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Abstract—Best practices for developers, as encoded
in recent programming language designs, recommend
the use of immutability whenever practical. However,
there is a lack of empirical evidence about the uptake
of this advice. Our goal is to understand the usage of
immutability by C++ developers in practice. This work
investigates how C++ developers use immutability by
analyzing their use of the C++ immutability qualifier,
const, and by analyzing the code itself. We answer
the following broad questions about const usage: 1)
do developers actually write non-trivial (more than
3 methods) immutable classes and immutable meth-
ods? 2) do developers label their immutable classes
and methods? We analyzed 7 medium-to-large open
source projects and collected two sources of empirical
data: 1) const annotations by developers, indicating an
intent to write immutable code; and 2) the results of
a simple static analysis which identified easily const-
able methods—those that clearly did not mutate state.
We estimate that 5% of non-trivial classes (median)
are immutable. We found the vast majority of classes
do carry immutability labels on methods: surprisingly,
developers const-annotate 46% of methods, and we
estimate that at least 51% of methods could be const-
annotated. Furthermore, developers missed immutabil-
ity labels on at least 6% of unannotated methods. We
provide an in-depth discussion on how developers use
const and the results of our analyses.

I. Introduction
Many modern programming languages include mecha-

nisms that allow developers to declare that objects (or
parts thereof) are immutable. Immutability enables both
developers and compilers to better reason about code
and potentially enables compiler optimizations. For in-
stance, objects without mutable state are immune from
unexpected changes in mutable state, thus simplifying
debugging and program maintenance. Furthermore, im-
mutable objects can be shared between concurrent threads
of execution without the need for locking, helping to enable
automatic parallelization.

Informally, an immutability declaration encodes a devel-
oper’s assertion that some part of the program state does
not change. Different languages (or proposed extensions to
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existing languages) support immutability declarations spe-
cific to those languages. C++ provides the const keyword
for developers to specify immutability, and best practices
for C++ developers include the extensive use of const [1].
However, C++ developers using const have great freedom
to choose which form of immutability they will implement.

Our goals are to empirically investigate whether im-
mutability language features are used in real codebases
and, furthermore, to understand which particular features
developers actually use (particularly class versus method
immutability). Many kinds of language features are dif-
ficult to advocate for. Often, there is no hard evidence
that a feature improves code quality, especially before
developers have a chance to use that feature. We can, how-
ever, observe the code that developers write in practice.
Empirical studies can affirm or dispel myths about best
practices versus actual practices, and provide language
designers with objective data to consider when crafting
new language features or paradigms.

We collect data from 7 moderate-to-large open-source
C++ programs across a range of application domains. We
believe that if developers choose to use const in their code,
then they find it to be useful; after all, developers may
simply omit const annotations1. Hence, if immutability
declarations are present in real programs, then there is a
good chance that they are useful in language designs. Two
sources of data support our findings: 1) developer-provided
const qualifiers, and 2) results from our static analysis,
which identifies so-called easily const-able methods.

We pose our research questions at the level of classes
and methods. Classes are a fundamental encapsulation
unit for C++. In C++, developers may only apply the
const qualifier to methods that are class members, and not
to classes as a whole. Informally, a developer who const-
qualifies a method m is stating that m does not change the
state of the this receiver object; that is, this is immutable
across the execution of m. C++ is flexible with respect
to the implementation of immutable methods, leaving it
to the developer to ensure immutability. Types may be
const-qualified, but that only means that a purportedly-

1While developers may be required to use const to call libraries,
they are free to omit it in internal code.



non-mutating subset of the type’s interface is available.
We investigate immutability at class and method levels

with the following Research Questions:
RQ 1. How often do developers use C++’s flexible const
annotations to indicate immutable classes and methods?
RQ 2. What is the proportion of immutable methods and
classes in typical C++ projects?

The first RQ investigates developer-provided annota-
tions, which we’ll denote as “immutable” (in quotes),
while the second RQ investigates the immutability of both
classes and methods as-written. We found:
RQ 1 Findings. Developers labelled a median of 5% (be-
tween 0% and 50% across case studies) of non-trivial (more
than 3 methods) classes as “immutable” (all methods
const). Also, 46% of methods had const annotations.
RQ 2 Findings. We found that developers correctly anno-
tated immutable classes as “immutable”, so we estimate
the true number of immutable classes to be around 11%.
The proportion of non-trivial immutable classes computed
over all classes (trivial and non-trivial) is 2%, which is
quite small. We estimated that about 52% of methods were
immutable, including at least 12% of immutable methods
(6% of all methods) that developers did not annotate.

Contributions. The contributions of this paper are:
• We explored the usage of const for 7 moderate-to-

large C++ case studies and identified trends in const
usage that hold across our set of case studies.

• We developed and implemented a static analysis that
identifies immutable methods (which could easily be
labelled const) and applied it to our set of case
studies, finding many such methods.

• Combining the const counts and the static analysis re-
sults, we estimated the true prevalence of immutable
classes and methods in codebases that resemble our
case studies. To our knowledge, we are the first to
empirically investigate the use of both const and
immutability in actual codebases.

Our work contributes observations of developer be-
haviour across real-world codebases, thus informing devel-
opers and language designers about best practices today.

Furthermore, programming language designers often
add features to languages based on intuition and expe-
rience. (Tunnell Wilson et al [2] discuss shortcomings of
crowdsourcing language design.) At language design level,
a language’s definition of immutability may be too strict
or too broad. A too-strict definition limits the ability
of developers to label objects as immutable; in such a
case, developers are likely to under-annotate code, and
code that is annotated is likely to be trivial. A too-broad
definition limits the ability of the developers to leverage
immutability definitions and leaves them no further ahead:
they must still inspect allegedly-immutable code to verify
that it is, indeed, not mutating state. Languages must
provide the right level of protection to make immutability
declarations useful for developers and compilers.

We hope that our work can guide future language
designers when considering features to add to languages.
We have also released the source code to our Immutability
Check tool and believe that it can help developers better
understand how they use const in their own projects. One
project has already expressed interest in adding our tool
to their Continuous Integration workflow.

II. Motivating Examples

Our research questions empirically examine how devel-
opers might use immutability-related language features in
their codebases, at both class and method levels. RQ1
explores, in part, whether the class is an appropriate
level of granularity for an immutability declaration. In
practice, do developers write classes that are immutable?
An immutable class has no user-visible mutable state.
We also explore all-mutating classes, which are never
invariant under method calls. (C++ somewhat confounds
the issue: a class that has no const annotations could be
all-mutating, or it could simply be unannotated. Section V
discusses this in more detail.) Many classes are in neither
of these categories—they contain a mix of mutating and
immutable methods. RQ2, in part, explores how common
immutable methods are in practice, and compares the
number of methods that developers declare to be “im-
mutable” (using const) to the number of methods that
developers could declare to be immutable. Our answer
to RQ2 estimates the number of methods that could be
declared immutable using our notion of an easily const-
able method—a method that can quickly be seen to not
change internal state.

Immutable class. The most straightforward example of
an immutable class is an immutable tuple implementation.
Consider, for instance, this Point class:

class Point { int x, y;
public: Point(int x, int y) : x(x), y(y) {}
int getX() const { return x; }
int getY() const { return y; } };

Once a Point object is constructed, it cannot be
changed, since it does not expose its state, nor does it
provide functions that mutate its state.

All-mutating class. On the other hand, an all-mutating
class contains no methods that do not modify state.
Random number generators are typical examples:

class RandomNumberGenerator { int64_t state;
public: RandomNumberGenerator() { state = 17L; }
int64_t getNext() {
state = state * 134775813 + 1;
return state; } };



Mix class. We find that most classes contain some meth-
ods that do not modify state and some methods that do
modify state. Any mutable class with at least one const-
annotated getter will be a mix class.

class RNG2 { int64_t seed, state;
public: RNG2() { seed = 17L; state = seed; }
int64_t getNext() {
state = state * 134775813 + 1;
return state; }

int64_t getSeed() { return seed; } };

In this case, getNext() modifies state, while getSeed() does
not. These methods are unannotated. However, the ground
truth is that getSeed() is an immutable method, so this
class contains a mix of immutable and mutable methods.

Easily const-able methods. Three methods in our exam-
ples above are immutable. Point::getX() and getY() are
labelled as const, while RNG2::getSeed() is not.

Our static analysis would identify all 3 of these methods
as easily const-able, by observing that these methods do
not change any state associated with this. For instance,
there are no writes to fields in getSeed, and this method
returns a copy of the field. Since it cannot mutate, and
returns a field copy, getSeed ought to be const.

RQ2 explores how many methods are like getSeed:
immutable yet not labelled as such. We have reported such
methods to developers and some proposed annotations
have been merged into the upstream repositories.

III. On immutability and C++
The C++ standard [3] allows developers to const-

qualify types and methods. C++ compilers aim to verify
non-transitive abstract immutability for const types and
methods. Non-transitive means that immutability does not
extend to pointee objects reached through an immutable
object. Abstract means that the bits of an immutable
object may change, but not its abstract state. For objects
of const type, non-const methods are not callable and
fields are not writable. const methods are compiled with
this being const. (Because the bits may change, it is
difficult for a C++ compiler to optimize based on const.
C++ const2 is strictly for developers’ benefit at compile-
time; developers must explicitly opt-in to the use of const.)

In the absence of mutable fields and casts, const-
qualifying a C++ method implies concrete immutability.
However, in the full language, C++ const-qualified meth-
ods only need to satisfy abstract immutability: developers
can write const-qualified methods that mutate state. C++
specifies that const-qualified methods are not to change
the receiver (this)’s abstract state. But abstract state is
domain-specific and it would be impossible for the lan-
guage specification to define what it means to not change

2gcc includes a non-standard const attribute for use in optimiza-
tions. It is not well documented, and we do not investigate it here.

abstract state. It would be challenging for compilers to
verify invariance of abstract state, and it is thus primarily
the responsibility of the developer to ensure that the
abstract state remains unchanged. Developers may follow
project-specific conventions that specify stricter versions
of immutability.

C++ immutability is fine-grained: developers may add
immutability annotations to methods (not just types). A
const-qualified method shows developer intent about that
method’s immutability. As long as a method satisfies the
language requirements, C++ leaves it up to the developer
whether to const-qualify the method or not—C++ devel-
opers may write non-const-annotated immutable methods.

RQ1 and RQ2 investigate immutability from two angles.
RQ1 investigates the use of the const qualifier; as discussed
above, const does not actually guarantee immutability.
RQ2 aims to estimate transitive concrete immutability
in codebases, combining counts of const annotations and
the output of our easily-const-able analysis (Section IV),
which statically analyzes methods to determine whether
or not they mutate the receiver object’s state.

A simple grep does not suffice to understand const
usage, as the const keyword applies differently to types,
methods, and fields. Our RQs address developers’ actual
and potential use of const in their implementations.

Section VI discusses read-only references and other
notions of immutability.

IV. Technique

We designed an Immutability Check tool to answer
our research questions, building on the LLVM compiler
infrastructure [4] and the Clang frontend. Our tool records
compiler invocations executed during a build and re-runs
the front-end stages to collect information on const usage.

Immutability Check analyzes all C++ code in each
source code repository, with the following exceptions.
Our tool ignores classes with no source; abstract classes;
and classes with no public members (such classes cannot
be used in external code; if subclassed, we consider the
subclass). It also ignores classes based on inheritance—
classes which inherit (transititively) from a class with no
source; and classes whose inheritance hierarchy includes
a template parameter (i.e. where the subclass is un-
known). We handle classes that otherwise use templates,
e.g. list<string>. Within each included class, Our tool
analyzes all non-static public methods except construc-
tors/destructors, conversion operators, and operator=.

Immutability Check stores its results in a web-accessible
database. This database holds the public members of every
class, plus additional metadata. For methods, Immutabil-
ity Check stores whether or not each method is const-
qualified, along with the results of the const-able static
analysis for that method. For fields, Immutability Check
stores whether or not each field is mutable, and whether
or not the outermost type of the field is const-qualified.



Limitations. We designed Immutability Check to keep
running times reasonable. It only considers calls to meth-
ods in the same class or within the current class hierarchy
(reachable through subclasses and superclasses). The lack
of a complete class hierarchy is the key source of unsound-
ness. As discussed below, Immutability Check also verifies
that arguments are not fields, e.g. o.m(this.f), assuming
that local and global variables are not reachable from this.
In practice, we found that methods within the same class
hierarchy do not pass fields of the receiver method through
arguments, instead accessing them directly in the callee.

Explicit const. We call a field explicitly const if the field’s
outermost type is const-qualified. In that case, the field
contains an object that is at least shallow immutable (i.e.
the fields in the class itself do not change, but data pointed
to by its fields may change). On the other hand, if a field
is a pointer, then the pointer itself cannot change, but the
data pointed to may. Contrast shallow immutability with
transitively const, which forbids mutations to the object
as well as anything obtained by dereferencing that object.

To answer RQ1 (how often developers use const), we
look for classes that only have const-qualified methods and
explicitly const fields. We label such classes “Immutable”,
based on developer const annotations. To answer RQ2
(what proportion of methods and classes immutable), we
manually validate the immutability of the classes labelled
“Immutable” on a sample of classes. Furthermore, we look
for classes without const-qualified methods and without
public fields. Such classes have all methods declared as mu-
table and no accessors. In that case, either the developers
neglected to use const, or all methods could potentially
change the class’s state. We investigated whether method
implementations for such classes mutated state or not.

We found that a non-trivial fraction of “Unannotated”
classes indeed had all of their methods potentially mutate
object state (i.e. contain 0 immutable methods), which
was somewhat surprising to us; we did not expect that
developers would actually write such classes.

This-origin. A key property of an expression in an object-
oriented language is whether it refers to something reach-
able from this; e.g. this.f refers to a field of this. By
assumption, locals and globals are not reachable from this.

We implemented a simple static analysis to determine
that either an expression is maybe reachable from this, or
definitely not, subject to the limitations above. Figure 1
shows some expressions and whether they are this-origin.

Queries. This-origin information answers two queries
about methods: whether a method mutates the this
object, and what the method returns. The two options
for whether a method mutates are: 1) does not mutate,
and 2) maybe mutates. A method maybe mutates if
either: 1) there is an assignment to any this-origin ex-
pression, 2) there is a call to a member function that
maybe mutates, or 3) there is a call to a function with

a this-origin argument. Properties 2) and 3) depend on
information computed while traversing the partial call
graph as described above (using class hierarchy analysis to
resolve calls and collapsing cycles). We use query results
to estimate the proportion of immutable methods (RQ2).

void C::setX(int val) {
int *ptr;
if (/* ... */) {
ptr = &(this->x);

}
else {
ptr = &global;

}
*ptr = val;

}

this-origin(ptr) = maybe

this-origin(ptr) = no

this-origin(ptr) = maybe

no mutation

no mutation

may mutate

Fig. 1. Our static analysis calculates whether a method is easily
const-able. This-origin analysis (on the left) calculates whether local
variables contain values reachable from this. The query stage (on the
right) calculates whether a statement may mutate this.

Static analysis example. Figure 1 shows the results of
our analysis on a (contrived) example. The this-origin
analysis, whose results are shown on the left in blue,
determines whether expressions are “this-origin” (evaluate
to something reachable from this). In the example’s if
branch, local variable ptr gets a value reachable from
this. In the else branch, we assume globals are not this-
origin, so ptr = &global is not this-origin. At the merge,
we take the union of ptr’s values and conclude that it may
contain a value reachable from this. The query stage of
our analysis, depicted on the right, detects mutations of
the receiver object. Both writes to ptr are ignored in the
if and else branches since ptr is a local variable and hence
not an object field. However, since ptr is dereferenced on
the last line, where it may point to state reachable through
this, we would conclude the last line may mutate this.

Easily const-able methods. Combining answers from our
queries and transitivity, we can determine whether a
method is easily const-able. An easily const-able method
m: 1) does not mutate this (according to our query); and
2) all methods it depends on through method calls, or
inheritance, do not mutate this. This ensures we do not
report stub methods (methods that return a constant and
are overriden by subclasses) as easily const-able. We count
easily const-able methods to estimate the proportion of
immutable method implementations for RQ2.

Almost all methods reported as easily const-able were
indeed const-able. (Return values that were references pre-
vented the application of some of our suggested consts—
we estimated that this happened less than 1% of the time).

Immutable methods and classes. Our definition of im-
mutable methods includes both easily const-able methods
as well as methods that implement abstract immutability;
we can only find easily const-able methods and const-
labelled methods, and aim to estimate the true number of
immutable methods. As for classes, we distinguish between
“Immutable” classes and immutable classes (no quotes).



TABLE I
We chose 7 open-source codebases as case studies, ranging from 13 000 to over 3 million lines of code.

Project Version kLOC Classes Methods Description
LLVM 4.0.0 ≈ 3 200 10 518 55 229 compiler infrastructure
OpenCV 3.2.0 1 167 2 220 6 624 computer vision library
Protobuf 3.3.1 625 407 1 813 compiler for data serializer/unserializer
fish 2.5.0 112 129 299 modern shell
Mosh 1.2.6 14 74 302 mobile shell
Ninja 1.7.2 13 36 165 build system
libsequence 1.8.7 18 33 199 library for evolutionary genetics

“Immutable” classes have all methods and fields const-
qualified. Immutable classes include “Immutable” classes
as well as those implementing non-transitive abstract im-
mutability.
Pointer analysis not needed. For this work, we do not
need a pointer analysis, since our analysis knows which
expressions may be a field. Our analysis is insensitive
to mutation of objects pointed-to by local variables, and
ignores those writes. If a local variable is dereferenced
before a write, our analysis checks whether that local
variable may point to a field of this. If so, the analysis
would conclude the method may mutate. That is, we use
the may-be-field information as may-points-to analysis.

V. Experimental Results
We evaluated 7 open source projects: fish, libsequence,

LLVM, Mosh, Ninja, OpenCV, and Protobuf. Table I
lists characteristics of our chosen projects. We took care
to mitigate bias in our project selection as best we
could. We chose these projects because they are pop-
ular, well maintained, and span a variety of domains,
including I/O-focussed applications as well as both graph-
manipulating and array-manipulating codes. About half of
the projects were libraries while the rest were applications.
The projects vary as to the development community (pub-
lic or primarily company-sponsored). Our projects include
many of the 10 most-starred GitHub C++ projects. We
included two projects from GitHub’s top 10 (OpenCV
and Protobuf), and we believe that Clang/LLVM, were
it developed on GitHub, would surpass Swift/LLVM’s
popularity (which is top 3). fish-shell would also be in
the top 10, but GitHub identifies it as a shell project.
We believe it is valuable to include both smaller and less-
popular projects alongside larger more-popular projects.

Table II summarizes class-level information for all of
our case studies. For each case study, we include the

Classes

“Only
fields”Has methods

All const
Some const

“Mix”No const

No fields
“Unannotated”

Has fields
“Throwaway”

Not all explicit
fields “Query”

All explicit
fields

“Immutable”

Fig. 2. Immutability Check divides classes with methods into 5 main
categories, depending on which members they contain.

distribution of all of its classes with a public interface.
Figure 3 summarizes method-level information for all our
case studies. Each case study includes the proportion of
developer annotated const and non-const methods, as
well as the proportion of these methods we identifiy as
easily const-able. Our tool’s running time is within an
order of magnitude of a full build for each case study; we
omit precise times due to space, but have made the tool
available for readers to run.

Reading the class table (Table II). Figure 2 illustrates
relationships between the 6 categories of classes. The first
two categories, “Immutable” and “Query”, only have const
methods. “Immutable” has every public field explicitly
declared const. “Query” has public fields which may be
modified by member functions when accessed through
a non-const reference (or by non-member functions, al-
though those are out of scope for our purposes). “Mix”
classes have both const and non-const methods. The last
two categories, “Throwaway” and “Unannotated”, both
have only non-const methods. The “Throwaway” classes
have public fields and zero or more accessors that could
trivially be made const. We call these classes throwaway

TABLE II
Percentage breakdown of class categories for all projects. All projects, except libsequence, mostly consist of classes

with a mix of const and non-const qualified methods. A plurality of libsequence classes are “Immutable”.

Classes LLVM OpenCV Protobuf fish shell Mosh Ninja libsequence
Has methods 79.8 72.3 86.5 69.0 91.9 88.9 87.9
— “Immutable” 10.8 15.0 26.3 6.2 6.8 2.8 48.5
— “Query” 4.5 11.1 1.0 17.8 4.1 5.6 3.0
— “Mix” 45.2 31.9 32.7 20.9 70.3 47.2 33.3
— “Throwaway” 5.4 5.9 0.5 8.5 2.7 13.9 3.0
— “Unannotated” 13.8 8.5 26.0 15.5 8.1 19.4 0.0
“Only fields” 20.2 27.7 13.5 31.0 8.1 11.1 12.1



LLVM 56% 44%

OpenCV 54% 46%

Protobuf 42% 58%

fish 60% 40%

Mosh 53% 47%

Ninja 78% 22%

libsequence 9% 91%

non-const qualified and easily const-able const qualified and easily const-able

non-const methods const methods

Fig. 3. Developers const-qualify a median (across projects) of 48% of methods as const. libsequence stands out with 91% of methods already
const-qualified. A further 12% of non-const methods are easily const-able (i.e. missed opportunities for const). Our easily const-able analysis
confirmed 49% of const-qualified methods as indeed const.

since there are no const qualifiers on methods at all, as well
as public fields. Typically such classes are a quick and dirty
structure. “Unannotated” classes, by contrast, do not have
public fields. In such classes, the developer has not said
anything about the const-ness of the methods in the class.
An unannotated class may in fact be an all-mutating class,
where every method mutates the object—such a class
would be fully annotated yet carry no const annotations.
Or, the class may include immutable methods for which
the developer opted to omit immutability declarations.
Finally, our class tables show the number of “Only fields”
classes (no methods) for completeness.
Reading the methods figure (Figure 3). Each case study
has a corresponding box to the right of the name showing
the distribution of methods. The total length of the box
represents all methods. The thick black line in the middle
of the figure divides methods with no const annotation
(to the left of the line) from those with const annotations
(to the right of the line). For clarity, we included the
percentage of developer annotated non-const and const
methods to the left and right of each box respectively.
The shaded regions within the box represent the amount of
easily const-able methods found by our tool. The dark grey
region is the proportion of methods that developers did not
annotate with const but our tool determined were easily
const-able. This proportion of methods represents missed
opportunities for const annotations in the case study.
The light grey region is the proportion of methods that
developers annotated with const and our tool agreed were
easily const-able. The remaining methods on the developer
annotated const side of the box represents the number of
methods that are beyond our analysis’s ability to recognize
as const (possibly, though unlikely to be, incorrect).
A. LLVM

Compilers extensively manipulate structured intermedi-
ate representations, and must maintain invariants to pre-

serve the meaning of the code being compiled. We expect
that recording design intent with respect to immutability
would be key to successfully developing LLVM.

TABLE III
All sampled LLVM classes that developers declared

“Immutable” are in fact immutable; only 8/20
“Unannotated” classes are all-mutating.

Annotated as Total Non-trivial Immutable All-mutating
“Immutable” 1135 582 20 (of 20) 0
“Unannotated” 1456 546 2 (of 20) 8

Because LLVM has thousands of classes, we randomly
sampled 20 “Immutable” and “Unannotated” classes for
manual analysis. Table III shows that at a class level,
we expect that about 637 = 582 + 10% × 546 of the
classes in LLVM will be non-trivial (more than 3 methods)
immutable classes: sampling shows that about 100% of
the const-annotated “Immutable” classes are immutable,
while about 10% of the unannotated classes were im-
mutable. This accounts for about 6% of the total number
of LLVM classes. On the other hand, we expect that 218
classes will be non-trivial all-mutating, or about 2% of
the total number of classes. A plurality of classes, and
a majority of classes with methods, contained a mix of
const and mutable methods. Thus, classes that developers
labelled as “Immutable” were indeed immutable, while
unannotated classes (with no const declarations) could
have used them on some of their member functions more
often than not.

Discussion. Many immutable classes that we manually
inspected in LLVM were either checker or code generator
classes. Code generator classes change program state (or
emit side effects), but do not change the state of this. We
also encountered some immutable code generator classes in
our inspection of unannotated classes; these classes simply
did not have any const-labelled methods.



B. OpenCV
To explore numeric codes, we studied the OpenCV

computer vision library. The parts of OpenCV that carry
out regular calculations on large arrays are more amenable
to parallelization than codes that process graphs. As ex-
pected, OpenCV mutated many of its arrays. However, we
found some usage of const on function parameters.

TABLE IV
Fewer than 1/3 of OpenCV’s immutable and unannotated
classes are non-trivial. Manual inspection showed that

almost all sampled classes declared immutable are
immutable, while 1/4 of unannotated classes are

all-mutating.

Annotated as Total Non-trivial Immutable All-mutating
“Immutable” 332 45 18 (of 20) 0
“Unannotated” 188 62 0 (of 20) 5

For OpenCV, Table IV shows that we expect 90% of
45 non-trivial classes to be immutable, or about 41, which
accounts for 1.8% of its classes. (Many of OpenCV’s classes
are trivial.) None of the sampled unannotated classes were
immutable. Hence, we expect 25% of 62 non-trivial classes
to be all-mutating, or about 16, which accounts for 0.7%
of its classes. Similar to LLVM, classes that were labelled
“Immutable” often were immutable, while unannotated
classes often could have had some methods const-labelled.

Discussion. OpenCV contains many implementations of
mathematical functions. OpenCV convention appears to
implement these functions within classes (similar to the
Strategy design pattern). An alternate system design could
have used function pointers. In any case, OpenCV’s func-
tion classes fit the definition of an immutable object. These
function classes are often trivial (fewer than 4 methods).

C. Protobuf
Protobuf (protocol buffers) serializes structured data.

We analyzed the protocol buffer compiler, which generates
code (in a number of languages) to serialize and deseri-
alize to/from specified data formats. This compiler also
happens to contain generated protocol buffer code.

TABLE V
About half of Protobuf’s classes are non-trivial. Manual

inspection showed that almost all sampled classes declared
immutable are immutable, while 20% of unannotated classes

are all-mutating. Additionally, 10 unannotated classes
were in fact immutable.

Annotated as Total Non-trivial Immutable All-mutating
“Immutable” 107 67 19 (of 20) 0
“Unannotated” 106 36 10 (of 20) 4

Table V estimates that about 82 of 407 (20%) Proto-
buf classes are immutable—95% of 67 non-trivial const-
labelled classes, plus 50% of 36 non-trivial classes with
no const labels. We expect about 8 (2%) non-trivial all-
mutating classes, or 20% of 36. Protobuf is similar to

OpenCV for all-const-labelled classes being immutable
and non-const-labelled classes being all-mutating. But,
Protobuf has a higher proportion of immutable classes that
are free of const labels than our other projects.

Almost two-thirds of Protobuf’s methods are im-
mutable. However, most of these immutable methods were
already declared as const; our easily const-able analysis
does not contribute much. The Protobuf developers used
const for complex methods: when looking at methods
that the developers labelled const, the easily const-able
analysis only found about half, which is fewer than for
other projects.

Discussion. Protobuf, like LLVM, contains many classes
that generate code. When we manually inspected them, we
verified that they were immutable. Some of the immutable
classes had no const labels and hence had originally been
identified as unannotated classes.

D. fish shell
The fish shell (fishshell.com) is a modern command line

shell. Shells are particularly concerned with file-based I/O.

TABLE VI
fish has no non-trivial immutable classes and only 6

non-trivial classes with no const annotations, of which only
2 are all-mutating.

Annotated as Total Non-trivial Immutable All-mutating
“Immutable” 8 0 0 0
“Unannotated” 20 6 0 2

Since fish and the subsequent projects have no more
than 20 classes in each category, we exhaustively examined
each of the “Immutable” and “Unannotated” classes.

As seen in Table VI, we expect fish to have 0 (and
hence 0%) non-trivial immutable classes. It is possible that
some of the classes that have some, but not all, const-
labelled methods might actually be immutable; however,
we believe that this is unlikely—if developers have const-
labelled some of the immutable methods, they would be
likely to have labelled all of them. Since we estimate
that fish contains 0 immutable classes, we believe that
developers did not leave out any const annotations on the
immutable classes. About a third of classes without any
const annotations could have used some.

In fish, 10% of non-const methods were easily const-
able. Also, 52% of const methods in fish were easily const-
able—the rest use more sophisticated immutability.

Adoption. We created a pull request by manually adding
const qualifiers to the methods our tool identified as easily
const-able. We were not able to add qualifiers to 3 out of
14 easily const-able methods, due to fields being taken
by reference; we did not want a const method to return a
mutable reference. The developers merged our pull request
and asked about adding our tool to their Continuous
Integration workflow.

fishshell.com


E. Mosh
Mosh is a utility for maintaining terminal connections

over low-quality (e.g. cellular data) networks. It sends and
receives encrypted data over the network.

TABLE VII
Mosh and ninja have 0 non-trivial immutable classes and 0

non-trivial unannotated classes. libsequence has 8
non-trivial immutable classes and 0 unannotated classes.

mosh Total Non-trivial Immutable All-mutating
“Immutable” 5 0 0 0
“Unannotated” 6 0 0 0

ninja Total Non-trivial Immutable All-mutating
“Immutable” 1 0 0 0
“Unannotated” 7 2 0 0

libsequence Total Non-trivial Immutable All-mutating
“Immutable” 16 8 8 0
“Unannotated” 0 0 0 0

Table VII shows that we found Mosh (and ninja, below)
to have 0 non-trivial immutable classes and 0 non-trivial
all-mutating classes. Again, it is possible but unlikely that
Mosh actually has immutable classes with some but not
all methods const-annotated.
Discussion. Every class in Mosh has a mixture of mu-
tating and immutable methods. Mosh contains a number
of developer annotated const methods within 1% of the
median across projects, and a low percentage of non-const
methods that are easily const-able (6.3%).
Adoption. We initiated a pull request to the developers
with our easily const-able methods, and they were inter-
ested in the possibility of including our tool as part of their
continuous integration process.
F. Ninja

The Ninja build system creates a dependency graph and
runs commands to rebuild targets when their dependencies
change. Ninja outsources almost everything to other tools,
e.g. calculations on the dependency graph. It focuses on
its core functionality—the processing of the dependency
graph and the selection of appropriate commands to call.
Discussion. Like Mosh, all classes in Ninja have a mix-
ture of mutating and immutable methods. Unlike Mosh,
the majority of methods in Ninja are non-const (78%).
However, Mosh had the highest proportion of const meth-
ods that are easily const-able (72%). This may indicate
that developers only annotated clearly-const methods and
there are more opportunities for const in the codebase.
Few non-const methods are easily const-able (8.5%) (i.e.
few missed opportunities), suggesting that Ninja develop-
ers are diligent about using const in their project.
G. libsequence

The libsequence project is a library for evolutionary
genetics. This library is primarily a collection of mathe-
matical functions. Mathematical functions are a use case
where we would expect mutation to be kept at a minimum.

For libsequence, Table VII shows 8 non-trivial im-
mutable classes, as manually verified, accounting for 25%
of all classes. However, libsequence has 0 unannotated
classes: every class in libsequence has at least one const-
labelled method. Our manual inspection, which was ex-
haustive in this case, did not find any missing const anno-
tations on the unannotated classes nor any inappropriate
const annotations on the immutable classes.

Discussion. Like OpenCV, libsequence contains many
mathematical functions. The developers have also already
const-annotated these functions. Our easily const-able
analysis does not find many immutable functions for lib-
sequence, so it would have been difficult to understand its
immutability structure without the developer annotations.

H. Overall observations

Tables VIII (classes) and IX (methods) summarize our
findings with respect to the research questions. Counts
are from manually inspecting every class in the smaller
projects and 60 randomly-selected classes across the larger
projects (20 per project). For all projects but LLVM, our
random sampling covers more than a third of the classes
in that project.
RQ 1. How often do developers use C++’s flexible const
annotations to indicate immutable classes and methods?
Finding 1. Over our projects, developers declared about
12% of all non-trivial classes as “Immutable”. Across
manually-inspected “Immutable” classes, we found that
96% of them were properly const-annotated. We found
that 4% of non-trivial “Unannotated” classes we manu-
ally inspected were all-mutating. As for methods, 46% of
methods were marked const.
RQ 2. What is the proportion of immutable methods and
classes in typical C++ projects?

We used the developer-provided const label as an es-
timate of the ground-truth number of immutable meth-
ods and classes, and added an estimated number of un-
annotated methods that should be immutable.
Finding 2. Over our projects, a median 5% of non-trivial
classes were immutable. Classes with all methods declared
const (“Immutable”) account for the vast majority of
the immutable classes in the codebases; for Protobuf, we
estimate the actual rate of non-trivial immutable classes
is 7% higher than that of “Immutable” classes, but for
the other projects, the proportion of “Immutable” classes
is comparable to the number of classes with all methods
const. Note, however, that 5% of non-trivial classes ac-
counts for about 2% of all classes, which is quite few.

We found that developers used const on a median of 46%
of methods. Furthermore, we estimate that at least 52%
of methods (median) are in fact immutable. That is, of
the potential methods that could have a const annotation,
developers miss a median of 6%.



TABLE VIII
Class-level mutability as a % of the non-trivial classes count (more than 3 methods). “Immutable” refers to classes with

all const-annotated methods and fields. Estimated counts add an expected contribution to the immutable count from
“Unannotated” classes. A median of 5% of non-trivial classes are immutable, while a median of 2% are all-mutating.

# non-trivial
classes

% “Immutable”
classes

% immutable
classes

(estimated)

% “Unannotated”
classes

% all-mutating
classes

(estimated)
LLVM 5 842 10 11 9 4
OpenCV 2 221 6 5 8 2
Protobuf 228 29 36 16 4
fish 29 0 0 21 7
Mosh 47 0 0 0 0
Ninja 17 0 0 12 0
libsequence 16 50 50 2 0

TABLE IX
Method-level mutability as-estimated in our project set.

Developers write far more immutable methods than
immutable classes, with a median of 52% across our case

studies. Compared to declared-immutable methods,
developers could const annotate 6% (median) more methods.

% immutable methods
(estimated)

LLVM 52
OpenCV 53
Protobuf 63
fish shell 46
Mosh 51
Ninja 28
libsequence 93

Implications to language design. We formulated our
research questions to guide immutability language design.
RQ1 addresses in part how much developers could benefit
from support for declaring immutable classes. Our results
show that non-trivial immutable classes are present but
rare across our case studies. We suggest that develop-
ers’ needs are not served by simply adding support for
immutable classes (as suggested by Glacier [5])—more is
needed. Switching our focus from classes to methods, we
found that developers do label methods as immutable—
almost half, in fact. Yet, addressing RQ2 in part, we
also found that even more methods could be labelled
as immutable. The fact that developers merged some of
our pull requests and asked to integrate our tool into
their continuous integration systems suggests that tools
to enable developers to add missing const annotations to
their code would help.

Threats to validity. Our selection of projects poses a
threat to external validity. As described above, we sought
to minimize this threat by choosing among the most-
starred GitHub projects (plus LLVM, which has its own
ecoystem). We expect that our results are most applicable
to large, open-source C++ codebases. Proprietary code
could exhibit different characteristics from open-source
code. We also tried to vary the projects as much as
possible, choosing a mixture of executables and libraries.

The design of our easily-const-able analysis could pose a
threat to construct validity, as it may undercount (but not
overcount) the number of const-able methods. We ignore

classes that inherit from a templated class, but not tem-
plates in general. When analyzing libraries independent of
their clients, it is not possible to know the inherited class,
so it is impossible to analyze all of its public methods.

VI. Related Work
We discuss related work in the areas of language feature

usage surveys, type systems (particularly for immutabil-
ity), and type qualifier inference.

Our easily const-able analysis finds methods that are
free of writes to fields of the this object and any transitive
state reachable from these fields. This is also known as
deep concrete reference immutability [6]. We do not con-
sider object immutability (an object does not mutate over
its lifetime), but rather class immutability (every instance
of an class does not mutate). In contrast to concrete
immutability, abstract immutability allows mutations that
do not affect the observable behaviour of the receiver
object. Shallow immutability (vs deep) does not allow
mutation to fields but does allow mutations transitively
through fields. In shallow immutability, the identity of the
pointee of a pointer field does not mutate, but the value
contained in the pointee may change.

Usage of language features. Our work empirically sur-
veys existing codebases to explore the developers’ use of
language features—in our case, C++ immutability and the
const qualifier. Related work in this area is rare. Haller
and Axelsson [7] investigate the prevalence of immutability
in Scala classes (similar to part of our RQ1) for 4 Scala
projects. They found that a majority of types in the Scala
library are declared immutable; fewer for other projects.
Richards et al [8] surveyed deployed JavaScript code to
understand how the eval keyword is used in practice, and
characterized the uses that they found. Our work shares
with theirs the desire to understand code as it exists in the
wild. A key difference between our work and theirs is that
const could be elided without any immediate implications
on software behaviour. On the other hand, eval makes
code maintenance more difficult. Holkner and Harland [9]
investigated the use of dynamic features in Python; Okur
and Dig [10] investigated the use of parallel libraries in
C# code; and Morandat et al [11] count uses of various
features in R.



Our work is the first to study multiple large code-
bases with respect to their usage of existing immutability
features, specifically at class and method granularities,
as well as potential additional immutability annotations.
Our work examines code without advocating for a spe-
cific type of immutability. One of our research questions
investigated whether developers use immutable classes in
their codebases today, as proposed in Glacier (see below).
Immutable classes do exist and account for about one-
tenth of nontrivial classes. Much previous immutability
work typically introduces language support for a specific
kind of immutability and argues that existing code uses,
or can be modified to use, that kind of immutability;
e.g. Gordon et al [12] describe reference immutability
extensions to C# and summarize developer experience
using these extensions on a large project.

Dynamic const usage. To better understand what devel-
opers hoped C++ const would guarantee, Eyolfson and
Lam [13] investigated why developers used const while
dynamically violating a notion of immutability stricter
C++’s. That work focussed on observing program be-
haviour at runtime and how it compared to program-
mers’ const declarations. Specifically, it searched program
execution traces for so-called writes-through-const, when
the program mutates an object’s state through a const-
qualified reference. The present work instead statically
examines developers’ design decisions as expressed in code,
and when developers label members as const. We study
classes’ interfaces and implementations to understand
which classes might be mutable or all-mutating, as well
as class members that should have been const.

Other notions of immutability/purity. In this work, we
investigate how developers use const, which is how C++’s
type system supports immutability. Other languages have
different notions of immutability. Scala and Rust have
notions that are similar to C++’s: they support read-only
references. Scala and Rust encourage read-only references
more than C++ does. There is a subtle difference in van-
tage point between read-only references and immutability:
read-only references are a property of client code (which
is not allowed to modify the referred-to object), while
immutability is a property of the class implementation.
This work focusses on implementations’ immutability. We
consider an implementation which treats its reference to
this as read-only to be immutable, although such an
implementation could modify this through an alias.

While Java’s support for immutability is limited to the
final keyword, which prevents re-assignment of a variable
or a field (but does not guarantee immutability of an
object), researchers have proposed more sophisticated type
systems for Java that guarantee (class) immutability. The
Glacier system by Coblenz et al [5] adds one feature—
transitive class-based immutability—to Java. In Glacier,
an object that instantiates a class declared as @Immutable
will have all fields immutable. All transitively reachable

fields are also immutable. Glacier’s immutable objects are
completely immutable; Glacier does not contain the notion
of a “mutable field” and prohibits transitive writes for
immutable classes. Any method that our analysis iden-
tifies as const-able would also be immutable for Glacier.
Glacier’s validation is through a single case study where
they converted existing code to be immutable.

Another Java-based immutability system is ReIm [14],
which allows developers to label references as read-only
references and infers method purity. Using a significantly
more complicated inference system than ours, they found
that 41–69% of methods could be marked readonly.

Our analysis identifies a subset of those found by purity
analyses e.g. [14], [15]. Pure methods may write to freshly-
allocated parts of the heap. Our analysis is conservative in
declaring methods const-able and rejects any writes; more
sophisticated analyses would allow unrelated writes.

Inference. In C++, the const qualifier serves two roles: it
is a type qualifier (for fields and local variables) as well as
an annotation for methods. Foster et al [16] inferred const
type qualifiers for C programs and found that their case
studies could have included many more const annotations
than they did, consistent with our results. More recently,
Greenfieldboyce and Foster [17] presented a technique for
inferring type qualifiers for Java using their JQual tool.
They apply JQual to inferring a variant of the version of
readonly proposed by Javari [18]. We work at per-class and
per-method granularities, determining whether a class is
immutable or all-mutating, and whether a method should
be const or not. Our work inferring const annotations is
similar to the type inference performed by JQual, but we
use an intraprocedural static analysis plus ad-hoc queries
to determine whether a method is easily-const-able, rather
than propagate type qualifiers across the entire program.

VII. Conclusion
We investigated the use of immutable classes and meth-

ods across 7 C++ open-source software projects, using
both const annotations and static analysis to estimate
the prevalence of immutability. We found that, on these
projects, a median of 11% of non-trivial classes are im-
mutable (or 2% over the entire population of classes).
On the other hand, the number of immutable methods
was much larger than the number of immutable classes.
We found that developers declared a median of 46% of
methods as immutable, and estimated that at least 53%
of methods could be labelled as immutable (that is, in ex-
isting codebases, 6% of methods were missed opportunities
for const). One project has already incorporated changes
suggested by our tool; two projects have expressed interest
in adding the tool to their continuous integration.

Artifact. We invite readers to try our tool themselves at
https://github.com/eyolfson/const-checker-artifact.
We have released our tool under an open source license,
and provide a Vagrant setup with all required software.

https://github.com/eyolfson/const-checker-artifact
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