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Abstract—Software projects make use of libraries extensively.
Libraries make available intended API surfaces—sets of exposed
library interfaces that library developers expect clients to use.
However, in practice, clients only use small fractions of intended
API surfaces of libraries. We have implemented the VizAPI tool,
which shows a visualization that includes both static and dynamic
interactions between clients, the libraries they use, and those
libraries’ transitive dependencies (all written in Java). We then
present some usage scenarios of VizAPI, targetted at library
upgrades. One application, by client developers, is to answer
a query about upstream code: will their code be affected by
breaking changes in library APIs? Or, library developers can
use VizAPI to find out about downstream code: which APIs in
their source code are commonly used by clients?

Index Terms—static program analysis, dynamic program anal-
ysis, API usage, software evolution, software maintenance

I. INTRODUCTION

Virtually all modern software projects use libraries, driven in
part by the ease of use of open source component repositories
such as Maven and npm. Library developers design Applica-
tion Programming Interfaces, or APIs, for their libraries, and
clients invoke these APIs. APIs provide clients with methods
that can be invoked, fields that can be accessed, classes that can
be instantiated, and annotations that can be used. “API surface”
denotes the APIs that a library makes available to other code
artifacts (clients and other libraries). Myers and Stylos [22],
and many others, have advocated for the importance of easy-
to-use and maintainable API surfaces.

The number of dependencies used by modern software
has exploded, and so has their complexity [2], [13]: deeper,
transitive dependencies are now common, and components are
upgraded more frequently. Developers increasingly struggle to
deal with issues arising from those changes. Issues include:
(1) dealing with conflicting versions of the same component
(“dependency hell”) and dealing with supply chain vulnerabil-
ities of deep dependencies (often notified by bots creating pull
requests); (2) new issues around security and resilience of the
software supply chains, e.g. problems with changes to com-
modity components (as in the infamous left-pad incident [6])
and novel attack patterns like typo squatting; and, (3) the use
of unnecessary, bloated, and trivial dependencies [1], [24].

The benefits of using libraries (e.g. the ease of including
functionality that one is not responsible for maintaining) are
thus offset by the issues mentioned above. Let’s consider
one issue: breaking changes. Potentially breaking changes in

library APIs are common [8], [23]. However, it is generally
unclear and difficult to establish whether a change meets its
potential and actually breaks a particular client.

In all programming environments that we are familiar with,
a client developer’s decision to use a particular API (e.g.
library method m()) is a local decision, taken by the developer
on-the-fly. To our knowledge, there are no existing systems
that help developers visualize which APIs are used throughout
an entire project. We claim that such a visualization has
potential applications for both client and library developers.

We first define the terms “client”, “library” and “depen-
dency”, which we use throughout this paper. A “client” is a
software component which directly uses some functionality of
an external component, which is the “library”. Any external
component that the “library” directly uses is a “dependency”.

Fig. 1: VizAPI visualization of client C which calls library L,
itself dependent on dependency D.

Figure 1 illustrates a VizAPI usage scenario, from the per-
spective of a client developer worried about breaking changes
from the library. It shows plain Java client C (blue nodes)
and library L (purple nodes). Library L has packages L1, L2,
and L3. C calls into L1 and L2. Internally, within L, L1 and
L2 call into each other, but not into L3. The VizAPI result,
with no edges from C directly to L3, allows a developer to
conclude that breaking changes in L3 will not affect C. Also,
if only L3 uses an external dependency D (yellow node), then
C will not need D to be on its classpath.

More generally, from a library developer’s point of view,
under plain Java (i.e. no runtime containers) and considering
reflection, the potential API surface of any component is huge.
Essentially: every method can be called, and every field can



be read and written. Even considering only the published
API surface (methods, fields, classes, and annotations with
the correct visibility modifiers), libraries’ API surfaces still
often have hundreds to thousands of members. The breadth
of the API surface is a liability with respect to continued
maintenance of the library; many developers aspire to avoid
breaking changes by preserving, whenever possible, library
behaviour that is depended on by clients. Knowing that few
clients use a particular API could liberate library developers.

On the other hand, we would expect (and have verified
in our unpublished work) that each client uses only a small
portion of each of its dependencies’ API surfaces. Consider
breaking changes again. GitHub provides the Dependabot
tool [21], which monitors for upstream changes and automat-
ically proposes pull requests to update dependency versions.
That tool may well pull in breaking changes. However, we
hypothesize that, most of the time, most breaking changes will
not affect most clients; it is useful for clients to know whether
they are using the parts of the API surface that are subject to a
particular breaking change. A client with broad dependencies
on a library (uses a larger fraction of its API surface) is more
likely to be affected by its changes than a client with narrow
dependencies (smaller fraction). A narrow library dependency
would also suggest that it would be easier to swap the library
for a functionally similar replacement.

Additionally, as researchers, we would like to understand
how library APIs are used by clients more generally. Zhong
and Mei [25] investigated API usages in a dataset of 7
experimental subjects (clients) and the libraries that they
depend on. They found that clients use less than 10% of the
declared APIs in libraries. Our visualization allows developers
and researchers to visualize distribution information about how
different parts of clients use different parts of libraries.

This paper presents the VizAPI tool, which shows visualiza-
tion overviews showing API usages—from clients to libraries,
but also between libraries (including transitive dependencies).
The goal of VizAPI is to provide a heuristic for developers
considering the impacts of changes to libraries. VizAPI in-
corporates information from static and dynamic analyses. We
have made VizAPI publicly available1, although it is still in
development. The contributions of this paper include:

• VizAPI, a tool which presents visualization of API us-
age information; VizAPI collects static information, in-
struments Java code to collect dynamic instrumentation
information about API uses in practice, and presents all
this as a d3 visualization (Section III-A–III-B);

• Case Study, a discussion of VizAPI usage scenarios
(Section III-C) drawn from a collection of 11 libraries
and 38 clients.

II. RELATED WORK

A representative tool from the software visualization liter-
ature is CodeSurveyor, by Hawes et al [11], which visualizes
large codebases using the analogy of cartographic maps. While

1https://github.com/SruthiVenkat/api-visualization-tool

it incorporates dependency information into the layout of
the map, VizAPI differs from CodeSurveyor in that VizAPI
focusses on usage relationships between different modules
(e.g. API invocations) using test cases and static analysis
to identify relationships between clients and libraries, rather
than investigating a particular system, as CodeSurveyor does.
Earlier work includes the software cartography project by
Kuhn et al [14] and software terrain maps by DeLine [7].

Hejderup and Gousios [12] explore a question which is
central to our approach—how well do client tests exercise their
dependencies’ libraries? The dynamic part of our approach
relies on client test suites exercising enough of the depen-
dencies to get valid dynamic results from our analyses. They
conclude that a combination of static and dynamic analysis
of the client has some chance of detecting breaking changes
in its dependencies, and we accordingly use static analysis to
supplement our dynamic results.

Call graph visualization is, of course, a well-known tech-
nique, as seen e.g. by the Reacher tool [18]. VizAPI also
presents static and dynamic call information. However, we de-
signed it to support decisions about library/client interactions:
the granularity of nodes is packages (typically it is methods);
and the layout is influenced by frequency of interactions.

Our overall goal is to help both client and library developers
understand client uses of library code. Clients benefit from
sharpened warnings about unsafe upgrades, knowledge that
some upgrades are safe, and having reduced attack surfaces.
Library upgrades have been investigated by many researchers,
including Lam et al [17] and Kula et al [16]. Kula et al
found that most software had outdated dependencies, and
that software developers disliked being required to constantly
upgrade their libraries. Kula et al [15] also developed a
tool to visualize changes in dependencies over time—but not
how a particular client depends on its libraries. Our VizAPI
tool’s dependency visualizations will help developers prioritize
required upgrades as low-effort or high-effort. Foo et al [10]
proposed a static analysis which detected safe upgrades, but
could only certify safety for 10% of upgrades; our combined
static and dynamic approach presents the developer with more
information and enables more upgrades.

Bergel et al [3] propose the GRAPH DSL for software visu-
alizations. That language could generate static representations
similar to VizAPI’s; however, VizAPI chooses a specific point
in the design space, and we argue that this point is useful for
helping developers understand potential impacts of upgrades.

III. VIZAPI

We next describe the design of VizAPI, including how we
collect information and format it for the d3js visualization
library. We also present two VizAPI usage scenarios.

A. Design

Our goal is to visualize software component interactions—
between clients and libraries, and between libraries and other
libraries. Figure 2 summarizes how VizAPI works.

https://github.com/SruthiVenkat/api-visualization-tool
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Fig. 2: VizAPI instrumentation workflow. Using Javassist, we analyze and instrument clients and run their test suites. We
process the generated data with Python scripts to create D3 visualizations.

To identify interactions across the client/library boundaries,
we first inspect JAR files of each software component to obtain
a list of classes for every component. We then associate classes
and their members to components based on these lists.

a) Static information: We perform a static analysis to
record API uses. Using Javassist [5], we identify type refer-
ences, which includes references at call sites, fields, anno-
tations for classes, methods and fields, method parameters
and casts. We also identify subtypes, determining possible
interactions across client/library boundaries and library/library
boundaries. Javassist uses a call graph produced by class
hierarchy analysis to resolve method calls.

b) Dynamic information: We collect dynamic data by
running client test suites under instrumentation. The instru-
mentation records API uses which cross client/library bound-
aries, as well as library/library boundaries for libraries that
are transitively used. We also use Javassist to perform this
instrumentation and then use the build system of each project
(Maven or Gradle) to run its tests.

At every invoke instruction in every loaded method which
transfers control between the client and the library, we add
code to record that invoke by incrementing a counter. We
handle both static and virtual (including special, virtual, inter-
face, and dynamic) calls. Crossing the client/library boundary
includes callbacks from the library to the client as well as
conventional calls from the client to the library.

We also record field accesses (direct and reflective), dy-
namic proxies and reflective calls, Java annotations, imple-
mentations, instantiations, and casts.

B. Visualization System

Once we have generated data, we use a modified version
of the d3graph2 library in Python to generate a d3js3 visu-
alization. The graph in Figure 3a is an example of a graph
produced by VizAPI.

VizAPI graphs are force-directed graphs based on the fre-
quency of interactions between different software components.
Each node is a set of one or more packages that belong to the
same JAR. There are three categories of nodes: clients are rep-
resented by nodes with white interiors; libraries by nodes with
filled interiors and black borders; and dependencies (called by

2https://pypi.org/project/d3graph/
3https://d3js.org/

libraries but not clients) by nodes with filled interiors and
normal borders. We coalesce nodes if they originate from the
same JAR and have the same incoming and outgoing edges.

Each edge is directed from the source package(s) to the
target package(s) and represents an interaction (invocations,
fields, annotations, subtyping) between packages. The thick-
ness of each edge reflects the frequency of interactions be-
tween the source and the target. Double-clicking on a node
emphasizes its direct interactions with other packages while
fading out the rest of the graph.

We run a Python implementation of the Louvain clustering
algorithm [4], and make the clusters visible by colouring
nodes based on cluster. This means that the same colour
could indicate nodes (of the same category) from the same or
different JARs. Hovering on a node shows the list of packages
and the JAR that they belong to, formatted as “jar : ⟨space
separated list of packages⟩”.

C. Case Study
We conducted a pilot study of VizAPI. We have generated

data from libraries from a subset of the Duets benchmarks [9]
combined with a selection of popular Maven repositories
in different categories such as logging and json parsing.
Our study included 10 libraries and selected clients of these
libraries (potentially overlapping), for a total of 85 projects.
We have made our data publicly available4.

We chose clients partly from popular Github repositories
and partly from Duets. We have collected both static and
dynamic data for these projects, and we are in a position to
generate graphs for combinations of clients and libraries in
these projects. We present two usage scenarios below; graphs
for our usage scenarios are publicly available.5 We intend for
these usage scenarios to show how VizAPI can be useful to
client developers when they want to observe library API usage
and for library developers when they want to observe how their
library is used by clients.

a) Usage Scenario 1: jsoup: Imagine that we are a jsoup
developer and want to understand how some clients interact
with it, in anticipation of making some breaking changes. We
choose clients JsoupXpath6 and ez-vcard7. Figure 3a shows

4https://zenodo.org/record/6951140
5https://sruthivenkat.github.io/VizAPI-graph/
6https://github.com/zhegexiaohuozi/JsoupXpath
7https://github.com/mangstadt/ez-vcard
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(a) Usage Scenario 1: Library jsoup (pink with dark borders), called by two clients, ez-vcard (hollow with purple border) and JsoupXpath
(hollow with pink border). Exploration shows that internal jsoup packages aren’t called directly by clients.

(b) Usage Scenario 2: Client dataprocessor (hollow, orange border) calls only one package in library fastjson (green fill).

Fig. 3: VizAPI Usage Scenarios.

static and dynamic interactions of the 2 clients with the
jsoup8 library. Recall that nodes represent packages and edges
represent interactions (usually invocations) between packages.

We can start our exploration with the cluster of pink
nodes. Many of these nodes belong to either JsoupXpath
or jsoup. Hovering over a node tells us the package names
while double-clicking shows us its direct interactions. (To
search for a package, we can click on “show package
names” and use the browser’s find functionality.) Here,
client JsoupXpath calls directly into org.jsoup.nodes
and org.jsoup.select. Notably, and as we might
expect, we can see that org.jsoup.helper and

8https://github.com/jhy/jsoup

org.jsoup.internal aren’t called directly by
JsoupXpath. This would mean that breaking changes
in org.jsoup.helper or org.jsoup.internal
wouldn’t directly affect JsoupXpath9

Similarly, ez-vcard, which belongs to the purple cluster in
Figure 3a, directly calls into org.jsoup. ez-vcard also calls
into jackson-core10 and jackson-databind11, which are very
tightly coupled amongst their own packages and with each

9As a specific example, the retraction of an internal jsoup API would not
break this client. Behavioural changes that are directly passed through to
the external API, e.g. through delegation, can still break clients, but we can
consider those to be changes in the external API.

10https://github.com/FasterXML/jackson-core
11https://github.com/FasterXML/jackson-databind

https://github.com/jhy/jsoup
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https://github.com/FasterXML/jackson-databind


other. As a jsoup developer, we wouuld be indifferent; others,
however, can observe that breaking changes in jackson-core
and jackson-databind could propagate.

b) Usage Scenario 2: dataprocessor: Figure 3b presents
a second usage scenario. Here, say we are the devel-
opers of client dataprocessor12 (hollow with orange bor-
der). This client uses the fastjson13 library (green fill).
Our visualization shows calls only from dataprocessor pack-
age com.github.dataprocessor.slice, which is the
orange-bordered client node (identity of the package available
by hovering) to the package com.alibaba.fastjson. No
other parts of dataprocessor use fastjson. This means that
when we, as dataprocessor developers, need to upgrade the
fastjson version, we only need to inspect the source code in
our com.github.dataprocessor.slice package.

Note also the disconnected nodes in Figure 3b. These are all
packages of fastjson that are not used by dataprocessor: any
breaking changes in these packages definitely do not directly
affect dataprocessor, and are less likely to affect it overall than
packages that are directly used.

IV. DISCUSSION

Our goal when developing VizAPI was to enable 1) library
developers to make better decisions about pruning or modify-
ing unused APIs and to refactor their libraries; and 2) client
developers to make better decisions about library upgrades and
breaking changes.

Note that client tests may not adequately represent actual
client behaviours; however, our use of both static and dy-
namic information addresses this issue. Specifically, because
we use class hierarchy analysis for our static analysis, our
visualization will present all possible static calls—possibly
too many. That is, the main hazard with static analysis is
that our visualization may include more static edges than are
actually possible. Some of those edges could be ruled out by
a more precise call graph. Reflection aside, no static edges are
missing (our approach is “soundy” [19] with respect to static
information). On the other hand, dynamic edges have actually
been observed on some execution; better tests could yield more
dynamic edges. But even if a dynamic edge is missing, there
will be a static edge if the behaviour is possible.

This preliminary work has presented two usage scenarios
which promise to be useful for both client and library develop-
ers. We intend to carry out further user evaluations of our tool
following existing techniques [20]; in particular, we aspire to
perform experiments to establish the effectiveness of VizAPI,
where we ask users to perform software understanding and
maintenance tasks that would benefit from our tool.
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