaNCSS ACs, our technique dis-
covers four more AAs than Baseline 2 in the top

5% of all alerts across our three subject programs.
Figure 8 again shows the results of our evaluation. Our com-
bined method is labelled SATool + JavaNCSS + Statement.
The machine learning results using SATool, JavaNCSS and
Subversion ACs are labelled Baseline 2. In all cases, our
combined method performs better than or equal to Baseline
2 for the top 5% and 10% of alerts. Across all three sub-
ject programs, our method discovers 36% (75/211) of AAs in
the top 5% of alerts and Baseline 2 discovers 34% (71/211),
which is a 6% improvement. This result shows that our tech-
nique out-performs prior methods. Adding statement ACs
to alert prioritization methods may be a useful tool to help
developers decide which alerts need to be resolved first.

7. RELATED WORK

Actionable Alert Prediction. Heckman and Williams
conduct a comprehensive literature review on actionable alert
identification techniques [15]. They identify 18 prior pa-
pers that provide methods of predicting actionable alerts
and group what attributes were used to classify warnings
as actionable or unactionable. These methods include using
alert characteristics, code characteristics, source code repos-
itory metrics, bug database metrics and dynamic analysis
metrics to identify actionable alerts. In this paper, we use
attributes that would be classified as code characteristics in
the literature review. However, none of the research identi-
fied in the literature review identifies similar code patterns
and none use the code characteristics we use in this paper.
Two closely related papers from the literature review are
discussed below.

Ruthruff, Penix and Morgenthaler use metrics and ma-
chine learning to predict actionable FindBugs alerts in Goo-
gle’s code base [22]. They use 33 metrics including informa-
tion from the warnings themselves (warning category and
warning bug patterns). The bug patterns reported by Find-
Bugs contain attributes most similar to those discussed in

Tomcat6 + ADTree
o
- o0=8:8: :g/‘
[} _g-9:-8~7 -0,2’
S /g:D/B o +/+
o | O{g/ +/+/
o 87 +/
~ -a% +7
- o-8 -
_ o = -+
[0/ /+
5 o | /o -+
o | o] 47
2 o +
5 « /
3 S Al
< /
2 +
e / —=— SATool + JavaNCSS + Statement
N + —e— Baseline 2
o
/ Statement
S 1+ —+— Baseline 1
oV
S T T T T T T T T T

0 10 20 30 40 50 60 70 80 90 100

% of Warnings

Commons + ADTree

<
hd —5————— —
_o-o
o | /D -0 / +/+
S _o-o7 o-o 5
© /EI _0-© +/+
o 7] 8/0 -o a
~ /) At
T] o +
— o Ve
g . /e o
F o 7 7/
$ J .
2 | +
g ° /0 +7
S ¥ +/
° o +/
<
S
e +7 |-8— SATool + JavaNCSS + Statement
N /0 +/ —o— Baseline 2
o -
ot Statement
i Z+ —+— Baseline 1
+
o 4
o T T T T T T T T T

0 10 20 30 40 50 60 70 80 90 100

% of Warnings

Logging + ADTree

= o
T / / o+
o | o-o-o -
o 7
0-0-0-0-0 +
« _] +/
o 0-0 f-f -
, A+
N / +
S 0-0-0-0-0-0 v
T A
©
£ S / A~
3 o 2
o o 7 / /+
] o t
S ¥] +
g o / o +7
< /
®] o-o L
© T |5 SATool + JavaNCSS + Statement
g - /+ —e— Baseline 2
ot Statement
S A t —+— Baseline 1
+
o /
S T T T T T T T T T

0 10 20 30 40 50 60 70 80 90 100

% of Warnings

Figure 8: Decision tree results showing the per-
cent of actionable alerts found within the first n%
of warnings.

this paper. However, the bug pattern information is limited
(especially for more trivial checkers) [18] and it is unclear
how these attributes are used in their study. In our study,
we could theoretically modify the FindBugs checkers them-
selves to gather information, as FindBugs checkers can make
use of control flow and data flow graphs [18]. However, not
all checkers use this depth of analysis and program slicing is
not directly supported.

Heckman and Williams also use alert characteristics and
machine learning to predict actionable FindBugs alerts [14].
They evaluate 51 alert characteristics including those dis-
cussed in Section 5.2. Using the FaultBench benchmark
[13], they evaluate 51 alert characteristics and 15 machine
learning algorithms. This is one of the most comprehensive
actionable alert prediction studies to date and achieves very
good precision and recall (83-99%) using the FaultBench
benchmark.

Our technique differs from the two above in that we in-
clude alert characteristics derived from static analysis. Since
our technique uses only metrics found within the source
code, our technique might be more practical and require less
tooling. Our technique might also be better at predicting
more problematic unactionable alerts that occur frequently
because of a certain developer’s style, while still leaving im-
portant actionable alerts.

Bodden, Lam and Hendren use static analysis to deduce
run-time properties of programs [7]. They use decision trees
with code characteristics as features to eliminate false pos-
itives. The alert characteristics used in this paper are dif-
ferent from ours and are used to filter results from a much
more specific type of static analysis.

Code Clone Detection. Detecting code clones is a well
studied field that involves detecting source code that has
been copied from one part of a program to another, with
possible minor modifications. It relates to this paper because
we are detecting a special kind of code clone: alert patterns.

Roy and Cordy [21] provide a summary of code clone de-
tection techniques as well as a study of the situations in
which these techniques would work. We chose a unique de-
tection method that is similar to feature-based code clone
detection methods discussed in the summary.

Suppressing Known False Positives. In a study by
Chimdyalwar and Kumar [8], SA alerts that are marked as
false positives by users are suppressed from future SA runs
by removing warnings from code regions that were not af-
fected by the latest set of changes. Our technique is com-
plementary to this. We automatically label alerts as unac-
tionable or actionable in order to develop a model to rank
alerts.

8. CONCLUSIONS AND FUTURE WORK

In this paper we present alert patterns: similar patterns of
code that are frequently flagged by SA alerts that as a group
may or may not result in remedial action by a developer.
We introduce a technique for finding alert patterns using
statement ACs.

We show that SA alert patterns do exist by using our tech-
nique, which is able to rank 57/211 actionable alerts in the
top 5% (113) of all warnings, while the standard FindBugs
ranking only finds 19.

We show that SA alert patterns can improve actionable
alert ranking. Our technique combined with previous work
finds 75/211 actionable alerts, or four more (a 6% improve-

ment) than previous actionable alert prediction techniques.
By tuning our method and incorporating cross-project data,
we believe we can significantly improve our method for prac-
tical use.

In this paper we use WALA to perform an inter-procedural
analysis and look at the five nearest statements. We are
currently developing a lightweight intra-procedural analysis
that only uses the method containing the alert, which we
believe will scale to large programs. Using this, we plan on
performing our analysis on more subject programs and revi-
sions, comparing the run times of retrieving statement ACs
to that of other (e.g., version history) ACs and investigating
what statement ACs rank alerts the best.

9. ACKNOWLEDGEMENTS

This paper was made possible through grants provided by
the Natural Sciences and Engineering Research Council of
Canada.

10. REFERENCES

[1] APACHE SOFTWARE FOUNDATION, THE. Apache
commons. http://commons.apache.org/, 2014.

[2] APACHE SOFTWARE FOUNDATION, THE. Apache log4j.
http://logging.apache.org/logdj/1.2/, 2014.

[3] APACHE SOFTWARE FOUNDATION, THE. Apache
tomcat 6.0. http:
//tomcat.apache.org/tomcat-6.0-doc/index.html,
2014.

[4] APACHE SOFTWARE FOUNDATION, THE. Open source
tools. http://tomcat.apache.org/tools.html, 2014.

[5] AyEwAH, N., PucH, W., MORGENTHALER, J. D.,
PENIX, J., AND ZHOU, Y. Evaluating static analysis
defect warnings on production software. In Proceedings
of the 7th ACM SIGPLAN-SIGSOFT workshop on
Program analysis for software tools and engineering
(2007), pp. 1-8.

[6] BEssEY, A., BLock, K., CHELF, B., CHOU, A.,
Furton, B., HALLEM, S., HENRI-GROS, C., KAMSKY,
A., McPEAK, S., AND ENGLER, D. A few billion lines
of code later: using static analysis to find bugs in the
real world. Commun. ACM 53, 2 (2010), 66-75.

[7] BopDEN, E., LAM, P., AND HENDREN, L. Finding
programming errors earlier by evaluating runtime
monitors ahead-of-time. In Proceedings of the 16th
ACM SIGSOFT International Symposium on
Foundations of software engineering (2008), pp. 36-47.

[8] CHIMDYALWAR, B., AND KUMAR, S. Effective false
positive filtering for evolving software. In Proceedings
of the 4th India Software Engineering Conference
(2011), pp. 103-106.

[9] COVERITY. Who uses coverity?
http://www.coverity.com/customers/, 2013.

[10] EcLipSE FOUNDATION, THE. Eclipse Java development
tools (JDT). http://www.eclipse.org/jdt/, 2013.

[11] ENGLER, D., CHEN, D. Y., HALLEM, S., CHOU, A.,
AND CHELF, B. Bugs as deviant behavior: a general
approach to inferring errors in systems code. SIGOPS
Oper. Syst. Rev. 35, 5 (2001), 57-72.

[12] FINDBUGS. Data mining of bugs with FindBugs.
http://findbugs.sourceforge.net/manual/
datamining.html, 2014.

[13] HECKMAN, S., AND WILLIAMS, L. On establishing a
benchmark for evaluating static analysis alert
prioritization and classification techniques. In
Proceedings of the Second ACM-IEEFE international
symposium on Empirical software engineering and
measurement (2008), pp. 41-50.

[14] HECKMAN, S., AND WILLIAMS, L. A model building
process for identifying actionable static analysis alerts.
In Proceedings of the 2009 International Conference
on Software Testing Verification and Validation
(2009), pp. 161-170.

[15] HECKMAN, S., AND WILLIAMS, L. A systematic
literature review of actionable alert identification
techniques for automated static code analysis. Inf.
Softw. Technol. 53, 4 (2011), 363-387.

[16] HECKMAN, S., AND WILLIAMS, L. Faultbench.
http://www.realsearchgroup.org/faultbench/,
2014.

[17] HECKMAN, S., AND WILLIAMS, L. Faultbench v0.1.
http://www.realsearchgroup.org/faultbench/
parts/version_0.1/index_content.html, 2014.

[18] HOVEMEYER, D., AND PuGH, W. Finding bugs is
easy. SIGPLAN Not. 39, 12 (2004), 92-106.

[19] JouNsoON, B., SONG, Y., MUrpPHY-HILL, E., AND
BowbDIDGE, R. Why don’t software developers use
static analysis tools to find bugs? In Proceedings of
the 2013 International Conference on Software
Engineering (2013), pp. 672-681.

[20] LEE, C. C. JavaNCSS - a source management suite
for java.
http://www.kclee.de/clemens/java/javancss/,
2014.

[21] Roy, C., AND CORDY, J. Scenario-based comparison
of clone detection techniques. In Program
Comprehension, 2008. ICPC 2008. The 16th IEEE
International Conference on (2008), pp. 153-162.

[22] RUTHRUFF, J. R., PENIX, J., MORGENTHALER, J. D.,
ELBAuM, S., AND ROTHERMEL, G. Predicting
accurate and actionable static analysis warnings: an
experimental approach. In Proceedings of the 30th
international conference on Software engineering
(2008), pp. 341-350.

[23] SRIDHARAN, M., FINK, S. J., AND BopIK, R. Thin
slicing. In Proceedings of the 2007 ACM SIGPLAN
Conference on Programming Language Design and
Implementation (2007), pp. 112-122.

[24] THE EcLIPSE FOUNDATION. Eclipse.
http://wuw.eclipse.org/, 2014.

[25] THE UNIVERSITY OF WAIKATO. Weka.
http://www.cs.waikato.ac.nz/"ml/weka/, 2013.

[26] UNIVERSITY OF MARYLAND. Findbugs.
http://findbugs.sourceforge.net, 2012.

[27) UNIVERSITY OF MARYLAND. Findbugs users.
http://findbugs.sourceforge.net/users.html,
2012.

[28] WALA. Main page. http://wala.sourceforge.net/
wiki/index.php/Main_Page, 2013.

[29] WEISER, M. Program slicing. In Proceedings of the 5th
International Conference on Software Engineering
(1981), pp. 439-449.

