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Abstract
Writing low-level concurrent code is well known to be
challenging and error prone. The widespread deployment
of multi-core hardware and the shift towards using
low-level concurrent data structures has moved the
problem into the mainstream. Finding bugs in such
code may require finding a specific bug-revealing thread
interleaving out of a huge space of parallel executions.

Model-checking is a powerful technique for exhaus-
tively testing code. However, scaling model checking
presents a significant challenge.

In this paper we present a new and more scalable
technique for model checking concurrent code, based
on concrete execution. Our technique observes concrete
behaviors, builds a model of these behaviors, encodes
the model in SAT, and leverages SAT solver technology
to find executions that reveal new behaviors. It then
runs the new execution, incorporates the newly observed
behavior, and repeats the process until it has explored
all reachable behaviors.

We have implemented a prototype of our approach
in the SATCheck tool. Our tool supports both the To-
tal Store Ordering (TSO) and Sequentially Consistent
(SC) memory models. We evaulate SATCheck by test-
ing several concurrent data structure implementations
and comparing its performance to the original DPOR
stateless model checking algorithm implemented in CD-
SChecker, the source DPOR algorithm implemented in
Nidhugg, and CheckFence. Our experiments show that

SATCheck scales better than previous approaches while
at the same time operating on concrete executions.

Categories and Subject Descriptors D.2.4 [Soft-
ware Engineering]: Software/Program Verification;
F.3.1 [Logics and Meanings of Programs]: Specifying
and Verifying and Reasoning about Programs

Keywords Relaxed memory model; model checking

1. Introduction
Testing concurrent code can be challenging: exposing
bugs often requires driving program execution to a spe-
cific interleaving. However, bug-revealing interleavings
may account for a vanishingly small proportion of a
large interleaving space. Model checking can be an effec-
tive way of testing concurrent code, but current model
checking approaches are typically best suited for small
unit tests. In this work, we present a novel approach
that leverages SAT solving technology to explore only
the interleavings that expose new concrete behaviors.

Current approaches to model checking concurrent
code primarily take one of three approaches:
• Explicit State: Early work on model checking con-

current code explicitly modeled program state. This
approach is not often used directly on software, as
encoding the entire state can be problematic. Fur-
thermore, encoded state can lead to a combinatorial
state explosion even when all operations commute.

• Stateless: Stateless approaches to model checking
eliminate the need to explicitly encode program state
and instead explore all interleavings of conflicting
(i.e. non-commutative) operations. In the context of
stateless model checking, researchers have developed
several partial order reduction techniques to reduce
exploration of redundant executions [1, 15–17].
Partial order reduction techniques for stateless model
checking reason locally about the commutativity of
individual operations and effectively assume that any
operation may depend on all previous operations.
There remains further potential for improvement in



partial order reduction by incorporating reasoning
about the program’s dependency structure.
To be more precise, consider a program with two
threads that both first perform an operation on a
concurrent queue and then each perform an indepen-
dent operation on a concurrent stack. Existing POR
approaches will explore every interleaving of the stack
operations in the context of every interleaving of the
queue operations even though these operations are
independent!

• SAT-Based Approaches: Researchers have im-
proved on stateless model checking by developing
SAT-based approaches to model checking [8, 26]. The
key insight is that, by encoding a program as a SAT
formula, the model checker can leverage the SAT
solver’s heuristics to avoid wasting time exploring
redundant executions.
Current SAT-based approaches translate the entire
program to a SAT formula. This is non-ideal in
that many programs contain arithmetic expressions,
which significantly complicate the SAT formula and
limit the scalability of this approach. Moreover, the
approach is not applicable to code that calls library
functions whose source is not available.
A second downside of existing SAT-based approaches
is that they are all or nothing—if the generated SAT
equation is too complex for the SAT solver to analyze,
the model checker provides the developer with no
information.

We introduce a new approach to model checking
concurrent code that leverages two key insights from the
previous approaches:

• Reasoning about dependences is necessary for
scalability: Approaches that naïvely run code don’t
scale because they waste too much effort exploring
redundant executions. Scalable approaches must rea-
son about how operations depend on each other to
avoid wasting effort on redundant executions.

• Encoding the entire program in SAT can
add significant complexity from the non-
concurrent parts of the code: Approaches that
try to encode the entire program into SAT incur
complexity from the non-concurrent parts of the com-
putation (e.g., arithmetic on integers). In many cases,
concurrent executions of a given test case cannot
drive arbitrary values through the program, and thus
it is not necessary to encode how the computation
operates on all values, but rather just the values that
actually arise in concurrent executions.

1.1 Our Approach
This paper presents our novel SAT-based approach to
model checking for concurrent code. Unlike previous
SAT-based approaches, we use the SAT solver to encode
the execution, not the program. Our approach was in-
spired by concolic testing as well as previous work on
model checking concurrent code [25]. SATCheck lever-
ages dependency information provided in program in-
strumentation, and we have developed a compiler fron-
tend that instruments C code for use with SATCheck.
SATCheck accepts as input an instrumented program in-
cluding stores, loads, atomic Read-Modify-Write (RMW)
operations, uninterpreted functions, equality compar-
isons, structured conditional branches, while loops, and
phi functions.

Our approach, like similar approaches in stateless
model checking, (DPOR [15, 32], Chess [22], SourceD-
POR [2], Optimal DPOR [1], Maximal Causality Reduc-
tion [19], etc.) begins by fixing a set of user-provided
inputs, and concretely executing the program under test
with these inputs. We then use the results of the concrete
execution to construct an event graph representation of
the program’s observed behaviors. The event graph cap-
tures the observed control flow paths of the program;
observed input-output relations for uninterpreted func-
tions; observed memory operations, conditional branches,
and loops; and dependences between each of these com-
ponents. SATCheck then translates the event graph into
a SAT formula that captures the observed behaviors of
the program. SATCheck next adds clauses to this SAT
formula, that, when satisfied, generate an execution
that expands SATCheck’s knowledge of the program’s
behavior—either by taking a new (unexplored) direction
on a branch, by visiting a novel interleaving, or by learn-
ing a new input-output relation for an uninterpreted
function. SATCheck uses an off-the-shelf SAT solver to
solve the SAT formula. If there is no solution, then no
interleaving will yield new behaviors—SATCheck has
explored all program behaviors (for the given program
input). If there is a solution, SATCheck generates a inter-
leaving from the solution and repeats the process. Once
SATCheck has converged, the SAT formula describes
all observable behaviors of the program under test for a
particular set of inputs to that program.

Our tool is available under an open source license at
the following URL:

http://plrg.eecs.uci.edu/satcheck/

1.2 Contributions
This paper makes the following contributions:

• Basic Approach: It presents a new technique for
model checking concurrent code. The approach learns
the behaviors of the program through concrete execu-

http://plrg.eecs.uci.edu/satcheck/


tions and uses a SAT solver to search for executions
that reveal new program behaviors.

• TSO Support: After developing the algorithm for
the sequentially consistent memory model, it presents
an extension of the algorithm to Total Store Ordering
(TSO).

• SATCheck Implementation: It presents
SATCheck, a prototype implementation of our
model checking technique. Our implementation
includes a Clang-based frontend that instruments C
programs for use with SATCheck.

• Evaluation: It presents an evaluation of the
SATCheck implementation on several concurrent data
structures. Our evaluation shows that SATCheck
scales to much larger problem sizes and runs more
quickly than previous concrete execution-based ap-
proaches.

2. Example

1 typedef struct lock_t {
2 int lock;
3 } lock;
4
5 lock a;
6
7 void initlock (lock *l) {
8 l->lock = 0;
9 }

10 bool trylock (lock *l) {
11 int val=cas (&l->lock , 0, 1);
12 return val ==0;
13 }
14 void unlock (lock *l) {
15 store (&l->lock , 0);
16 }
17 void foo () {
18 if ( trylock (&a)) {
19 unlock (&a);
20 }
21 }

Figure 1. C spin lock implementation.

We explain how SATCheck works using the simple
spin lock example shown in Figure 1. This example
implements methods trylock and unlock, which are
called by the driver foo method.

Assume a program which creates two threads, both of
which call foo. SATCheck starts by concretely executing
the program. Assume that in the first execution (1)
Thread 1 first executes the CAS operation in its trylock,
then (2) Thread 2 executes the CAS operation in its
trylock, and finally (3) Thread 1 executes the store
in unlock. After SATCheck observes this execution, it
constructs the initial event graph in Figure 2.

2.1 Event Graph Construction
Each operation instance in the execution is assigned
a unique execution point (or EP) tuple, shown in

<tid=1,1>, x0=cas(r(0)w(1))

<tid=1,2>, x1=f(x0) (0 → 1)

<tid=1,3>, branch(x1)

<tid=1,4>, merge <tid=1,3,br(1),0>, store(0)

<tid=2,1>, y0=cas(r(1)w(1))

<tid=2,2>, y1=f(y0) (1 → 0)

<tid=2,3>, branch(y1)

<tid=2,4>, merge <tid=2,3,br(0),0>, nop

Figure 2. Event graph summarizes first execution (T1
CAS, T2 CAS, T1 store) with unconditionally executed
nodes (connected by solid black arrows) and condition-
ally executed nodes (dashed blue arrows).

<bolded angle brackets> in Figure 2. EP tuples al-
low SATCheck to match equivalent operation instances
between different executions and reflect the nested struc-
ture of the programming language. An EP tuple starts
with the thread identifier and includes a sequence of
counts. SATCheck maintains per-thread EP counters
during the program’s execution. The execution counter
for a thread starts as a 2-tuple consisting of the thread
identifier along with a single counter set to 1.

Figure 2 shows that Thread 1’s first CAS operation
gets EP <tid=1,1>. Since this operation runs first, it
reads the value 0 and writes the value 1, as indicated by
the label r(0)w(1). Also, SATCheck assigns a unique
identifier for the output of each event graph node.
Thread 1’s first CAS operation gets the identifier x0.

After a normal operation (e.g. load, store, RMW,
or function invocation), SATCheck increments the last
element of the EP. Thus, the second operation, an un-
interpreted function that evaluates val==0, gets EP
<tid=1,2>. The label x1=f(x0) indicates that the func-
tion depends on the value x0 produced by the previous
CAS operation and that the identifier x1 gets the output
of the function. SATCheck remembers the input-output
relation of the function: the label 0→ 1 indicates that
SATCheck has observed that for an input of 0, function
f produces output 1.

The following branch operation gets EP tuple
<tid=1,3>. After a branch operation, SATCheck ap-
pends the direction of the branch and a new zeroed
counter to the EP. Thus, the conditionally executed
store operation has EP <tid=1,3,br(1),0>. The frag-
ment br(1) indicates that this operation is only exe-
cuted when the enclosing conditional branch is taken.
We graphically indicate conditionally executed code with
a dashed blue arrow. The black arrow shows the next
statement to be executed after the code enclosed by the
conditional branch finishes.

The event graph also includes information on Thread
2’s execution. The explanation is analogous to that for
Thread 1.



From this event graph, SATCheck deduces the pos-
sibility of behaviors that it has not yet observed: (1)
an execution where Thread 1 skips the body of its if
statement; (2) an execution where Thread 2 executes
the body of its if statement; and (3) executions where
the two uninterpreted functions are evaluated on input
values that differ from the current inputs. An execution
with a different interleaving will allow SATCheck to
evaluate the uninterpreted functions on different inputs.

2.2 Translation to SAT
SATCheck next translates the event graph into a SAT
formula that describes the observed behaviors of the
program and the execution interleaving. It then adds
goal clauses that encode a set of constraints that, when
satisfied, ensure that the program exhibits a new behav-
ior. New execution interleavings potentially yield new
program behaviors that satisfy these goal clauses — the
SAT solver searches for such interleavings which drive
the program to produce new behaviors.

Like CheckFence [8], SATCheck represents the execu-
tion interleaving by assigning a single boolean interleav-
ing variable to every pair of memory operations from
different threads. If the boolean variable is true, the first
memory operation appears earlier in the interleaving. If
it is false, the second memory operation appears earlier
in the interleaving. (Unlike CheckFence, our approach op-
erates on concrete executions.) For our running example,
SATCheck generates the SAT variable v<tid=1,1>,<tid=2,1>,
which is true when operation <tid=1,1> occurs before
operation <tid=2,1>. SATCheck also generates the vari-
able v<tid=1,3,br(1),0>,<tid=2,1> for the store in Thread 1.
Finally, SATCheck generates constraints between these
variables to enforce transitivity properties (to ensure
that the interleaving is an ordering).

SATCheck uses a potential value set analysis on
the event graph to determine the values that variables
(including addresses) may take, in the absence of novel
behaviors. Novel behaviors create new, previously unseen
values. Potential value sets do not capture all possible
values, only the values a variable may have if the
execution does not encounter new program behaviors.
The potential value set analysis does not need to account
for new values; they will be generated in later iterations
by concrete program iterations. In particular, SATCheck
assumes that uninterpreted functions do not generate
new values.

On our running example, the analysis tells us that (1)
the CAS and store operations only access one address, (2)
the values written to that address are 0 and 1, and (3) the
input values to the memory operations are fixed. Note
that new values are created by generating executions
that create these values and SATCheck generates goal
clauses to ensure that it produces all possible values.

Future runs of the potential value set analysis would
then include those values.

Because the example uses fixed addresses for its mem-
ory operations, SATCheck does not need to allocate any
SAT variables for addresses. Since the memory opera-
tions only store two possible values ({0, 1}), SATCheck
encodes them using a single SAT variable to index into
the set.

We also allocate value variables for memory oper-
ations, and allocate two variables per CAS operation
(one for the value read, r<tid=1,1> and r<tid=2,1>, and one
for the value stored, w<tid=1,1> and w<tid=2,1>) and one
SAT variable w<tid=1,3,br(1),0> for the store, representing
the value it stores. For each load operation, we encode
the store it reads-from using SAT variables. The CAS
operation <tid=1,1> can read-from one of two stores:
the CAS operation <tid=2,1> or the initialization store.
Thus we can use a SAT variable `<tid=1,1> to represent
which of these two stores it reads-from. If variable ` indi-
cates that a load reads-from a given store, then (1) their
values must match, (2) the store must be ordered before
the load, and (3) there cannot be a conflicting store
to the same address ordered between them. SATCheck
generates constraints to capture these properties.

The uninterpreted functions take as input the value
returned by the CAS operation (0 or 1 from the po-
tential value set). Consider the uninterpreted function
<tid=1,2>x1 = f(x0)(0→ 1). We model this function’s
output as either the previously observed value 1 or a
special value to represent an as-yet unobserved output.
One SAT variable can represent these two cases.

This graph contains two branches. Both branches have
taken one direction each; the remaining directions are
unexplored. Thus we represent the state of the branch
with two values: either the explored direction, or a new
direction. We can therefore allocate one SAT variable per
branch. From the current execution, we know that if the
uninterpreted function returns 1, then the if body will
be executed. Thus we can build an implication constraint
from the SAT variable for the output of the uninterpreted
function to the SAT variable for the branch direction.

The effect of store <tid=1,3,br(1),0> store(0)
must be predicated on taking the branch. Thus the
branch SAT variable appears in the constraints for loads
to ensure that if some executed load reads from this
store, then the store was in fact executed.

Forcing Novel Executions The key novelty of our
approach is that we model sets of observed concrete exe-
cutions of the program (including dependencies between
computed values) and iterate to find new, interesting
executions. This greatly reduces the state space that
must be explored. To support this approach, SATCheck
generates a clause whose satisfaction implies the exis-
tence of a new execution. We have designed SATCheck’s



<tid=1,1>, x0=cas(r(0)w(1))

<tid=1,2>, x1=f(x0) (0 → 1)

<tid=1,3>, branch(x1)

<tid=1,4>, merge <tid=1,3,br(1),0>, store(0)

<tid=2,1>, y0=cas(r(1,0)w(0,1))

<tid=2,2>, y1=f(y0) (1 → 0, 0 → 1)

<tid=2,3>, branch(y1)

<tid=2,4>, merge <tid=2,3,br(0),0>, nop <tid=2,3,br(1),0>, store(0)

Figure 3. Second execution adds new behaviors for
tid=2, including new uninterpreted function outputs
and a store node.

encoding so that it is simple to generate such a clause.
The clause simply needs to evaluate to true when a
branch or an uninterpreted function takes on a novel
value. These conditions are explicitly represented in our
encoding. The interleaving that drives the program to
a novel execution can then be recovered from the SAT
solution — the truth assignments for the interleaving
variables directly encode the desired interleaving.

2.3 Iterating Concrete Executions
Having encoded a SAT formula whose satisfaction im-
plies a novel execution, SATCheck calls the SAT solver
to request a satisfying assignment of that formula and
converts that assignment back into an execution inter-
leaving. It repeats the execute/encode/solve loop until
it exhausts all possible novel behaviors.

In our example, SATCheck might learn from the
SAT solver that the branch in Thread 2 would take a
different direction if Thread 2 executes trylock first.
The satisfying assignment encodes properties of the
interleavings which would cause this novel behavior.
In one such interleaving, (1) Thread 2 executes the CAS
operation in trylock, (2) Thread 2 executes the store
in unlock, (3) Thread 1 executes the CAS operation in
trylock, and (4) Thread 1 executes the store in unlock.
SATCheck then executes the program under this new
interleaving and incorporates this new execution into
its event graph. Figure 3 presents the resulting event
graph.

From this graph, SATCheck observes that it still has
not explored an execution in which Thread 1 skips the
body of the if statement and may not have evaluated
the uninterpreted functions on all possible input values.
Thus, SATCheck repeats the process. The new solution
from the SAT solver generates the following interleaving:
(1) Thread 2 executes the CAS operation in its trylock,
(2) Thread 1 executes the failed CAS operation in its
trylock, and (3) Thread 2 executes the store in its
unlock.

After SATCheck executes that interleaving, it has
explored all possible branches in the program. The
final event graph shown in Figure 4 reflects the third
interleaving and shows that all branches are taken in all
directions.

Figure 4. Complete event graph after third execution,
summarizing all behaviors for given program input.

However, it is not immediately obvious from the event
graph that SATCheck has evaluated the uninterpreted
functions on all possible input values. SATCheck thus
generates a new query for the SAT solver. The SAT
solver then reports that it is not possible to evaluate the
uninterpreted function nodes on any new inputs.

At this point, SATCheck terminates, having explored
all possible behaviors for the given program input.
Furthermore, SATCheck has produced a SAT model
of all possible executions.

3. Event Graph
As SATCheck executes a program, it dynamically builds
an event graph representation for each thread which
captures the thread’s behavior over observed program
executions. The event graph consists of a set of nodes N
and set of edges E ⊆ N ×N . Nodes in the event graph
represent dynamically executed program operations—
there is a unique node for each dynamic instance of
a program operation in an execution (even if nodes
correspond to the same static source code operation).
The encoding is SSA-like: all nodes (except phi nodes)
accept inputs from exactly one node in the event graph.

The nodes represent the following program operations:
(1) stores, (2) loads, (3) atomic RMWs, (4) conditional
branches, (5) control flow merges from conditional
branches, (6) uninterpreted function invocations, (7)
equals comparisons, (8) loop entries, (9) loop exits, and
(10) phi functions.

When operations in these nodes take values from
variables or temporaries, an event graph node records the
source node for that value. SATCheck uses phi function
nodes to ensure that there is always exactly one source
node for each variable for non-phi nodes.

To merge a new execution into the event graph,
SATCheck must match equivalent operations from dif-
ferent executions. SATCheck does this by defining ex-
ecution point (EP) tuples. A thread starts with the
EP 〈tid, 0〉. Figure 5 presents the rules for updating a
thread’s operation tuple during an execution. SATCheck
identifies operations at the same EP with the same event
graph node, even across executions.



cond_branchn(〈i0, ..., ik〉) = 〈i0, ..., ik, n, 0〉
mergel(〈i0, ..., il−1, ..., ik〉) = 〈i0, ..., il−1 + 1〉

loop_enter(〈i0, ..., ik〉) = 〈i0, ..., ik, 0〉
loop_exitl(〈i0, ..., il−1, ..., ik〉) = 〈i0, ..., il−1 + 1〉

others(〈i0, ..., ik〉) = 〈i0, ..., ik + 1〉

Figure 5. Rules for Updating Operation Tuples

Event graph nodes record all values that SATCheck
has observed as output for the operation that corre-
sponds to the node. For function nodes, SATCheck also
records, for each previously observed assignment of val-
ues to inputs, the output value of the function.

3.1 Potential Value Set Analysis
The SAT translation process begins with a fixed point
computation of potential value sets for each variable
over the event graph. These sets enable the translation
to fix encodings for the generated SAT instance. As
discussed in the previous section, potential value sets
do not include all possible values for a variable. They
only include all possible values under the current set
of executions. SATCheck lazily generates the remaining
possible values in future iterations as it encounters new
program behaviors that create those values.

Encoding all possible values of program variables
would increase the size of the SAT encoding. However,
encoding only previously-observed values would affect
the SAT solver’s ability to reason about new execu-
tions (requiring more iterations). Thus, we compute a
potential value set for the operation corresponding to
each event graph node that includes (1) values we have
observed for that operation from previous executions,
(2) values that could be propagated by rearranging the
reads-from relation between loads and stores without
evaluating uninterpreted functions on new values, and
(3) values that could propagate through phi functions.
Our computed value sets encoded existing behaviors and
did not require too many needless iterations.

• Load/Stores/CAS: The potential value set for the
value read by a load is the union of the potential
value sets for the values written by all stores (or
RMW operations) that may write to an address that
the load may read from. To determine where a load
may read from or where a store may write to, we use
the potential value sets of the addresses.

• Atomic Add: SATCheck approximates the output
values written at an atomic add using the values
SATCheck has observed from the atomic add in
previous executions. This ensures termination, which
would not otherwise be guaranteed by using the

potential value set for the add’s inputs. This design
choice has a cost—SATCheck must treat new outputs
of atomic adds as new behaviors that the SAT solver
explicitly searches for executions to generate.

• Functions: The potential value set for the output
of a function is the set of values it has generated in
previous executions.

• Equals: The potential value set for an equals opera-
tion is true or false.

• Phi Functions: The potential value set for a phi
function is the union of the potential value sets of all
of its inputs.

3.2 Partitioning Memory Operations
SATCheck partitions load, store, and RMW actions such
that if two actions can access the same memory address,
they are in the same partition. For this computation,
we use the set of addresses computed by the potential
value set analysis. All memory operations from the same
partition share the same value and address encodings.

4. Encoding the Event Graph into SAT
We next discuss how SATCheck encodes the event
graph into SAT. The encoding has two components:
(1) SATCheck first chooses SAT variables to encode exe-
cutions (Section 4.1); and (2) SATCheck formulates SAT
clauses to ensure that executions are valid (Section 4.2).

4.1 Representing Executions with SAT
Variables

Encoding Interleavings (Execution Order) For
any two memory operations ni, nj ∈ Nmemory, where
ni is performed by thread i and nj is performed by
thread j: if i < j, and ni and nj are not ordered by
thread creation or thread joins, then SATCheck creates
a SAT variable vni,nj that is true if ni is executed before
nj (i.e., ni

sc−→ nj) and false if nj is executed before
ni. This SAT interleaving variable effectively encodes
the execution interleaving. Note that execution graphs
describe the behaviors of multiple executions—a given
store may not be executed in a given execution. Our
encoding orders all memory operations including those
that are not executed—memory operations that are not
executed simply do not have any effects.

Encoding Control Flow The event graph summa-
rizes all observed executions. For example, if SATCheck
has explored both sides of a conditional branch, the
event graph will contain the events for both sides. A
solution to the SAT formula describes a single execution,
and thus the SAT formula must encode all potential
executions’ control flows.

In a given execution, a conditional branch operation
can either: (1) not be executed, (2) take the same



direction as we have observed in a previous execution,
or (3) take a new direction down the branch (if there
exist unexplored directions for that branch).

Conditional branches in SATCheck are used to model
if statements and switch statements, and thus support
more than 2 directions. Our encoding uses one state to
model the case that the branch was not executed and
one state for each of the possible directions the branch
has been observed to take. For branches that still have
unexplored directions, our encoding also uses one state
to model the branch taking a new direction.

Thus, for a conditional branch br with m possible
directions of which we have observed n directions, we en-
code r = 1+min(m, n+1) possible behaviors. SATCheck
uses dlog2(r)e SAT variables to model each of these pos-
sible behaviors.

Values of Program Variables As mentioned in
Section 3.1, encoding all possible values for program
variables significantly increases the size of the encoding.
Instead, SATCheck first computes the potential values
Sv for a variable using the potential value analysis from
Section 3.1. It then creates dlog2(|Sv|)e SAT variables
to encode the value of variable v. The SAT variable
encodes the variable v’s value as an index into Sv.

For the output of uninterpreted functions or atomic
adds, we add a special value to Sv to encode new outputs
that have not yet been observed.

Encoding Memory Operations For each memory
operation partition p, we have both a set of addresses Ap

that the operations may access and a set of values Vp that
a load may read or that a store may write. SATCheck
uses dlog2(|Ap|)e SAT variables to encode addresses and
dlog2(|Vp|)e SAT variables to encode values. SATCheck
encodes addresses and values by the binary encoding of
their index in the corresponding value set.

Note that memory operations may operate on SAT
variables expressed in different encodings. For example,
a store operation may take its input value and address
from operations that use a different encoding than the
store’s memory partition. SATCheck generates implica-
tion constraints to translate between different encodings.
Load operations induce a set of SAT variables for values
read and addresses read from, each in an appropriate
encoding for the operation. Store operations induce SAT
variables for values written and addresses written to.

Encoding the Reads-From Relation For each load
`, SATCheck computes stores R` whose potential address
set has a nonempty intersection with the potential
address set for load `. SATCheck then uses dlog2(|R`|)e
SAT variables to encode which store load ` reads-from.
SATCheck encodes the reads-from relation as the binary
encoding of the store’s index in the set R`.

4.2 SAT Clauses Ensuring Valid Executions
We next describe how SATCheck encodes executions in
terms of constraints on the SAT variables described in
the previous section.
Branch Constraints As the event graph summarizes
the behavior of all executions SATCheck has previously
explored, a given execution will typically not execute
all the events in the event graph. We next describe the
constraints that capture the path of a given execution
through the event graph.

SATCheck assumes that conditional branches have
a nested structure. Thus at each event e in the event
graph, we can compute a nested stack se of conditional
branches and directions that were taken to reach the
given event node. For each conditional branch b, we
have an input variable vb, and potentially a required
preceding conditional branch b′ that took direction d
(e.g., branch b is only reachable when branch b′ takes
direction d).

We can encode the behavior of branch b using the
following two constraints:
1. If branch b′ did not take direction d, then branch b

was not executed.
2. If branch b′ took direction d, then branch b takes the

direction vb specified by its input variable.
Transitive Ordering Constraints for Interleav-
ings We next describe the transitive ordering con-
straints that ensure that the ordering sc−→, i.e., the execu-
tion interleaving, constitute a total order on all memory
operations.

For any three memory operations ni, nj , nk ∈ N ,
SATCheck generates a set of transitive ordering con-
straints. These constraints capture the following prop-
erty: ni

sc−→ nj ∧ nj
sc−→ nk ⇒ ni

sc−→ nk.
Load Read-From Constraints We next describe
several consistency constraints between the reads-from
relation, the sc−→ total order, the values read by loads and
written by stores, and the addresses accessed by loads
and stores. These constraints are the final component of
encoding the execution interleaving—they ensure that
the behaviors of memory operations are consistent with
sc−→ (the execution interleaving).
SATCheck begins by computing a set of stores that

each load may potentially read from. For each such store,
SATCheck instantiates the following constraints:

1. If load b reads-from store a, then store a must
be sc ordered before load b:

a
rf−→ b⇒ a

sc−→ b

2. A load must read the same value as the store
it reads-from:

a
rf−→ b⇒ value(a) = value(b)



3. If a load reads from a store, then both the
load and store must access the same memory
address:

a
rf−→ b⇒ address(a) = address(b)

4. To read from a store, it must have been exe-
cuted:

a
rf−→ b ∧ was-executed(b)⇒ was-executed(a)

5. There cannot be a conflicting store between a
load and the store it reads from:

a
rf−→ b⇒ (∀c ∈ Stores. ¬was-executed(c) ∨

¬a
sc−→ c ∨ ¬c

sc−→ b ∨ address(c) 6= address(b))

6. Every executed load must read from some
store:

was-executed(b) ∧ is-load(b)⇒ ∃a. a
rf−→ b

Load/Store Value and Address Encoding Each
load takes an address as an input and each store takes
both an address and a value as inputs. SATCheck uses
the results of the potential value set analysis to compute
the potential values of the input variable (unless a new
value is generated via a new behavior). For each potential
value of the input variable, SATCheck generates an
implication that, if the input variable has value v, then
the relevant address or value variables for the load
or store must also have value v. As mentioned above,
the encodings for the memory operation and for the
partitions need not match.

For example, for a store’s input value
variable vinput, SATCheck generates impli-
cations of the form value(vinput) = n ⇒
value(store’s SAT value variables) = n for all n in
vinput’s potential value set, to convert the encoding
of the input variables into the encodings used by the
store’s memory partition.

Function Constraints For each uninterpreted func-
tion, SATCheck stores the relation between specific in-
put value assignments and the corresponding observed
output values. For each known assignment of the in-
put values, SATCheck generates an implication that,
if the input variables match the assignment, then the
function’s output value matches the previous output.

If an execution generates a new assignment to the
inputs of an uninterpreted function, then none of the
implications apply. The function’s output can therefore
take on any value. Recall that for the output of each
uninterpreted function, SATCheck includes a special
value that serves a placeholder for a new output value.

Equals Constraints One assumption of SATCheck
is that either a fixed program input will lead to a small
set of inputs for uninterpreted functions over the set
of concurrent executions, or that the outputs of the
uninterpreted function on a maximal range of inputs
is interesting. In our experience, this is generally true,
but equality comparisons (if modeled as uninterpreted
functions) can sometimes be an exception.

Concurrent data structure implementations often
use equality comparisons on counters to see whether
anything has changed. While such computations can
feed many combinations of values into the comparison,
the only interesting information is whether the inputs
to the comparison are equal.

We therefore provide a built-in comparison operation
which enables SATCheck to avoid generating all possible
inputs for the comparison operation.

Constraints for Atomic Add and CAS opera-
tions To simplify SATCheck’s treatment of CAS op-
erations, we model a failed CAS operation as a store
of the old value. We then handle CAS operations by
combining the techniques we have used for load and
store operations. The key difference is that SATCheck
generates a constraint that sets the value written by the
CAS operation to newvalue if the value read matches
the oldvalue, and otherwise simply stores the same
value that the CAS read. We assume a strong CAS oper-
ation here; it is straightforward to modify the encoding
to support weak CAS operations with spurious failures.

Although it is conceptually straightforward to com-
pute the output of an atomic add operation given its
inputs during the potential value computation, doing
so can prevent the potential value computation from
terminating. SATCheck treats atomic add operations
as a combination of a load operation, an uninterpreted
function invocation, and a store operation.

Yields Like many model checkers, SATCheck uses
yields to avoid the problem of unfair schedules caus-
ing the program to loop. Break statements out of
conditionally-executed loops complicate our treatment
of yields: SATCheck may not be aware of their existence
when it discovers a yield. Thus, SATCheck generates a
constraint that an execution should not contain a yield
unless the thread that calls yield first explores a new
branch direction.

4.3 Generating New Behaviors via Goal
Expressions

SATCheck iteratively generates complete event graph
models by recording past program behaviors in the event
graph and generating clauses (goal expressions) that,
when true, indicate executions that demonstrate new
behaviors. There are two ways that the event graph for
a program can be incomplete:



• Untaken Conditional Branch Directions: If no
previous program execution has taken a given direc-
tion of a conditional branch, the event graph will
miss events reachable via that branch direction.

• Unknown Behaviors for Uninterpreted Func-
tions or Atomic Add Operations: If there is an
input assignment to an uninterpreted function or
atomic add operation that can be generated by an
execution and SATCheck has not explored an exe-
cution that generates that input assignment, then
SATCheck’s model of that uninterpreted function is
incomplete.

For conditional branches, SATCheck generates a goal
expression that evaluates to true if the branch takes a
new direction. For uninterpreted functions, SATCheck
generates a goal expression that evaluates to true if the
function outputs the unknown-output placeholder.

After exploring the entire event graph, SATCheck
generates a SAT formula that is true if at least one goal
expression is true.

5. Exploring Concrete Executions
After SATCheck encodes the event graph as a SAT
formula, it passes this formula to a SAT solver. If the
SAT solver finds that the formula is unsatisfiable, then
the event graph is complete: it is impossible to construct
an interleaving such that uninterpreted functions see
new input value assignments or that branches take new
directions. Thus, SATCheck has explored all reachable
behaviors of the program.

If the SAT solver finds a solution to the SAT formula,
the solution can be converted to an execution exhibiting
behavior that is not currently modeled. SATCheck
converts the SAT solution into paths through the event
graph for each thread. Each path traverses a set of
memory operations, and the truth assignments for the
interleaving variables specify the execution interleaving
that generates the desired new behavior. SATCheck
represents the interleaving as a set of wait pairs. A wait
pair consists of two memory operations: a stop point and
a notify point. A thread’s execution stops at a stop point
until its partner thread has reached the notify point.

The SATCheck scheduler then performs a concrete
execution using the wait pairs. Note that the interleaving
generated by the SAT formula is only guaranteed to be
realizable until the point at which the execution deviates
from previous behavior. After the execution exhibits a
new behavior, there is no guarantee that the execution
will continue to follow the path modeled by the SAT
solution.

To extend a concrete execution, the SATCheck sched-
uler executes events from a thread’s execution until
that thread reaches a memory operation. At a mem-

ory operation, the scheduler may choose a new thread.
SATCheck’s scheduler uses a round robin approach to
select a new thread for execution, respecting constraints
on thread selection imposed by wait pairs.

When an execution deviates from the interleaving
specified by the SAT formula due to a new behavior,
it is possible that all threads may get stuck waiting at
wait pairs. Recall that wait pairs are based on previous
executions and may no longer be valid. Hence, if no
threads are runnable because of wait pair constraints,
SATCheck can ignore these constraints and arbitrarily
pick a thread to run.

Note that SATCheck does not choose which new
behavior to explore first—it explores whichever new
behavior the SAT solver discovers. When SATCheck
observes a new behavior, it integrates that behavior into
the event graph, ensuring that the corresponding goal
does not get generated in the future.

6. Extensions
We next describe several extensions we have imple-
mented to the core SATCheck algorithm to improve
performance and to support TSO.

6.1 Field Support
The base algorithm can handle loads and stores to fields
through uninterpreted functions. Failing to differentiate
the objects containing the generated fields will cause
SATCheck to explore executions that actually access all
of the objects that each load or store can access.

Instead, explicitly modeling field accesses can greatly
reduce the number of executions that SATCheck needs
to explore. We have therefore added explicit support
for fields. This embeds the address computation directly
into the SAT encoding for the memory access. SATCheck
then only needs to generate executions that access the
fields of interesting structures.

6.2 Sharing Between Instances of
Uninterpreted Functions

In many programs, the same uninterpreted functions
are accessed many times during an execution. The base
algorithm doesn’t share information between different
dynamic instances of the same uninterpreted function
and thus attempts to generate executions that gener-
ate the same inputs for different instances of the same
uninterpreted function. We have added support for un-
interpreted function identifiers that signal to SATCheck
that inputs learned from one instance of an uninterpreted
function can be shared with other instances.

6.3 Incremental Solving
Many SAT solvers support incremental solving modes in
which variations of an initial SAT problem can be solved



more efficiently by leveraging clauses learned from the
initial problem.

SATCheck can leverage incremental solving capabil-
ities by reusing the same SAT encoding to generate
additional executions that achieve goals that were not
covered by the previous solutions.

While this optimization often improves performance,
it may sometimes harm performance. In general
SATCheck must fail to find a solution to a new encoding
before it can terminate as the reused encodings do not
incorporate newly discovered behaviors. If SATCheck
encounters hard incremental SAT problems to solve,
the effort may have been better spent on solving the
updated SAT constraints that incorporate the newly
learned behaviors.

6.4 TSO Extension
Modern x86 processors implement the Total Store Order-
ing memory model. In the TSO memory model, stores
are placed in a store buffer before main memory is up-
dated. This allows loads to be reordered above previous
stores from the same thread.

We have implemented TSO support in SATCheck.
The key idea is to separate store operations into two
components: a locally visible store action and a globally
visible update that moves the store from the local store
buffer to update shared memory. Abdulla et al [2] use a
similar approach to extend DPOR for TSO.

Without loss of generality, SATCheck executes locally
visible store actions immediately after the previous load
operation from the same thread. Because they are only
locally visible, local stores commute with operations
from other threads. SATCheck then encodes a search
(to determine when the store should become globally
visible) into the SAT formula.

Loads may be reordered in front of the update actions
for previous stores from the same thread. Thus we
introduce ordering variables between loads and the
update actions from previous stores in the same thread.
We also change the meaning of the existing execution
order variables for threads—these variables now model
when the update is flushed to shared memory. This does
increase the number of potential executions to explore as
a given thread may now have more than one operation
it can execute before—either an update from the store
buffer or a load operation.

TSO also includes a fence that flushes the store buffer
and makes all previous stores globally visible. RMW
actions on x86 also have the effect of flushing the store
buffer. To account for these, we treat loads slightly
differently. If the update action for a store has not been
evicted from the store buffer, later loads from the same
address from that thread must read from the local store
buffer. Fence operations and RMW operations have
the effect of flushing the store buffer if executed. We

implement this behavior as an implication—if the fence
or RMW action is executed, then we force order variables
for the updates of previous stores ahead of the fence
or RMW to order them before loads after the fence or
RMW.

7. Memory Models
Although SATCheck was implemented to support the SC
and TSO memory models, its techniques are applicable
to more relaxed memory models. It is straightforward to
support processor memory models, as long as the output
of uninterpreted functions must depend solely on their
inputs. Processors must not reorder a store depending
on an uninterpreted function before a load that provides
the function’s input.

Handling language memory models is a more complex
issue, as the mainstream language memory models are
known to be incompatible with formal reasoning [3, 7, 27]
due to out-of-thin-air (OOTA) behaviors [6]. With the
addition of reasonable constraints that forbid OOTA
behaviors, such as those suggested by [5, 6], it should
be possible to adapt the techniques in SATCheck for
use in checking programs against relaxed language-level
memory models.

8. Test Schedule Generation
An advantage of combining concrete execution with a
SAT solver to guide exploration of executions is that,
even if the resulting program is too complex to fully
analyze, the SAT solver will generate schedules that can
be useful for testing. Approaches that are solely based on
SAT will either provide a complete answer or generate a
query that is too complex for the SAT solver to handle. In
that case, the query itself is not of independent interest.
Stateless model checking approaches based on DPOR
do yield vast numbers of executions, but many of these
executions are redundant.

On the other hand, each execution of SATCheck
explores some new aspect of the input program—by
modifying the program’s scheduling, SATCheck either
exercises a new control flow path or produces new and
potentially interesting inputs to uninterpreted functions.
These executions could generate specifications of inter-
esting test cases in an appropriate test case specification
language [11].

9. Instrumentation
While SATCheck builds models of program execution
by observing and guiding its dynamic behavior, it
also requires program instrumentation to propagate
dependency information and to identify uninterpreted
functions, branches, and loops. We have implemented a
Clang-based frontend which accepts C code and produces
instrumented C code suitable for use with SATCheck.



Our frontend generates all of the instrumentation for
the benchmarks that we present in Section 10.

Although the current implementation is a research
prototype, it is based on the industrial-strength Clang
frontend. We have started with benchmarks in idiomatic
C and gotten them through our frontend without diffi-
culty; getting a new benchmark through the frontend
may require a modest amount of straightforward bench-
mark modification or frontend development (if the bench-
mark uses parts of C that we do not currently handle).

The instrumentation records provenance information
for values that come from the heap or depend on heap
accesses. Before each heap access, the instrumentation
inserts a call to the SATCheck runtime library with
identifiers for the access’s input state. The runtime
library returns an identifier for the output state. At
conditional branches, our instrumenter refactors the
condition into a temporary variable if necessary and
inserts code to notify the SATCheck runtime library
about the condition and the direction that the branch
eventually takes.

Most importantly, the instrumentation notifies the
runtime library about computations on values that
come from shared state. After each computation that
depends on shared state, the instrumenter generates an
accompanying uninterpreted function notification with
the identifiers for the computation’s inputs and outputs,
thus enabling the creation of function constraints as
described in Section 4.2.

Example. We continue with an example demonstrat-
ing the operation of our instrumenter. Figure 6 presents
the uninstrumented code for the read routine for the
seqlock benchmark in Section 10, while Figure 7 presents
the output of our instrumenter. The compiler frontend
inserts MCID variables, which are used by the model
checker to represent dependences.

In Figure 6, line 5 contains an if statement whose
condition needs refactoring. The instrumenter pulls out
the condition into variable _cond30 and reports an
uninterpreted function to the model checker at line 9 of
Figure 7. The instrumenter also adds branch annotations
at lines 11 and 15 and merge annotations at lines 13
and 32. Line 16 (and many others) are shared variable
access notifications added by the instrumenter. Finally,
the instrumenter inserts a custom uninterpreted function,
MC2_equals, for the equality condition at line 11 of
Figure 7.

Implications. Our front-end enables the model check-
ing of realistic concurrent C code to a scale beyond that
achieved by previous techniques. It requires that the code
to be verified use a fixed set of primitives to perform
shared memory operations (loads, stores and rmws, or
read-modify-writes). The user must provide a driver that

1 int seqlock_read () {
2 int res;
3 int old_seq = load_32 (& _seq); // acquire
4
5 if ( old_seq % 2 == 1) {
6 res = -1;
7 } else {
8 res = load_32 (& _data );
9 int seq = load_32 (& _seq);

10
11 if (seq == old_seq ) {
12 ;
13 } else {
14 res = -1;
15 }
16 }
17 return res;
18 }

Figure 6. Uninstrumented seqlock read.

exercises the functionality of interest in the code to be
checked. The driver must also supply all needed inputs.

Our use of uninterpreted functions enables the wrap-
ping of arbitrary binary blobs (including library calls).
If some code to be verified calls a binary blob, or library
function, that is known to be pure, then the insertion
of an uninterpreted function after the binary blob will
enable the verification of that code.

10. Evaluation
We have implemented SATCheck and have made it
available as open source at the following URL:

http://plrg.eecs.uci.edu/satcheck/

A Vagrant environment which reproduces our experi-
mental setup is also available at:

https://github.com/patricklam/satcheck-vagrant

We evaluated the performance of SATCheck on a
number of benchmarks and compare it to previous work.
Our results (see Table 1) show that SATCheck greatly
outperforms previous work: it can explore larger problem
sizes and runs more quickly than the related work. We
ran our evaluations on identically configured Ubuntu
Linux 14.04 machines with Intel Xeon E3-1246 v3 CPUs
and 32GB of RAM. We ran each tool on each benchmark
with a timeout of 1 hour. We wrote the benchmark
drivers so that they would take no inputs; the behavior
of some benchmarks do depend on scheduling, i.e. on
whether a lock is available or not at the time of the
request. Most of the benchmark drivers start 2 threads;
exceptions are the CAS spinlock, where we started up
to 90 threads, and seqlock, where we used 3 threads.
Some runs failed in less than an hour (e.g. due to solver
problems). This section presents the results from the
sequentially consistent (SC) memory model. Appendix A
presents the results from the Total Store Ordering (TSO)
model.

http://plrg.eecs.uci.edu/satcheck/
https://github.com/patricklam/satcheck-vagrant


1 int seqlock_read (MCID * retval ) {
2 MCID _mres ; int res;
3 MCID _mold_seq ;
4 _mold_seq = MC2_nextOpLoad ( MCID_NODEP );
5 int old_seq = load_32 (& _seq); // acquire
6
7 MCID _br30 ;
8 int _cond30 = old_seq % 2 == 1;
9 MCID _cond30_m = MC2_function_id (31 , 1, ←↩

sizeof ( _cond30 ), _cond30 , _mold_seq );

10 if ( _cond30 ) {
11 _br30 = MC2_branchUsesID (_cond30_m , 1, ←↩

2, true);

12 res = -1;
13 MC2_merge ( _br30 );
14 } else {
15 _br30 = MC2_branchUsesID (_cond30_m , 0, ←↩

2, true);

16 _mres = MC2_nextOpLoad ( MCID_NODEP ),
17 res = load_32 (& _data );
18 MCID _mseq ;
19 _mseq = MC2_nextOpLoad ( MCID_NODEP );
20 int seq = load_32 (& _seq);
21 MCID _br31 ;
22 MCID _cond31_m ;
23 int _cond31 = MC2_equals (_mseq , (←↩

uint64_t )seq , _mold_seq , ( uint64_t )←↩
old_seq , & _cond31_m );

24 if ( _cond31 ) {
25 _br31 = MC2_branchUsesID (_cond31_m ,←↩

1, 2, true);
26 MC2_merge ( _br31 );
27 } else {
28 _br31 = MC2_branchUsesID (_cond31_m ,←↩

0, 2, true);
29 res = -1;
30 MC2_merge ( _br31 );
31 }
32 MC2_merge ( _br30 );
33 }
34 * retval = _mres ;
35 return res;
36 }

Figure 7. Instrumented seqlock read; instrumentation
calls have a MC2 prefix.

We compare SATCheck with:
1. CDSChecker’s implementation [23] of Flanagan and

Godefroid’s dynamic partial order reduction algo-
rithm [15] that incorporates support for sleep sets [16]
as described in the addendum [14]. We use sequen-
tially consistent atomic operations in CDSChecker,
implemented directly using DPOR and sleep sets.

2. Nidhugg’s implementation of source DPOR [2]. We
present results for both Nidhugg’s SC and TSO
memory models.

3. An enhanced version of CheckFence that has been
extended to support atomic addition operations to
efficiently support our benchmarks. CheckFence uses
an iterative lazy algorithm to determine loop bounds.
We configured CheckFence for the SC memory model.
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Figure 8. SC CAS spinlock: SATCheck scales to 4×
more data structure operations and runs 10×–347×
faster than next best tool, CheckFence. (Lower is better,
y-axis is log scale.)

We evaluated SATCheck on these benchmarks:

CAS spinlock This benchmark (seen in Section 2)
uses a compare-and-swap instruction to acquire a lock,
and a store instruction to release the lock.

To test this benchmark we create two threads that
both attempt to acquire and then release the lock. We
vary the number of times each thread attempts to acquire
and release the lock from 1 time up to 250 times.

Figures 8 and 13 present the results for this bench-
mark. For SC, SATCheck was able to model check a
test in which 2 threads attempted to acquire and re-
lease a lock 250 times. We do not report results for
CheckFence for more than 60 trylock/unlock pairs as it
was unable to analyze the execution for 70 pairs. The
DPOR implementations were only able to scale up to 8
trylock/unlock pairs.

We also explored scaling up the number of threads
for this benchmark. See Figure 18 in the Appendix for
results: SATCheck scales similarly when either data
structure ops per thread or number of threads increase.
In one hour, SATCheck verified a 90-thread run.

MSQueue We ported the Michael & Scott lock-free
queue [21] from CheckFence’s version to CDSChecker
and SATCheck. The benchmark starts two threads. One
thread enqueues values, while the other dequeues values.
The standard version makes extensive use of pointer
arithmetic—outside of CheckFence’s limited support
for pointer arithmetic. Although SATCheck supports
the standard version, we report results from the ported
version, which omits the pointer arithmetic, to enable
comparisons with CheckFence.

Figures 9 and 14 present results for MSQueue.
SATCheck was able to verify 13 operations per thread
within the hour. CDSChecker was able to verify 7 opera-
tions per thread and Checkfence and Nidhugg were able



Table 1. SATCheck scales to larger maximum problem sizes than previous tools.
CheckFence Nidhugg SATCheck

Max problem sizes for: CDSChecker (SC) (TSO) (SC) (TSO) (SC) (TSO)
CAS Spinlock 8 40 40 8 8 250 100
MSQueue 7 8 8 8 8 13 13
Linuxrwlock 7 15 15 6 6 20 20
Dekker 5 10 10 5 4 30 40
Seqlock 3 25 25 3 3 60 60
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Figure 9. SC MSQueue: SATCheck scales to 62% more
data structure operations in an hour and runs up to 17×
faster than Nidhugg. (Lower is better, y-axis is log scale.)

to verify 8 operations per thread within the allocated
hour.

Linux reader-writer lock A reader-writer lock al-
lows multiple readers or a single writer to hold the lock.
No reader can share the lock with a writer. We ported our
reader-writer lock benchmark from an implementation
in the Linux kernel. However, the kernel implementa-
tion is written in assembler for various platforms. We
translated the implementation into standard C code.

To test the reader-writer lock, our test driver runs two
identical threads, with a single rwlock_t protecting a
shared variable v. Each thread repeatedly does a trylock
on the lock and then frees it.

CheckFence was unable to run the unmodified version
of the Linux reader-write locks as the bias value used
by the locks exceeded the built-in range threshold for
CheckFence. The reported results for CheckFence are
for a modified benchmark version that uses a smaller
bias.

Figures 10 and 15 present the results for this bench-
mark. SATCheck can analyze 20 pairs. CDSChecker can
analyze 7 trylock/unlock pairs, Nidhugg 6, and Check-
fence 15 pairs within the allocated hour.

Dekker Dekker implements a simple critical section
using Dekker’s algorithm [29], where a pair of non-atomic
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Figure 10. SC Linux RW Lock: SATCheck scales to
33% more data structure operations than CheckFence
and takes about the same time, except at 15 operations,
where SATCheck is 3.8× faster. (Lower is better, y-axis
is log scale.)

data accesses are protected from concurrent data access.
Our driver for this benchmark is simply two threads
each repeatedly calling the critical section routine. Fig-
ures 11 and 16 present results for Dekker. SATCheck
can verify up to 30 operations, while CheckFence only
verifies up to 10 operations; beyond that number, it
returns “Inconclusive”. CDSChecker and Nidhugg were
only able to check up to 5 operations per thread within
the allocated hour.

Seqlock Seqlocks are used in Linux to avoid writer star-
vation. They allow writers to update without worrying
about readers and thus allow the kernel to communicate
with user-space applications.

To test this benchmark, we run one writing thread and
two reading threads. Figure 12 and 17 present the results.
The seqlock benchmark scales to fewer data structure
operations per thread because there are more threads.
SATCheck could verify up to 60 operations per thread.
CDSChecker and Nidhugg were only able to verify up to
3 operations per thread, while Checkfence could verify
up to 40 operations per thread. At 40 operations per
thread, SATCheck was 2.6× faster than Checkfence.
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Figure 11. SC Dekker Critical Section: SATCheck
scales to 3× more operations than CheckFence and runs
10×–86× faster. (Lower is better, y-axis is log scale.)
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Figure 12. SC Linux Seqlock: SATCheck scales to 1.5×
more data structure operations than CheckFence and
runs 2×–9× faster. (Lower is better, y-axis is log scale.)

Discussion. Our results show that SATCheck runs
much faster and hence scales better than previous tools.
The main reason for its performance is that it uses a
concolic execution approach to finding novel behaviors. It
therefore does not need to explore redundant executions,
nor does it need to encode values that do not occur in
observed executions.

Because most of SATCheck’s execution time is in the
SAT solver, reported running times aren’t perfectly reg-
ular. Generally, its performance scales as expected when
we increase the number of data structure operations.

11. Related Work
In the Introduction, we described three approaches
to model checking concurrent data structures: explicit
state, stateless, and SAT-based. Our approach is SAT-
based but uses concrete program executions to guide a
search for novel behaviors. State-based model checkers
such as SPIN [18] can debug concurrent data structure
implementations. Inspect combines stateless and stateful

model checking to model-check C and C++ code [28, 30,
31]. Related approaches include Chess [22], which finds
and reproduces concurrency bugs in C, C++, and C# by
systematically exploring thread interleavings. However,
it can miss concurrency bugs as it does not explore all
thread interleavings.

CheckFence [8] is the most closely related approach
to ours. It focuses on verifying concurrent data structure
implementations for relaxed memory models, including
usage of memory fences. The primary difference between
our approach and CheckFence is that our approach uses
the SAT solver to guide concrete program executions,
while CheckFence encodes entire abstract program execu-
tions with SAT. Due to its static approach, CheckFence
must lazily unroll loops when the SAT solver indicates
that it is possible for a loop to execute more times than
the current unrolling. Like us, CheckFence also uses a
range analysis to compute ranges for variables. However,
because CheckFence’s range analysis operates on the
static program, we found that it often computes too
large of a range for a variable. CheckFence then refuses
to analyze the program. Also, as CheckFence must en-
code the entire program into SAT, it requires source for
the entire program, and the program must be amenable
to compilation to SAT.

MemSat [26] uses constraint solvers to reason about
programs under weak memory models. It targets very
complex memory models (Java Memory Model) and very
simple programs. Our work explores a new approach for
handling large test cases.

DPOR [15] and ODPOR [1] are two dynamic ap-
proaches to partial order reduction that reduce the num-
ber of program executions to be explored by a stateless
model checker. These approaches avoid exploring execu-
tions that can be generated by reordering commuting
operations in some other explored execution. Recent
work has extended the DPOR algorithm to handle the
TSO and PSO memory models [2, 32]. Our work can
be viewed as exposing the interleaving operations to
the SAT solver, iteratively building a model of the ex-
ecutions, and letting the SAT solver’s heuristics avoid
the redundant behaviors (rather than doing the partial
order reduction via reordering ourselves). Alternatively,
our work can also be viewed as dynamically generating
a SAT formula that describes all possible executions.

Researchers have recently proposed maximal causality
reduction to improve on POR [19]. The key insight
behind maximal causality reduction is that a thread’s
behavior does not depend on the specific stores that the
thread’s loads take its values from, but rather the values
that these loads read. This approach uses a constraint
solver to generate executions in which the loads of
a thread read different combinations of values than
previously explored executions. It conservatively assumes



that any store may depend on previous loads, and thus
must explore vastly more executions that SATCheck.
The author has not made an implementation available,
but a quick calculation reveals that it will be many orders
of magnitude slower than SATCheck. For example, for
the 250 pair spinlock example that SATCheck analyzes
in 4.5 minutes, the maximal causality reduction approach
would need to explore at least 2250 executions.

Researchers have developed a tool based on Nitpick
for translating C/C++11 code to SAT to model check
litmus tests [4]. Litmus tests are small tests that contain
only a handful of memory operations. Their work focuses
on automatically building SAT formulas directly from
a formalization of the memory model; it does not focus
on tool performance.

Industry tools like IBM ConTest tool support testing
concurrent software. While such tools may increase
the likelihood of finding races, they are not exhaustive.
Like the related work in our field, SATCheck definitely
explores all behaviors for a given input.

Several tools detect data races in code that uses
standard lock-based concurrency control [10, 12, 13, 20,
24]. These tools generally take one of two approaches:
(1) they verify that all accesses to shared data are
protected by a locking discipline or (2) they verify
that a happens-before relation separates conflicting
accesses. Another way to mitigate potential data races
is the approach proposed by stable and deterministic
multithreading systems [? ? ? ? ], which constrain
the allowed interleavings. Work on data race detection
and stable multithreading systems is largely orthogonal
to SATCheck, since SATCheck seeks to verify data
structures that leverage low-level atomics to access
memory without the use of locks.

12. Conclusion
Threads commonly communicate with each other
through concurrent data structures. Developing correct
concurrent data structure implementations is known to
be challenging and testing tools are critical for finding
implementation bugs.

SATCheck leverages concrete executions to build an
event graph model of concurrent code and uses a SAT
solver to guide executions towards discovering novel
behaviors. SATCheck scales better than other tools that
leverage concrete execution while avoiding the need to
compile the entire program to SAT.
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Figure 14. TSO MSQueue Results (lower is better,
y-axis is a log scale)
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Figure 15. TSO Linux RW Lock Results (lower is
better, y-axis is a log scale)
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Figure 16. TSO Dekker Critical Section Results (lower
is better, y-axis is a log scale)
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Figure 17. TSO Linux Seqlock Results (lower is better,
y-axis is a log scale)
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Figure 18. SATCheck analyzes a 90-thread run of
Linux Locks (SC) in one hour. (lower is better, y-axis is
a log scale)

B. Scaling Threads
In Section 10 we presented results that keep the number
of threads fixed and scale the number of operations per
thread. We also explored scaling the number of threads
for the CAS Spinlock: each thread performs one pair of
lock and unlock operations.

Figure 18 presents the result of this experiment. The
results show that SATCheck scales well with the addition
of extra threads.

C. Soundness
Theorem C.1 (Statement Reachability). If there exists
some execution e that can reach a statement st, then
SATCheck will explore some execution that executes
statement st.
Proof Sketch. By contradiction. Suppose that SATCheck
does not explore any execution that executes statement
st. Consider the execution e. There must exist some
conditional branch in e that SATCheck has not explored,
or it would have reached the statement st.



Consider the first such unexplored conditional branch
b or unexplored input i to an uninterpreted function in
execution e. By the design of SATCheck, the branch b or
input i is a goal to SATCheck’s SAT formula. Consider
an execution prefix e′ of the execution e up to the branch
br or input i. This execution prefix satisfies the branch
br or input i goal of the generated SAT formula — up
until the new event, all of e′’s behavior is modeled by
the event graph. The clauses that model the event graph
after the prefix e′ are all structured as implications from
past events to future events. If none of the conditions
in the implications on a past event are satisfied, the
constraint is trivially true.

Thus there must be solution to the SAT constraints
that drives SATCheck to produce the execution prefix
e′ and thus SATCheck explores e′ unless it first explores
some other execution that reaches b or i.

Theorem C.2 (Uninterpreted Function Reachability).
If there exists some execution e that generates input i
to uninterpreted function f , then SATCheck will explore
some execution that generates input i to uninterpreted
function f .

Proof Sketch. Same proof as Theorem C.1.
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