
Abstract Debuggers
Exploring Program Behaviors using Static Analysis Results

Karoliine Holter

University of Tartu

Tartu, Estonia

Juhan Oskar Hennoste

University of Tartu

Tartu, Estonia

Patrick Lam

University of Waterloo

Waterloo, Canada

Simmo Saan

University of Tartu

Tartu, Estonia

Vesal Vojdani

University of Tartu

Tartu, Estonia

Abstract
Traditional, or concrete, debuggers allow developers to step

through programs and explore the corresponding concrete

program states—developers can query current values of pro-

gram variables. This exploration enables developers to for-

mulate and refine hypotheses about program behaviors. We

propose the novel notion of abstract debuggers, which allow

developers to explore abstract program states, as computed

by sound static analyzers. Giving developers the ability to

interactively explore abstract states empowers them to work

with hypotheses that are true for all program executions:

they can examine and rule out false positives, or better un-

derstand a static analysis’s declaration that some code is

indeed safe. Abstract debuggers’ interfaces, reminiscent of

conventional debuggers, aim to make navigating and inter-

preting static analysis results more straightforward. We have

formalized the concept, applied it by implementing a tool

that leverages the static analyzer Goblint, and illustrate its

usefulness through case studies.

CCS Concepts: • Software and its engineering→ Soft-
ware testing and debugging; Automated static analysis;
• Theory of computation→ Abstraction.

Keywords: Automated Software Verification, Abstract Inter-

pretation, Explainability, Visualization, Data Race Detection

ACM Reference Format:
Karoliine Holter, Juhan Oskar Hennoste, Patrick Lam, Simmo Saan,

and Vesal Vojdani. 2024. Abstract Debuggers: Exploring ProgramBe-

haviors using Static Analysis Results. In Proceedings of the 2024 ACM
SIGPLAN International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software (Onward! ’24), October
23–25, 2024, Pasadena, CA, USA.ACM, New York, NY, USA, 17 pages.

https://doi.org/10.1145/3689492.3690053

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

Onward! ’24, October 23–25, 2024, Pasadena, CA, USA
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1215-9/24/10

https://doi.org/10.1145/3689492.3690053

1 Introduction
According to Zeller [48], a best practice for debugging is to

apply the scientific method: faced with a bug, developers

ought to create a hypothesis about why their program fails,

and then verify (or refine) this hypothesis by conducting

experiments. Once a hypothesis has enough support, the

developer can correct the underlying defect. In Zeller’s book,

the experiments consist of concrete program executions: the

developer runs the program with particular inputs, and, po-

tentially, instrumentation permitting better observability. Ko

and Myers’ Whyline [26] enables event-level observation of

program behavior—in the context of the Alice programming

system, developers could observe values at domain-relevant

levels of abstraction.

In this work, we propose the notion of abstract debugging.
As with concrete debugging, our approach enables devel-

opers to answer questions about program behaviors. Our

insight is that it is possible to use static analysis tools to

provide much more complete information about program

behavior; specifically, at a higher level of abstraction. Sound

static analysis tools, after all, reason about all paths in the

program’s execution. By moving away from concrete input

values, abstract debugging liberates developers from the ne-

cessity to provide specific input values and allows them to

reason about all possible behaviors of their software.

Fundamentally, static analysis can identify program prop-

erties by examining the program’s code without executing

it. This enables the pinpointing of errors that might only

manifest under specific conditions (e.g., inputs or thread in-

terleavings). Sound analyzers, such as abstract interpreters,

aim to automatically verify the absence of errors under all

conditions. While the primary output of such analysis is a

list of potential program errors—or a claim that the program

is free from errors—the foundation for these conclusions

often rests on a vast array of other data, including potential

program states, variable values, and their interrelationships.

Our approach was motivated by the insight that these in-

termediate results can offer valuable information about a

program’s behavior and the origins of potential errors; how-

ever, the raw presentation of these results can be challenging

https://orcid.org/0009-0008-3725-4131
https://orcid.org/0009-0006-0682-5929
https://orcid.org/0000-0001-8278-5400
https://orcid.org/0000-0003-4553-1350
https://orcid.org/0000-0003-4336-7980
https://doi.org/10.1145/3689492.3690053
https://doi.org/10.1145/3689492.3690053

Onward! ’24, October 23–25, 2024, Pasadena, CA, USA Karoliine Holter, Juhan Oskar Hennoste, Patrick Lam, Simmo Saan, and Vesal Vojdani

to decipher, even with an in-depth understanding of the an-

alyzer’s internal processes. Abstract debuggers are our way

of making static analysis results legible to developers.

Abstract debugging enables developers to interactively

examine alerts raised by static analysis tools, thus confirm-

ing or refuting their hypotheses about program behavior. By

exploring our interprocedural Abstract Reachability Graph

(iARG), developers can rule out false positives, rule in true

positives, and understand why a static analysis tool con-

cludes that some code is guaranteed to meet a given property.

Furthermore, this graph exploration is done in the familiar

environment of a debugger: developers can set breakpoints,

step (backwards and forwards) into functions and across

statements, and explore the (abstract) state of the program.

We introduce abstract debugging with reference to con-

crete (traditional) debugging. Concrete debuggers allow for

the step-by-step execution of a program, where users can

directly observe the concrete program state at each step. We

formalize the operational semantics of these stepping opera-

tions. To define abstract debugging, we thus also formalize

the corresponding operational semantics for the abstract

world, simulating step-by-step executions using the results

from static analysis (rather than by executing the program

and reporting concrete state values). User-visible abstract

debugger states do not show concrete values as in traditional

debuggers, but rather abstractions of these values. These

abstract values encapsulate the program’s state across all

executions and can reflect a joint state of multiple traces.

We have developed a practical prototype that demon-

strates this approach to abstract debugging, using the static

analyzer Goblint to provide abstractions. Through this imple-

mentation, we aim to show the potential of abstract debug-

ging in answering higher-level questions about programs,

with the advantage that the answers are valid across all

executions. Abstract debuggers aim to render static analy-

sis more approachable, user-friendly and interpretable. By

building on the familiar interface of traditional debuggers,

we show that abstract debugging simplifies the navigation

and interpretation of static analysis outcomes. Furthermore,

using the Debug Adapter Protocol (DAP) supported by many

Integrated Development Environments (IDEs), the imple-

mentation also leverages an existing framework instead of

creating a new one, directly benefitting from IDE improve-

ments and reducing implementation andmaintenance efforts.

The contributions of this work are:

• The notion of an abstract debugger, which enables de-

velopers to interactively pose questions about inter-

procedural program behavior and to receive answers

valid for all program executions, using static analysis

information.

• A series of examples showing the utility of an abstract

debugger for understanding alerts from static analysis

(true/false positives) and guarantees (true negatives).

• A formalization of the operational semantics of both

the concrete and abstract debugger, ensuring sound-

ness by guaranteeing that every debugging session in

the concrete world has a corresponding session in the

abstract world.

• An implementation of an abstract debugger for the

abstract interpretation-based static analyzer Goblint.

2 Running Example
Consider the simple program in Fig. 1a, presented in a hy-

pothetical C-like language to simplify understanding (the

screenshot in Fig. 1b shows the actual C code for a flawed

version of this program). We use this program to illustrate

the challenges in interpreting analysis results. The program

consists of two threads with identical implementations. Each

thread attempts to acquire a mutex. If the mutex is acquired,

the thread writes to a shared variable global; otherwise, it
writes to a local cache.

The Goblint static analyzer would report that the version

of the program in Fig. 1a is free from data races:

[Success][Race] Memory location "global" (safe):
write with [lock:{mutex}, thread:[main, t1]] (L12)
write with [lock:{mutex}, thread:[main, t2]] (L12)

However, if the user had forgotten the break statement on

line 10, the analyzer would report a potential race
1
.

[Warning][Race] Memory location "global" (unsafe):
write with [thread:[main, t1]] (L12)
write with [thread:[main, t2]] (L12)

By setting a breakpoint at the reported race location (see

Fig. 1b) and stepping backward to the CACHE case, the cause of
the race is immediately revealed. For a simple example, a per-

son (or tool) could generate a concrete counter-example trace

including the concurrent writes. However, when a concrete

trace becomes too unwieldy (e.g., for complex multithreaded

programs) or when a tool does not produce a concrete trace

(as often happens), then interactively navigating through

all possible traces in the program at once can help the user

understand the cause of the issue more easily than poring

through a lengthy counter-example trace.

Most analyzers allow inspection of their internal state,

and looking at the Goblint analyzer’s output for the program

in Fig. 1a, we see that the switch statement on line 7 can be

reached by the two threads, each thread either holding the

mutex or not:

{{locals : [action ↦→ PUBLISH], tid : t1, lockset : {mutex}}
{locals : [action ↦→ CACHE], tid : t1, lockset : ∅}
{locals : [action ↦→ PUBLISH], tid : t2, lockset : {mutex}}
{locals : [action ↦→ CACHE], tid : t2, lockset : ∅}}.

This is somewhat helpful. However, with the abstract debug-

ger, we can step from the start of the program, and at the

1
Compilers can warn about implicit fallthrough, but since fallthroughs can

be deliberate, even gcc -Wall does not complain about them.

Abstract Debuggers Onward! ’24, October 23–25, 2024, Pasadena, CA, USA

1 mutex_t mutex = MUTEX_INIT;
2 typedef enum { PUBLISH, CACHE } Action;
3 int global;
4

5 int f(Action action) {
6 int cache = 0;
7 switch (action) {
8 case CACHE:
9 cache = 42;
10 break; // remove for flawed version
11 case PUBLISH:
12 global = 42;
13 }
14 }
15

16 thread t1, t2 {
17 if (lock(&mutex)) {
18 f(CACHE);
19 } else {
20 f(PUBLISH);
21 unlock(&mutex);
22 }
23 }

(a) An example program (in stylized C-like code) that either

writes to a shared variable, or, if mutex acquisition fails, writes

to a local variable as a backup.

(b) A screenshot of the abstract debugger on the flawed version

of the program in Fig. 1a. There is a breakpoint at the warning

location. Stepping back will reveal the cause.

Figure 1. Running example program and its abstract debugging session.

if-statement on line 17, we can force the abstract debugger to

step into the true branch, where locking has failed. We know

that the locking has failed in the true branch because the func-

tion pthread_mutex_lock() returns zero when successful.

This is hard to test concretely (or in a concrete debugger)

except by mocking the mutex acquisition or mutating the

program. Yet, a sound analyzer must consider these cases,

and the abstract debugger makes it easier to shed light on

these dark corner cases using the power of the analyzer.

A user may also be interested in understanding the ana-

lyzer’s justification for an absence of data races. In the correct

program, we saw that the analyzer’s output (above) claims

that the writes to global are all protected by mutex, but no
justification for this claim. The abstract debugger also allows

users to step through the rest of the program, restricted to

states reachable from the true (CACHE) branch, and verify

that the program never reaches any writes to global. Thus,
the user does not need to blindly trust the analyzer, but can

understand what the analyzer is claiming about different

paths through the program.

In this paper, we have a specific meaning in mind for an

abstract debugger. It should be an abstraction of a concrete

debugger, meaning that if a concrete debugger, such as GDB,
is used in Visual Studio Code (VS Code), and the user per-

forms a sequence of steps, there should be a corresponding

sequence of steps that the user can witness by using the

abstract debugger while pressing the same buttons in the

VS Code interface. Under the abstract debugger, of course,

the user would see abstract states (analysis abstractions)

rather than concrete program states. The difference in but-

ton presses boils down to how multiple possible successor

states are handled. Consider the following side-by-side com-

parison of a concrete debugger and our abstract debugger on

the execution of the thread body (starting at line 17, denoted

by the label L17 below), where line numbers refer to the

stylized code in Fig. 1a:

L17 Button: Step over. In our real-world execution, locking

succeeds and GDB moves to line 20. The fact that the

lock is held is not easily visible to the concrete debug-

ger’s user. The abstract debugger asks the user for the

target branch, and when choosing “success”, the view

of the abstract state shows the updated lockset and the

result 0 (represented as the interval [0, 0]) from the

call to lock(). It then also moves to line 20.

L20 Button: Step into. The concrete debugger enters func-
tion f, showing concrete values for the local vari-

ables. For action, GDB is capable of displaying the

enum name PUBLISH; the abstract debugger, however,
shows the abstract value [0, 0], which is the under-

lying value of the enum. The value of the uninitial-

ized local variable cache is arbitrary, so it is shown as

[−2147483648, 2147483647] in the abstract state.

L6 Button: Step over. The concrete debugger moves to

line 7 and the state shows that the value of cache is 0.

The abstract debugger also sets the value of cache to

[0, 0] and moves along.

Onward! ’24, October 23–25, 2024, Pasadena, CA, USA Karoliine Holter, Juhan Oskar Hennoste, Patrick Lam, Simmo Saan, and Vesal Vojdani

L7 Button: Step over. The concrete debugger jumps to

line 12, while our abstract debugger requires two but-

ton presses to reach line 12 due to the implementa-

tion’s internal representation of switch as if-statement.

L12 Button: Step out. Both debuggers move out to line 21,

the line after the function call, and show that the global

is 42 and [42, 42], respectively.
L21 Button: Step over. Both move to line 22, but after the

unlock, the abstract debugger gives a less precise value,

[0, 42], for the now-unprotected global variable, due

to its thread-modular abstraction of concurrent pro-

grams. The abstract state now shows that no locks are

held; again, this information is not easily visible in the

concrete state.

This example shows that the abstract debugger can, in

principle, simulate the concrete debugging session. It en-

ables the exploration of all possible program behaviors, ei-

ther through over-approximation or by allowing the user

to choose a path. In the following, we aim to formalize this

claim: an abstract debugger can simulate any concrete de-

bugging session, i.e., it accounts for all program inputs and

interleavings.

We also point out the following advantage of abstract

debuggers over concrete debuggers. Given any reachable

program point 𝑝 , it is possible to force an abstract debugger

to navigate to 𝑝 , by setting a breakpoint there and initiating

debugging. With a concrete debugger, the user must supply

program inputs leading to 𝑝 (and possibly be lucky with

interleavings), which may be challenging if 𝑝 is hard to reach.

Because the abstract debugger reasons about all possible

inputs, the user does not need to (indeed, cannot) supply

inputs.

3 Debugging in the Concrete World
This section provides a brief overview of the operations

making up a typical debugging session and outlines their

operational semantics to facilitate comparisons between con-

ventional and abstract debuggers.

A debugger is a tool that allows one to run a program

step-by-step and inspect the program’s state after each step.

Nearly all IDEs support debuggers in some form, and there

is a debugger available for almost all popular programming

languages.

From the variety of different conventional concrete debug-

ging methods, we compare the abilities of our method with

live reverse debugging [37], which has been implemented on

top of LLDB. While our conceptual comparison is with the

more powerful technology of live reverse debugging, our

actual implementation builds on VS Code; most VS Code de-

bugger backends provide traditional debuggers. Traditional

debuggers allow a developer to execute a program in the

(usual) forward direction, providing concrete inputs during

its execution; furthermore, the developer may set a break-

point and change the concrete program state. Record-and-

replay debuggers further add the ability to reverse execu-

tion: stepping back rewinds the program to a previous state,

and then stepping forwards plays the recorded execution

until reaching another state of interest. Record-and-replay

removes, to some extent, the ability to interactively change

the state when in replay mode. Live reverse debugging, then,

additionally allows the exploration of alternative paths in the

program execution. Liveness, in particular, allows forward

execution to resume live from a breakpoint. The concrete

program execution proceeds, possibly exploring a different

path if either (1) the state is modified by the developer or

(2) the program is provided with different concrete input

from the environment.

As alluded to above, in a debugger, breakpoints and step-

ping play a central role. Breakpoints mark a spot in the

source code where the debugger halts execution to display

the program’s state at that point. Stepping allows users to

execute the code step-by-step, advancing to the next pro-

gram point with each step. Debugger stepping operations are

essential for navigating the flow of program execution dur-

ing debugging sessions. The common stepping operations

of a conventional debugger, that our abstract debugger must

support, are: step over, step into, step out, and step back. In

the following paragraphs, we will outline the operational

semantics of concrete debugging stepping operations.

Control Flow. We assume the source code is correctly

parsed, and that each function is represented as a Control

Flow Graph (CFG). A CFG of a function 𝑓 ∈ Fun is a directed

graph 𝐺 𝑓 = (𝑁𝑓 , 𝐸𝑓 , st 𝑓 , ret 𝑓) where the finite set of nodes
𝑁𝑓 represents program locations of the function, st 𝑓 and ret 𝑓
refer to the function’s unique start and end locations, and

the finite set of edges 𝐸𝑓 = 𝑁𝑓 ×𝑂 × 𝑁𝑓 represents control

flow between the locations.

The edges use labels from a statement language𝑂 = 𝐵∪𝐹 ,

which includes basic operations and function calls. The ba-

sic operations (𝐵) include assignments and assume edges

(modelling conditional branches). The function calls (𝐹) con-

tain expressions (potentially involving pointers) that eval-

uate to the target function’s name during execution. The

sets 𝑁 =
⋃

𝑓 ∈Fun 𝑁𝑓 and 𝐸 =
⋃

𝑓 ∈Fun 𝐸𝑓 capture the con-

trol flow of the entire program. Moreover, we denote by

𝐸𝐵 = {(𝑛1, 𝑏, 𝑛2) ∈ 𝐸 | 𝑏 ∈ 𝐵} the set of all edges with basic

operations and by 𝐸𝐹 = {(𝑛1, 𝑝, 𝑛2) ∈ 𝐸 | 𝑝 ∈ 𝐹 } the set of
all edges with function calls.

Concrete Executions. A concrete program state 𝑐 ∈ C
contains both control information (the program location

𝑛 ∈ 𝑁 and call stack for each thread), as well as the memory

state (e.g., the values of variables and the heap). We denote by

𝑁 (𝑐) ∈ 𝑁 the program location that is contained in concrete

state 𝑐 .

Abstract Debuggers Onward! ’24, October 23–25, 2024, Pasadena, CA, USA

Balance (basic)

𝑐
𝑏−→ 𝑐′ 𝑏 ∈ 𝐵 𝜋 = 𝜖

𝑐
𝜋−→★𝑐′

Balance (function)

𝑐
↓𝑓
−−→ 𝑐1

𝜋 ′
−→★𝑐2

𝑓 ↑
−−→ 𝑐′ 𝜋 = 𝑐1𝜋

′𝑐2

𝑐
𝜋−→★𝑐′

Balance (append)

𝑐
𝜋1−−→★𝑐1

𝜋2−−→★𝑐′ 𝜋 = 𝜋1𝑐1𝜋2

𝑐
𝜋−→★𝑐′

Step into

𝑐
𝑒−→ 𝑐′ 𝑒 ∈ 𝐵 ∪ ↓𝐹 ∪ 𝐹↑

· · · 𝑐 into
===⇒ · · · 𝑐𝑐′

Step over (basic, return)

𝑐
𝑒−→ 𝑐′ 𝑒 ∈ 𝐵 ∪ 𝐹↑

· · · 𝑐 over
===⇒ · · · 𝑐𝑐′

Step over (entry)

𝑐
↓𝑓
−−→ 𝑐1

𝜋 ′
−→★𝑐2

𝑓 ↑
−−→ 𝑐′ 𝜋 = 𝑐1𝜋

′𝑐2

· · · 𝑐 over
===⇒ · · · 𝑐𝜋𝑐′

Step out (basic, entry)

𝑐
𝜋 ′
−→★𝑐1

𝑓 ↑
−−→ 𝑐′ 𝜋 = 𝜋 ′𝑐1

· · · 𝑐 out
===⇒ · · · 𝑐𝜋𝑐′

Step out (return)

𝑐
𝑓 ↑
−−→ 𝑐′

· · · 𝑐 out
===⇒ · · · 𝑐𝑐′

Step back (basic, entry)

𝑐
𝑒−→ 𝑐′ 𝑒 ∈ 𝐵 ∪ ↓𝐹

· · · 𝑐𝑐′ back
====⇒ · · · 𝑐

Step back (return)

𝑐
↓𝑓
−−→ 𝑐1

𝜋 ′
−→★𝑐2

𝑓 ↑
−−→ 𝑐′ 𝜋 = 𝑐1𝜋

′𝑐2

· · · 𝑐𝜋𝑐′ back
====⇒ · · · 𝑐

Figure 2. Concrete operational semantics of a live reverse debugger.

For each basic operation edge 𝑒 = (𝑛1, 𝑏, 𝑛2) ∈ 𝐸𝐵 , the con-

crete program semantics induce a labeled transition relation

→𝑒 ⊆ C × 𝐵 × C between pre- and post-states. These rela-

tions capture intraprocedural control flow: 𝑐1
𝑏−→𝑒 𝑐2 implies

𝑁 (𝑐1) = 𝑛1 and 𝑁 (𝑐2) = 𝑛2.

Function calls, corresponding to interprocedural control

flow, are executed by proceeding into the function body.

Let ↓𝐹 = {↓𝑓 | 𝑓 ∈ Fun} and 𝐹↑ = {𝑓 ↑ | 𝑓 ∈ Fun} be

sets of special operations indicating the entry to and the

return from function 𝑓 , respectively. As functions are called

dynamically, each function call edge 𝑒 = (𝑛1, p(), 𝑛2) ∈ 𝐸𝐹

induces the relation

↓𝑓
−−→𝑒 ⊆ C × {↓𝑓 } × C for every function

𝑓 ∈ Fun. Here, 𝑐1
↓𝑓
−−→𝑒 𝑐2 implies that p evaluates to 𝑓 in the

state 𝑐1 and execution enters the body of 𝑓 , i.e., 𝑁 (𝑐1) = 𝑛1
and 𝑁 (𝑐2) = st 𝑓 .

Functions return to the caller based on the call stack. Thus,

we have a relation

𝑓 ↑
−−→ ⊆ C × {𝑓 ↑} × C for every function

𝑓 ∈ Fun. Being in the relation 𝑐1
𝑓 ↑
−−→ 𝑐2 implies 𝑁 (𝑐1) = ret 𝑓

and 𝑁 (𝑐2) is the return location indicated by the call stack

of 𝑐1. We obtain the complete (infinite) transition relation

→ ⊆ C× (𝐵∪↓𝐹 ∪𝐹↑) ×C as the union of all these relations:

→ =

(⋃
𝑒∈𝐸𝐵

→𝑒

)
∪
(⋃
𝑒∈𝐸𝐹 ,𝑓 ∈Fun

↓𝑓
−−→𝑒

)
∪
(⋃
𝑓 ∈Fun

𝑓 ↑
−−→

)
.

This relation captures the validity of individual operations

without considering their reachability from an initial state.

For debugging, we are interested in finite prefixes of con-

crete executions. Let C∗
denote the set of all finite sequences

with elements from C. An execution prefix is a sequence

of states 𝑐0𝑐1 · · · 𝑐𝑛 ∈ C∗
where 𝑐0 is an initial state and for

each 0 < 𝑖 ≤ 𝑛, we have 𝑐𝑖−1 → 𝑐𝑖 . This restricts executions

to those actually reachable from 𝑐0.

Concrete Operational Semantics. A state of a live re-

verse debugger is an execution prefix 𝑐0𝑐1 · · · 𝑐𝑛 reaching

state 𝑐𝑛 , where execution is paused for inspection. We define

a transition relation⇒ ⊆ C∗×S×C∗
for the debugger based

on the operations it can perform: S = {into, over, out, back}.
As for pushdown systems, we define this relation based on

the relevant latter parts of the execution history, often the last

element in the sequence. Thus, when we write · · · 𝜏 ⇒ · · · 𝜏 ′,
the · · · s on both sides must be the same sequences of states.

Using the outlined definitions, Fig. 2 defines the concrete

operational semantics as follows:

Balance: Following Reps et al. [35], we define the notion

of same-level runs. These are executions 𝑐𝜋𝑐′ from a

concrete state 𝑐 to another state 𝑐′ where all entered
functions in the execution 𝜋 have correctly returned.

Furthermore, 𝜋 does not return from functions it did

not enter. In such executions, function entry and re-

turn operations are balanced like parentheses. This is

expressed in the rules named Balance.

Step into: For a basic operation 𝑒 ∈ 𝐵, this step transitions

to a next interprocedural location. If the next operation

is a function call 𝑒 ∈ ↓𝐹 , it steps into (enters) the

corresponding function, and if 𝑒 ∈ 𝐹↑, it leaves the
current function and returns to the calling function.

This behavior is defined by the rule Step into.

Step over: For a basic operation or a function return, this is

identical to step into: it executes a statement or leaves

the current function (Step over (basic, return)). For

a function call, i.e., the label of the next transition is a

function enter, the debugger executes the whole func-

tion and stops at the next location in the current func-

tion (Step over (entry)), using the Balance rules.

Step out: Executes the remaining statements of the current

function and returns to the calling function, defined

by Step out (basic, entry). If there are no remaining

Onward! ’24, October 23–25, 2024, Pasadena, CA, USA Karoliine Holter, Juhan Oskar Hennoste, Patrick Lam, Simmo Saan, and Vesal Vojdani

statements to execute, i.e., the next transition is func-

tion return, the debugger will simply step out of the

function (Step out (return)), just like step into/over.

Step back: The essence of reverse debugging. If the label
of the last transition is either a basic operation or a

function entry, the step back operation discards the

last element of the execution sequence. This behavior

is defined by the rule Step back (basic, entry). If the

label of the last transition is a function return, step

back will step to the location of that function’s call, as

defined by Step back (return). Note that these are

dual to step over.

While the above rules define individual stepping opera-

tions on debugger states, a complete debugging session is

a sequence 𝜋0
𝑠1
==⇒ 𝜋1

𝑠2
==⇒ · · ·

𝑠𝑛
==⇒ 𝜋𝑛 of such steps, start-

ing from an initial debugging state 𝜋0. The developer may

inspect the execution prefix 𝜋𝑖 , e.g., values of variables, to

decide on the next stepping operation 𝑠𝑖 ∈ S. The initial

state may correspond to the program start or a breakpoint.

For simplicity, we assume the former, although it is straight-

forward to extend our concrete operational semantics with

a set of breakpoints and a continue operation.

4 Debugging in the Abstract World
While different sound program analyzers may compute and

represent results slightly differently (e.g., abstract interpre-

tation over program syntax versus state space exploration),

they all fundamentally compute an over-approximation of

the set of reachable states of a program. Thus, we designed

our abstract debugging machinery to accept an abstract do-

main A and a concretization function that maps abstract

states to sets of concrete states 𝛾 : A → P(C). Since we
aim to display the analysis results in a debugger view, we

demand that each abstract state 𝑎 ∈ A is associated with a

unique program location 𝑁 (𝑎) ∈ 𝑁 , and for any 𝑐 ∈ 𝛾 (𝑎),
we have 𝑁 (𝑐) = 𝑁 (𝑎).

Abstract Executions. To step through the results of the

analysis computation, we need a representation of the anal-

ysis results that is both faithful to the analyzer’s reasoning

and amenable to the stepping operations of the concrete

debugger. An ideal structure for this is our interprocedural

Abstract Reachability Graph, which represents how the ana-

lyzer’s results are derived from the program’s control flow

depending on how aggressively it has merged different paths

into single abstract states.

Definition 1. An interprocedural Abstract Reachability Graph
(iARG) is a directed graph 𝐺 ′ = (𝑁 ′, 𝐸′, 𝑎0) with

• a set 𝑁 ′ ⊆ A of abstract states visited by the analyzer,
• a set 𝐸′ ⊆ 𝑁 ′ × 𝑂 ′ × 𝑁 ′ of edges using operations
𝑂 ′ = 𝐵 ∪ 𝐹 ∪ ↓𝐹 ∪ 𝐹↑,

• an initial state 𝑎0 ∈ A.

We denote edges in the iARG as 𝑎
𝑜

𝑎′ where 𝑜 ∈ 𝑂 ′
.

Unlike Beyer et al. [8], this relation does not denote the imme-

diate abstract successor relation; for us, these are transitions

in the final analysis result where some abstract states are

joined with other states based on a merge operation. Unlike

concrete traces, the iARG retains the call edges (𝑎, p(), 𝑎′)
that transition from the call site to the next (intraprocedural)

location that the function returns to. In concrete execution,

reaching a state after a function call involves computing it

by traversing the statements within the function. However,

in the case of the iARG, the analysis has already computed

the states for each location, and has its own way of han-

dling recursive calls, so it should retain the call edge in the

iARG that respects same-level runs. This condition can be

expressed intuitively as follows:

𝑐

𝑐′

main

st 𝑓

ret 𝑓

f

↓𝑓

𝑓 ↑

=⇒
𝑎

𝑎′

𝑝 ()

main

st 𝑓

ret 𝑓

f

↓𝑓

𝑓 ↑

If there is a concrete execution through a function, reaching

a state 𝑐′, we should have a corresponding call edge in the

iARG, allowing stepping over the function to the abstract

state 𝑎′. More formally, the soundness conditions for the

iARG are as follows.

Definition 2. An iARG is sound w.r.t. the concrete semantics
of the program if it satisfies the following two conditions:

1. For every concrete execution 𝑐0
𝑒1−→ 𝑐1

𝑒2−→ · · · 𝑒𝑛−−→ 𝑐𝑛 , the
iARG contains a corresponding abstract execution path

𝑎0
𝑒1

𝑎1
𝑒2 · · · 𝑒𝑛

𝑎𝑛 where 𝑐𝑖 ∈ 𝛾 (𝑎𝑖) for 0 ≤ 𝑖 ≤ 𝑛.
2. For every call edge of a function pointer 𝑝 , if there exists

a path through the function 𝑓 in the concrete world

𝑐
↓𝑓
−−→ 𝑐1

𝜋−→★𝑐2
𝑓 ↑
−−→ 𝑐′, then the iARG contains a direct

call edge 𝑎
p ()

𝑎′ between all abstract states 𝑎 and 𝑎′

with 𝑐 ∈ 𝛾 (𝑎) and 𝑐′ ∈ 𝛾 (𝑎′).

Abstract Operational Semantics. An abstract debugger

operates similarly to a conventional debugger and, critically,

uses the same user interface. While a conventional debugger

lets the user step through the statements executed by a pro-

gram and observe changes to its concrete state, the abstract

debugger allows the user to step through the statements in

the program and observe changes to the abstract state (which

summarize all possible changes to the concrete state).

In other words, instead of executing program statements,

the abstract debugger moves along the iARG of that program

and mimics the execution of statements. The iARG models

the possible concrete states of the actual program and thus,

instead of showing the concrete states of a running program,

shows the results of an over-approximating analysis—the

abstract states.

Abstract Debuggers Onward! ’24, October 23–25, 2024, Pasadena, CA, USA

Intraprocedural Path (empty)

𝑎 ⇝★ 𝑎

Intraprocedural Path (basic)

𝑎
𝑒
𝑎′′ ⇝★ 𝑎′ 𝑒 ∈ 𝐵 ∪ 𝐹

𝑎 ⇝★ 𝑎′

Step into

𝑎
𝑒
𝑎′ 𝑒 ∈ ↓𝐹 ∪ 𝐹↑ ∪ 𝐵

𝑎
into

𝑎′

Step over

𝑎
𝑒
𝑎′ 𝑒 ∈ 𝐹 ∪ 𝐹↑ ∪ 𝐵

𝑎
over

𝑎′

Step out

𝑎 ⇝★ 𝑎′′
𝑓 ↑

𝑎′

𝑎
out

𝑎′

Step back

𝑎
𝑒
𝑎′ 𝑒 ∈ ↓𝐹 ∪ 𝐹 ∪ 𝐵

𝑎′
back

𝑎

Figure 3. The operational semantics of the abstract debugger directly corresponds to traversal of the iARG.

As in the concrete case, Fig. 3 defines the operational

semantics of the abstract debugger on the same stepping op-

erations as a transition relation ⊆ A × S × A. Notably,

the abstract debugger operates on single abstract states, not

their sequences. The presence of function call edges signifi-

cantly simplifies these rules compared to the concrete ones,

due to the second condition from Definition 2. Only stepping

out requires extra care using the notion of intraprocedural

paths—the abstract version of same-level (balanced) runs.

Definition 2 ensures the following soundness statement. For

a given program, any debugging session in the concrete

world can be replicated in the abstract world.

Theorem 4.1. Let 𝑐0
𝑠1
==⇒ 𝜋1𝑐1

𝑠2
==⇒ · · ·

𝑠𝑛
==⇒ 𝜋𝑛𝑐𝑛 be a de-

bugging session in the concrete world. Then, there exists a

corresponding debugging session 𝑎0
𝑠1

𝑎1
𝑠2 · · ·

𝑠𝑛
𝑎𝑛

in the abstract world such that 𝑐𝑖 ∈ 𝛾 (𝑎𝑖) for 0 ≤ 𝑖 ≤ 𝑛.

Proof. The proof is by induction on the number of steps

𝑛 in the debugging session. The base case 𝑛 = 0 holds as

we assume 𝑎0 = 𝛾 (𝑐0). For each concrete debugging rule,

we can extend the abstract debugging session to maintain

the invariant 𝑐𝑖 ∈ 𝛾 (𝑎𝑖). The first condition ensures that

whenever the execution prefix is extended by a concrete state

𝑐
𝑒−→ 𝑐′, we can find an iARG transition to a corresponding

abstract state 𝑎
𝑒
𝑎′. The second condition covers traces

extended via function calls. It directly ensures that any step

over action can be soundly replicated by traversing the iARG

call edge. More generally, we can show (by induction on the

depth of the paths) that for any same-level run 𝑐
𝜋−→ ★𝑐′

reachable in a concrete execution, there is a corresponding

intraprocedural path 𝑎 ⇝★ 𝑎′ in the iARG. This ensures the

correctness of stepping out. □

In regular program execution, a program is traversed along

a single path. For instance, in the case of a conditional state-

ment, a specific branch of the conditional is always taken,

and during function calls, a specific function is always called.

In the abstract debugger, a program is traversed along a sub-

set of all possible paths at once. Thus, there are situations

where it is not unambiguously determined which branch of

a conditional is taken or which function is called. The seman-

tics in this section is non-deterministic; Section 6 describes

how the implementation handles these ambiguous actions.

Configurable Abstract Debugging. Beyer et al. [8] intro-
duced the concept of configurable program analysis, wherein
configurations can impact the precision and cost of the anal-

ysis of a program. Similarly, our approach presents config-
urable abstract debugging, where the choice of underlying
analysis method influences the precision and cost of the

calculated results, thereby affecting the abstract debugger’s

functionality. This flexibility offers numerous possibilities

for abstract debugging sessions:

Configurable abstract debugging

CFG �

iARG

Goblint

iARG

All traces

iARG

⊑ ⊑

CFG

The left-hand side showcases the set of all possible traces

from the concrete world, representing the most precise and

costly approach. This results in a tree of infinite size (which

could be constructed lazily), of which a debugging session

can only explore a finite portion. Conversely, the right-hand

side displays the iARG resulting from the most imprecise

analysis. This analysis has to ensure that states for separate

program points are kept apart because locations are crucial

to the debugging view. In other words, the rightmost iARG

is close to the Control Flow Graph: 𝑁 ′ = 𝑁 , 𝑎0 = stmain and

𝐸′
consists of 𝐸 and an over-approximation of function entry

and return edges.

We hypothesize that any configurable program analysis,

whose operations satisfy the soundness conditions of Beyer

et al. [8], will satisfy our conditions on the iARG, and thus can

result in sound abstract debugging. Proving this lies outside

the scope of this paper because it would require formalizing

the reachability graph construction, which is not explicit in

any paper we are aware of. Here, we will instead show how

sound iARGs can be constructed based on the approach used

in the Goblint analyzer, yielding one instance of abstract

debugging.

Onward! ’24, October 23–25, 2024, Pasadena, CA, USA Karoliine Holter, Juhan Oskar Hennoste, Patrick Lam, Simmo Saan, and Vesal Vojdani

5 Constructing the iARG in Goblint
Goblint is a static analysis tool for multi-threaded C code

based on abstract interpretation [46]. Goblint takes a C pro-

gram as input and uses CIL [32] to compile it into a simplified

subset of C. CIL constructs one CFG per function and these

CFGs represent the program’s control flow needed for data

flow analysis.

The tool comprises various analyses that interact with

each other, querying one anotherwithin the analyzer through

a general interface. Each analysis defines its abstract domain

that models the program properties of interest to the analy-

sis, and the corresponding transfer functions that describe

changes in program state in that abstract domain. It is possi-

ble to turn different analyses on and off as needed [36].

A primary analysis used by Goblint is the base analysis,

which investigates the possible values of variables in a pro-

gram. The abstract domain of the base analysis combines

several different abstract domains, including the interval do-

main, to approximate various types of variables. In addition

to the base analysis, Goblint includes other analyses that

model the state of the program. For example, the lockset

analysis monitors the locks that are definitely acquired at a

particular location in the program [46]. The example in Sec-

tion 2 illustrated both the interval domain and the lockset

analysis.

The CFGs and the combined analyses yield a constraint

system [1], which is solved using a local generic solver [40].

The solved constraint system encodes a set of producedwarn-

ings and the interprocedural Abstract Reachability Graph

(plus other results which are less important for this paper).

Two key aspects of Goblint’s data flow analysis play a sig-

nificant role in constructing the reachability graph. Firstly,

the analysis is path-sensitive, distinguishing different pro-

gram paths under certain conditions. Secondly, the analysis

is context-sensitive, distinguishing function calls based on

parameter values within an abstract domain, following the

functional approach of Sharir and Pnueli [41]. The follow-

ing paragraphs elaborate on the significance of path- and

context-sensitivity in constructing the iARG in Goblint.

Theorem 5.1. The iARG constructed from the path- and
context-sensitive analyses of the Goblint analyzer satisfy the
conditions of Definition 2 for a sound iARG construction.

Expressing path-sensitivity in the iARG. A path-sensi-

tive analysis can distinguish between feasible and infeasible

paths within a program. For instance, consider the program

shown in Fig. 4a, where a mutex is acquired on line 2 based

on the condition do_work, and later a variable is accessed

based on the same condition [45]. In this example, there are

four possible paths through the branches. However, only two

of these paths are viable: one where do_work evaluates to

true and another where it evaluates to false. That is because
do_work evaluates to the same boolean value at both lines 1

1 if (do_work) {
2 lock(&mutex);
3 }
4 ...; // do_work

not changed!↩→
5 if (do_work) {
6 work++;
7 unlock(&mutex);
8 }

(a) Program

1

2 3

4

5

6

7

9

8

pos neg

lock(&mutex)

...

pos neg

work++

unlock(&mutex)

(b) CFG

1

2 3

41 42

51 52

6

87

9

pos neg

lock(&mutex)

... ...

pos neg

work++

unlock(&mutex)

(c) iARG

Figure 4. An example of a path-sensitive iARG of a program

with conditional locking. Note that the iARG does not include

the infeasible path crossing from 2 to 8.

and 5. As a result, a path-sensitive analysis can eliminate the

impossible paths, a capability that is reflected in the iARG as

shown in Fig. 4c. In comparison to the CFG in Fig. 4b, where

only one node represents program locations 4 and 5, the

iARG contains separate nodes for these locations for each

allowed path, maintaining separate states.

Unlike model checkers, where paths are either fully sepa-

rated or merged, Goblint’s analysis distinguishes paths based

on a specific property of interest. In Fig. 4, paths are main-

tained separately as long as the property of interest—such as

the set of held locks—differs. Once the mutex is unlocked on

line 7, causing the locksets of the paths to become identical,

the paths are merged back together. This precision choice is

also why Goblint’s iARG tends to lean towards the right side

of the configurable abstract debugging spectrum (page 7).

While we maintain paths separately in certain instances, we

merge them again when there is no difference in the values

of the relevant properties that would ensure the paths remain

distinct.

Lemma 5.2. The iARG constructed from the above property-
simulation approach to path-sensitive analysis satisfies sound-
ness condition 1.

Expressing context-sensitivity in the iARG. Whenever

the analysis encounters a function call, it notes down the

called function along with the context where the function

is invoked. The recorded invocation contexts and the CFGs

corresponding to the called functions are used to construct

segments of the iARG related to the called functions. These

segments are constructed using the analysis results of the

called function 𝑓 , as shown in condition 2 of Definition 2.

An iARG may include multiple calls of the same function

for different contexts. Take for instance the program depicted

in Fig. 5a, where the same function is invoked multiple times

with different arguments (lines 6 and 7). In such scenar-

ios, different contexts (arguments) of the same function are

Abstract Debuggers Onward! ’24, October 23–25, 2024, Pasadena, CA, USA

1 void f(int x) {
2 assert(x - 1 < x);
3 }
4

5 int main() {
6 f(rand() % 10);
7 f(42);
8 return 0;
9 }

(a) Program

6

7

8

9

f(rand() % 10)

f(42)

return 0

main()

21

31

assert(x - 1 < x)

f(rand() % 10)

22

32

assert(x - 1 < x)

f(42)

↓f

f↑

↓f

f↑

(b) iARG

Figure 5. A program with two calls to the same function

with different contexts, at lines 6 and 7, and its iARG.

treated separately, i.e., context-sensitively. This results in the

creation of an iARG as depicted in Fig. 5b, which includes

different nodes corresponding to the same program location.

That is, the nodes 21 and 22 include the program point on

line 2, and nodes 31, 32 include the program counter of line 3,

respectively. Each such iARG vertex represents a state at a

program point with a distinct calling context, distinguished

by the context recorded in the analysis results.

Furthermore, when a function is invoked through a pointer,

the analysis results for each of the functions that may be

pointed-to are combined with the calling context and con-

nected to the vertices of the call edge. To illustrate, consider

the code snippet in Fig. 6a, where on line 16, there is a func-

tion call through a pointer that can point to either function

f or g. To get the iARG segment for that function call, the

iARG segments of both of the functions are connected to

nodes 16 and 17. That is, there are connections 16

↓𝑓
2 and

16

↓𝑔
6 for the function enters, and 3

𝑓 ↑
17 and 7

𝑔↑
17

for function returns, as shown in Fig. 6b.

1 void f(int x) {
2 printf("%i", x);
3 }
4

5 void g(int x) {
6 printf("%i", x + 100);
7 }
8

9 int main() {
10 int i = rand() % 100;
11 void (*fp)(int);
12 if (i >= 50)
13 fp = &f;
14 else
15 fp = &g;
16 fp(i - 30);
17 }

(a) Program

10

12

13 15

16

17

i = rand() % 100

posneg

fp = &gfp = &f

fp(i − 30)

2

3

printf("%i",x)

f(x)

6

7

printf(. . .)

g(x)

↓f

f↑

↓g

g↑

main()

(b) iARG

Figure 6.Aprogramwith calls to different functions through

pointers and its iARG.

Additionally, as implied by its name, the reachability graph

represents solely the reachable state space of the program.

Thus, during the construction of the iARG, any segments

of the program that are unreachable are omitted. The un-

reachable portions of the program are effectively pruned

away, ensuring that the resulting iARG represents only the

reachable states within the program.

Lemma 5.3. The iARG constructed from the above functional
approach to context-sensitive analysis satisfies soundness con-
dition 2.

Revisiting the running example. We are now equipped

to understand the iARG, as depicted in Fig. 7, for the program

discussed in Section 2. We have abbreviated variable names

action and mutex and enum names CACHE and PUBLISH to
their first letter. The most important aspect here is that path

splitting occurs on line 17, where the program locks the

mutex m, resulting in the two nodes 𝐿17{𝑚}
and 𝐿17∅ . The

result of the possibly-failing locking operation is stored in a

temporary boolean 𝑟 . This is the only place where there is a

potential choice of paths. If locking fails, 𝑟 gets value true,
determining which if branch is taken, and subsequently the

argument to the function call. In the iARG, the nodes for the

function 𝑓 are split, and we denote their difference based on

the arguments 𝑃 and𝐶 , visible in the node contents, although

∅
𝐿17

{m}
𝐿17

∅
𝐿17

{m}
𝐿20

𝑃

𝐿6

𝑃

𝐿8

𝑃

𝐿11

𝑃

𝐿12

𝑃

𝐿14
{m}
𝐿21

∅
𝐿18

𝐶

𝐿6

𝐶

𝐿8

𝐶

𝐿9

𝐶

𝐿14

∅
𝐿22

r = lock(m) r = lock(m)

neg(r)

f(P)

↓f

cache = 0

neg(a = C)

pos(a = P)

global = 42

f↑

unlock(m)

pos(r)

↓f

f(C)

cache = 0

pos(a = C)

cache = 42

f↑

Figure 7. iARG for the example program from Section 2,

with nodes visited in the example debug session highlighted.

Onward! ’24, October 23–25, 2024, Pasadena, CA, USA Karoliine Holter, Juhan Oskar Hennoste, Patrick Lam, Simmo Saan, and Vesal Vojdani

the context also includes the differing locksets, which we do

not show in 𝑓 ’s contents. We can now see that the debugging

session from Section 2 proceeded along the leftmost path

in the iARG, except that we stepped out of the function at

node 𝐿12𝑃 and thus did not investigate the return node 𝐿14𝑃.

6 Implementation
The Goblint abstract debugger implementation

2
leverages

Debug Adapter Protocol (DAP), a protocol that allows the IDEs
to communicate with various debuggers using a unified, stan-

dardized interface. The Goblint abstract debugger is imple-

mented as part of the Visual Studio Code extension GobPie

to reuse the existing logic for communicating with Goblint

and running analyses [23]. GobPie serves as a user interface

for Goblint, displaying potential program errors in the code

editor [18]. GobPie relies on the MagpieBridge framework,

a general solution for displaying results from static analyz-

ers in IDEs [28]. Currently, GobPie and the newly created

abstract debugger are only provided as a Visual Studio Code

extension. However, in the future, support can be extended

to other IDEs that support DAP. The basic features of the

abstract debugger fall into categories:

• Stepping;

• Setting breakpoints;

• Displaying variable values;

• Evaluating expressions (watchlists and console);

• Displaying the call stack.

We discuss some more advanced features in Section 7:

• Debugging multi-threaded code;

• Displaying multiple program states at once;

• Stepping with multiple program states at once;

• Setting conditional breakpoints;

• Visualizing the iARG.

From the analyzer’s perspective, the features can be cat-

egorized into two groups: those where the analyzer must

provide a state when queried for a location, e.g., for stepping

or setting a breakpoint, and those that require the analyzer

to be able to evaluate expressions in the current state, e.g.,

for watchlists. We describe how these features are accessi-

ble in the Goblint abstract debugger and elaborate on their

technical implementation.

Stepping. The abstract debugger supports the stepping
operations defined in Section 4. Recall that when stepping

in the abstract world, taking a conditional branch or call-

ing a function can be non-deterministic. In such cases our

implementation thus requires the user to manually choose

the branch or function they wish to enter (via the “step into

target” command in DAP). If a stepping operation has no

possible targets, the debugger displays an error.

2
The abstract debugger is available at https://github.com/goblint/GobPie as
an open-source project released under the MIT license.

Breakpoints. To select a location of interest for debug-

ging, it is possible to set breakpoints in the program’s source

code. When debugging is initiated, the abstract debugger

queries the states corresponding to the program locations of

the set breakpoints from the analyzer. At a breakpoint, the

debugger pauses and allows the user to observe the program

states and traverse the control flow step-by-step. As Goblint’s

analysis is path- and context-sensitive, a single breakpoint

may correspond to multiple nodes in the reachability graph,

which in traditional debugger terminology implies that the

same breakpoint is traversed multiple times.

In a conventional debugger, situations where the same

breakpoint is crossed multiple times during execution are

handled by pausing at the breakpoint each time. However,

this has a significant downside: if a breakpoint is hit fre-

quently, it can be difficult for the user to identify the instance

of interest, since each pause at the breakpoint can only be ob-

served once. (Conditional breakpoints mitigate this to some

extent). To facilitate the identification of interesting cases,

the abstract debugger displays the states of all iARG nodes

that correspond to the same breakpoint simultaneously.

Displaying Variable Values. The debugger allows the
user to view the values of variables at the current state of

the program being inspected. In the abstract debugger, the

values are represented by abstract domain values. Given

the modular structure of Goblint, numerous analyses model

different values with different domains. In the upper-left

corner of Fig. 1b, an example of displaying variable values

in the “Variables” view is provided. Under “Local”, the in-

terval domain values for local variables cache and action
are displayed. In addition to local and global variable values,

the raw values of Goblint analyses’ abstract domains are

displayed in the variable view, e.g., the information about

the non-value analyses like the set of currently held locks,

with synthetic variable name <mutex>. When stepping, the

debugger automatically highlights variables whose abstract

domain values have changed, making it easier to spot state

changes.

Evaluating expressions. Apart from variable values, the

abstract debugger can also monitor the values of side-effect-

free C-language expressions. Users can add an expression

of interest to a list of watch expressions, causing the expres-
sion to be automatically evaluated at the selected state of

a current program point each time the point of observa-

tion changes. For example in the “Watch” panel beneath

the “Variables” view in Fig. 1b, the value of the expression

action == PUBLISH is displayed. It is also possible to eval-

uate expressions at a selected state of the current program

point by entering the expression into the debugger’s console.

Consider setting a breakpoint on line 2 in the program

shown in Fig. 5a and running the debugger. Here, the user

can evaluate expressions involving the variable 𝑥 by entering

them into the debugger’s console and the debugger will show

https://github.com/goblint/GobPie

Abstract Debuggers Onward! ’24, October 23–25, 2024, Pasadena, CA, USA

their abstract values. For example, evaluating 𝑥 could return

the interval [0, 9], while evaluating 2𝑥 +3 would yield [3, 21].
Furthermore, the debugger will display all possible states

of the program point in the call stack panel (described be-

low). In this scenario, there are two different states, corre-

sponding to the calling contexts of function calls on lines 6

and 7. By default, one of these states will be selected (in the

above example, line 6), but the user can switch between them

and evaluate the expression in another state. For the state

corresponding to the function call on line 6, the debugger

evaluates 𝑥 to [0, 9]. However, the user can also select the

other state corresponding to the function call from line 7

instead, where evaluating 𝑥 yields [42, 42].

Call Stack. A conventional debugger displays the call

stack for each thread, showing which calls led to the invo-

cation of the currently observed function. In the abstract

debugger, the call stack is constructed by finding a path in

the iARG leading from the program’s starting point to the

currently observed node. The call stack view is visible in the

bottom-left corner of Fig. 1b. When a breakpoint is set in a

function that can be reached through multiple paths in the

iARG, the user is presented with the longest common suffix

of the paths leading to the node. We chose this compromise

because displaying all call stacks in their entirety is imprac-

tical. Firstly, there is no good way to display branching call

stacks in a conventional debugger interface; and, secondly,

in certain cases, the number of possible call stacks can be

very large or even infinite.

The call stack view also exposes DAP’s “restart frame”

operations, which our implementation supports. This com-

mand resets execution to the beginning of the chosen call

frame by jumping back to the entry point of the function.

7 Advanced Features
To make the discussion in Section 6 clearer, we reserved

the less-obvious implementation details and features for the

present section.

Debugging multi-threaded code. Thread-modular anal-

ysis, as used in Goblint [38, 39], supports a useful mode of

debugging multi-threaded programs based on stepping a

single thread while resuming and allowing other threads to

run freely. Concrete debuggers, such as GDB, also support

this feature, and the Debug Adapter Protocol provides the

ability to freeze and thaw threads. In this mode, we focus

on a single thread, referred to as the ego thread, which is

stepped while other threads are running. Consequently, the

debugger presents the local view of a given thread, showing

the potential values of shared variables if they were to be

read at the given program point. Information about the ego

thread is part of the local state and the call context of the

analysis. Thread spawning is also considered a call in the

call stack view, allowing users to see where the thread was

created. This ensures that the entire path from the program’s

starting point up to the current point is traceable, even for

multi-threaded code.

At Breakpoints: Displaying multiple program states
at once. While DAP does not natively support the display

of multiple program states simultaneously, we repurpose

its functionality for displaying different threads to show

different states at the same breakpoint. These may or may

not belong to the same program thread, as thread identity is

also part of the context and state. The screenshot in Fig. 1b

shows four different states in the thread view because the

function 𝑓 is called by both program threads, each time with

two different actions. Although this “misuse” may initially

seem misleading, it serves the purpose well as long as the

user understands the thread-modular concept.

Stepping with multiple program states at once. As
we repurposed the DAP’s thread view due to the thread-

modularity of Goblint, we do not permit independent step-

ping of the different states. This restriction ensures that all

states under inspection are always at the same control flow

node, having traversed an equivalent path during stepping.

That is, when a step is taken in one path, an equivalent step

is taken in all other paths under inspection. If an equivalent

step is not possible because the required control flow node

is not reachable, that state becomes inaccessible. Stepping

backward can restore inaccessible paths: if, while stepping

back, the node is passed where a path became inaccessible,

that path becomes accessible again. This design choice allows

users to switch between inspected states without remember-

ing each state’s specific path.

Conditional Breakpoints. In addition to regular break-

points, conditional breakpoints are also supported in the

abstract debugger. These pause only at nodes in the iARG

that meet a set condition. One way to think about conditional

breakpoints in the context of abstract debugging is as a fil-

ter on states to be explored. This condition is a C-language

expression evaluated at the node in the reachability graph.

The expression can use variables from the program being

analyzed to check if a desired condition holds at a particular

program point. Additionally, users can choose between two

modes for checking conditions:

\may: condition holds if true is among the possible values

of the expression in the observed state.

\must: condition holds if true is the only possible value of

the expression in the observed state.

The mode can be chosen by prefixing the expression with

the corresponding mode symbol. For instance, the condition

“\must𝑎 > 0” holds if the value of variable𝑎 is always greater

than 0 in the observed state. The backslash at the beginning

of the mode symbol makes it clearly distinguishable from a

C-language expression. If no mode symbol is provided, the

default mode \may is used.

Onward! ’24, October 23–25, 2024, Pasadena, CA, USA Karoliine Holter, Juhan Oskar Hennoste, Patrick Lam, Simmo Saan, and Vesal Vojdani

Checking of conditions is implemented using Goblint’s

server capability to evaluate C-language expressions. The

provided expression is evaluated in each node corresponding

to the breakpoint’s program location and the possible values

of the expression are checked according to the chosen mode.

Let us consider the program illustrated in Fig. 5a once

again. We can set a conditional breakpoint using the expres-

sion 𝑥 > 0 at line 2. In this scenario, the debugger will show

the same states as it would with a nonconditional breakpoint

or a conditional breakpoint with the expression “\may𝑥 > 0”.

That is because, in one state (function call from line 6), the

possible values for 𝑥 fall within the range [0, 9], while in the

other state (during the function call from line 7), the value of

𝑥 is 42. In both states, there exist values of 𝑥 that are greater

than 0, i.e., 𝑥 may be greater than 0. However, if we set a

conditional breakpoint with the expression “\must 𝑥 > 0”

instead, only the state corresponding to the function call

from line 7 is shown. This difference occurs because for the

function call from line 6, the condition ∀𝑥 . 𝑥 > 0 does not

hold and, hence, “𝑥 must be greater than 0” is not satisfied.

Visualizing the iARG. The implementation includes an

option to visualize the iARG of the analyzed program using

Graphviz, creating a representation similar to that shown

in Fig. 7, as is common in many other static analysis tools.

This feature is still a work in progress, as its true value will

only be realized when the implementation is extended to link

the visualized iARG nodes to their corresponding abstract

states, allowing navigation through the iARG alongside the

debugger’s step operations. Moreover, currently, the iARG of

the entire program is shown at once, which can quickly be-

come unwieldy and lead to performance issues, particularly

in larger programs with code spread across multiple files.

A more scalable solution would focus on showing only the

relevant fragment of the program being debugged. Since the

debugger inherently queries the current, previous, and next

iARG nodes, limiting the visualization to these fragments

would help address scalability concerns.

8 Examples
In this section, we illustrate the potential of abstract debug-

ging through additional use cases.

Inspecting path-sensitive results. Stepping between

states is as essential to understanding warnings in the ab-

stract world as it is for diagnosing failures in the concrete,

dynamic world. At a given program point, a failure might

occur in only some concrete states but not in others. Simi-

larly, only some abstract states for that program point may

correspond to the failure. The abstract debugger facilitates

examination of the paths leading to a failing state separately

from those paths that do not reach the state, to focus the

debugging process on the specific statements leading to the

failure.

1 void start_scan(void) {
2 for(o.cur_host=0;o.cur_host<o.no_hostnames;o.cur_host++){
3 pthread_mutex_lock(&main_thread_count_mutex);
4 while(o.cur_threads>=o.number_of_threads) {
5 pthread_mutex_unlock(&main_thread_count_mutex);
6 debug("...", o.cur_threads, o.number_of_threads);
7 nanosleep(&tv, NULL);
8 }
9 pthread_mutex_unlock(&main_thread_count_mutex);

Figure 8. Path-sensitive fault from smtprc.

Take, for example, a case study extracted from the Smtp

Open Relay Checker (smtprc
3
), shown in Fig. 8. The static

analyzer emits a data race warning on line 4 because there

exists a state where the set of held locks is empty, reflecting

the fact that a data race is possible. When a breakpoint is

set on line 4, where the warning is indicated, the debugger

displays two states: one with an empty set of held locks

and another with the element main_thread_count_mutex
included in the set of held locks. We choose the state where

the lock is absent, and a data race is possible; however, the

source of the warning remains unclear. As we step through

the loop using the “step back” operation, we observe that

along the path, the mutex was unlocked on line 5 in the

previous loop iteration but not re-acquired. We successfully

debugged the program and identified a fault at the end of

the loop body, which caused the true positive warning.

Inspecting context-sensitive results. The abstract de-
bugger can also simplify navigation through contexts when

searching for the cause of a bug that only appears in specific

calling contexts of a function.

Consider a code snippet from The Silver Searcher
4
shown

in Fig. 9. To simplify, we have heavily sliced away the non-

relevant parts of the code. A static analyzer flags “Must deref-

erence NULL pointer” on line 14. However, this warning only

applies to 3 out of 9 calling contexts where buf_c is NULL.
Through the debugger, we observe that all three instances

occur during function calls to is_binary from search_buf,
on lines 8 and 10. Stepping back, we can trace the cause all

the way back to the assignment of buf to NULL on line 2,

and we observe no NULL checks before the call to is_binary
in the search_buf function. Through the abstract debug-

ger’s conditional breakpoints and navigation across different

contexts, we successfully pinpoint the cause of the warning;

however, the static analyzer itself could have done much

more to help this process. In particular, it should expose use-

def chains to allow the user to navigate along the data flow

between the source and sink of such flow patterns that are

common in program analysis.

3https://sourceforge.net/projects/smtprc/files/smtprc/smtprc-2.0.3/
4
A fast code searching tool, https://github.com/ggreer/the_silver_searcher

https://sourceforge.net/projects/smtprc/files/smtprc/smtprc-2.0.3/
https://github.com/ggreer/the_silver_searcher

Abstract Debuggers Onward! ’24, October 23–25, 2024, Pasadena, CA, USA

1 void search_file(const char *file_full_path) {
2 char *buf = NULL;
3 matches_count = search_buf(buf, f_len, file_full_path);
4

5 ssize_t search_buf(const char *buf, ...) {
6 int binary = -1;
7 if (!opts.search_binary_files && opts.mmap)
8 binary = is_binary((const void *)buf, buf_len);
9 if (!opts.print_nonmatching_files && ...)
10 binary = is_binary((const void *)buf, buf_len);
11

12 int is_binary(const void *buf, const size_t buf_len) {
13 const unsigned char *buf_c = buf;
14 if (buf_len >= 3 && buf_c[0] == 0xEF && ...)

Figure 9. Context-sensitive bug from The Silver Searcher.

Understanding the cause of false alarms. Another use
case for abstract debugging is to help analysis developers

understand unexpected results from their static analyzer. For

example, when analyzing the source of EasyLogger
5
, the

analyzer flags numerous potential races with many accesses,

both with and without a mutex. Using the abstract debugger,

we could resolve this mystery far more easily than our pre-

vious tooling allowed. We stepped forward to the location

where the different locksets appear: a branching on a configu-

ration flag output_lock_enabled in a structure called elog.
We searched for where the flag was set, placed a breakpoint

on that line, and by stepping out to the calling function and

then stepping around, we realized that the initialization of

elog occurs after other threads have been created. Thus, al-

though the flag is set to true in every path of the main thread,

the analyzer infers that other threads could potentially read

the default false value for the output_lock_enabled flag

before it is changed. Such problematic scenarios seem to be

avoided by the code, however. EasyLogger uses another flag,

init_ok, to signal when initialization is complete, but the

analyzer cannot automatically show that this flag eliminates

the race. Overall, the ability of the abstract debugger to nav-

igate the iARG, stepping outward from a given call context,

was particularly helpful in understanding why the analyzer

believed the lock might not have been taken.

9 Discussion
Having tested our experimental prototype on a few realistic

use cases, we can now reflect on the broader context of this

work and highlight the benefits and drawbacks of the design

choices we made.

Broader context. While the immediate benefit of abstract

debuggers, as demonstrated in our examples, may appear to

be quicker bug detection and diagnosis, the broader impact

lies in enabling a more intuitive and insightful engagement

5
An efficient logging library for C projects ensuring thread-safe operations,

https://github.com/armink/EasyLogger

with static analysis results. By focusing on making these

results more accessible and understandable, we can open

new possibilities for developers to better navigate and com-

prehend the complex behaviors of their programs.

The usability aspects of sound static analyzers deserve

more research attention, as empirical studies suggest that

poor explainability of analysis results is one serious obstacle

preventing the wider adoption of static analysis tools [11, 15,

24, 31, 42]. The real challenge is to make these tools truly

practical and valuable in everyday programming. As static

analysis tool designers, our primary focus is on developing

new techniques. However, the evolution of techniques and

the usability of these tools must progress together, ensuring

that novel methods are developed alongside user interfaces

that effectively communicate the results of static analysis.

Actively using the interfaces in the tool development pro-

cess itself is a litmus test for their usability. Our long-term

aspiration is to see abstract debuggers form a part of static

analysis designers’ toolkits in terms of making these tools

usable by the broader public; understanding static analysis

output is one of the challenges to its everyday deployment,

and we believe that our approach can help here.

Reverse Debugging. For a reverse debugger that operates
at the concrete level, its implementation may impose signifi-

cant extra overhead on program executions. This has been

an obstacle to the widespread adoption of reverse debugging.

Our abstract debugger is based on static analysis results,

which is analogous to recording a representation of all possi-

ble program executions. Thus, we can simulate the behavior

of a live reverse debugger with no runtime overhead, as the

analysis has already been performed. The abstract debugger,

however, requires its users to take a different perspective on

their code, one more centered on program correctness than

on a specific sequence of events. Our (admittedly biased)

stance is that this perspective is valuable for understanding

important program properties, specifically those that con-

cern what could possibly happen. Such a shift is required

if we hope to prevent software vulnerabilities, rather than

patching them as they are detected in already-deployed soft-

ware.

Shoehorning into a standardized protocol. While shoe-

horning a non-deterministic abstract interpretation into DAP

may seem like a challenging fit, our experience has still

demonstrated notable benefits by offering practical advan-

tages over our previous (custom) interface for visualizing

analysis results. For instance, our implemented abstract de-

bugger leverages several features inherent to IDEs through

DAP that would otherwise require significant engineering

effort. The IDE provides many valuable functionalities such

as displaying states in relation to source code locations using

breakpoints, highlighting state changes, and tracking val-

ues of interest with watch expressions. Utilizing DAP, these

https://github.com/armink/EasyLogger

Onward! ’24, October 23–25, 2024, Pasadena, CA, USA Karoliine Holter, Juhan Oskar Hennoste, Patrick Lam, Simmo Saan, and Vesal Vojdani

features come essentially for free, making our abstract debug-

ger easier to use and more effective for the same purposes

compared to our custom interface.

The first two use cases in our Examples section show-

cased the benefits of the debugger interface when navigating

results from a path- and context-sensitive analysis. For a

context-insensitive analysis, the usability benefits of work-

ing within an industrial-strength IDE remain; however, the

benefits of step-based execution are less pronounced. Our

method especially shines for context-sensitive analysis re-

sults, where the call history plays a significant role. The abil-

ity to interactively navigate this history is a key advantage

of the abstract debugging approach, allowing the interface

to display only relevant contexts, unlike static visualizations

where all call contexts are displayed at once.

Visualizing abstract states. In this work we focused

on developing a sound method for easy navigation of the

static analysis results, and implemented an instance using

this method into an IDE extension. Our prototype includes

predefined representations for abstract values, like intervals

or structs, displayed as variable values. However, to increase

versatility, provisions for adding visualizations for new ab-

stract domains are needed. Future development can focus

on improving the visual representations to accommodate a

broader range of abstract domains and more complex data,

such as abstract values for relational domains.

As we enhance the clarity of abstract states, we can also

explore automated stringification methods or provide con-

figurable options for users to extract important information

from raw states. Inspiration could be drawn from the work of

Apriyadi et al. [4], who proposed a configurable method for

state visualization using a domain-specific language (DSL).

As mentioned above, the development and integration of

new visual representations and methods should go hand in

hand with the development of new analyses and domains

themselves.

On some design choices. In contrast to the forward step-

ping operations (step into, step over, and step out), which

each have distinct functions and buttons, DAP only defines

one operation for backward stepping. Thus, in our work we

designed our step back operation to be dual to step over.

Alternatively, step back could be defined to be the inverse of

step into or step out.

Defining step back as the dual of step into would mean

that, when the last transition was a function return, step

back would move to the location of the function’s return

instead of the location of the function’s call. The concrete

operational semantics are as follows:

Step back into (basic, entry, return)

𝑐
𝑒−→ 𝑐′ 𝑒 ∈ 𝐵 ∪ ↓𝐹 ∪ 𝐹↑

· · · 𝑐𝑐′ back into
========⇒ · · · 𝑐

Defining step back as the inverse of step out would behave

differently from our semantics in the cases where the last

transition was either a return or basic operation—stepping

back and out of the function instead of just returning to the

previous location within the same function. The concrete

operational semantics of this are defined as:

Step back out (entry)

𝑐
↓𝑓
−−→ 𝑐′

· · · 𝑐𝑐′ back out
=======⇒ · · · 𝑐

Step back out (basic, return)

𝑐
↓𝑓
−−→ 𝑐1

𝜋 ′
−→★𝑐′ 𝜋 = 𝑐1𝜋

′

· · · 𝑐𝜋𝑐′ back out
=======⇒ · · · 𝑐

To offer the same capabilities and options for backward

stepping as for forward stepping, the Debug Adapter Proto-

col would need to be extended to better accommodate debug-

gers with backward debugging features. In the absence of

such extensions, the most practical options are to define step

back as either “step back over” or “step back into”. In our

implementation, we opted for the former. The same effect as

the third choice, “step back out”, can be achieved by restart-

ing the current call frame and then stepping back from the

entry point.

10 Related Work
Here, we discuss the term “abstract debugging” and relate our

study to several works that have focused on improving the

usability and explainability of static analyzers, highlighting

how our contributions differ from prior efforts.

The definition of an abstract debugger. In the litera-

ture, there are alternative methods described as abstract de-
bugging. For instance, Bourdoncle [9] characterizes abstract
debugging as employing an abstract interpretation-based

static analysis tool for program debugging. Monat et al. [30]

define abstract debugger as a method for debugging the im-

plementation of an abstract interpretation-based tool—thus,

the word “abstract” referring to the target that is being dy-

namically debugged. In our approach, however, the term

“abstract” refers to the abstraction of concrete debugger be-

haviors, similar to how it refers to the abstraction of concrete

interpretation in the term “abstract interpretation” itself.

Explainable Verification. This work was originally mo-

tivated by our attempts to explain the correctness claims of

our analyzer. When a tool identifies a flaw in the program,

it may be able to produce a counterexample execution trace

that is useful for debugging the program and understanding

the flaw. For instance, this has been critical to the success

of model checking [13]. In contrast, when a sound analyzer

verifies the absence of errors in a program, it does not pro-

duce an equivalent human-readable artefact to explain this

verdict. An important goal is to support automated verifiers

in proving that a property holds along all possible execu-

tions of the program, but in a way that is interpretable by

humans [5].

Abstract Debuggers Onward! ’24, October 23–25, 2024, Pasadena, CA, USA

Apinis and Vojdani [3] provide a framework for explaining

the results of abstract interpretation based on approaches

to decomposing variable dependencies within a domain [2].

The explanations produced are shown in a custom user in-

terface, so it would be interesting to attempt to shoehorn

these explanations into a standard protocol like DAP. This

falls under the general approach to deriving meta-analyses

developed by Cousot et al. [14]. Meta-analyses could further

improve usability of verification tools, although the current

focus is on quantification of precision loss [10, 21].

Verifier-BasedDebuggers. Wehighlight someworks that

rely on formal verification tools as the engine for step-based

program execution or simulation through a debugger user

interface. Karmios et al. [25] introduced a symbolic debugger

built on Gillian, a multi-language platform for developing

symbolic analysis tools based on separation logic [20, 29].

Their debugger features a tailored interface for navigating

branching execution paths and state matching. For non-

deterministic and probabilistic programs—which are not our

focus—multiverse analysis and their visualization via multi-

verse debugging has been proposed [22, 34, 43].

There are also innovative and creative uses of the Debug

Adapter Protocol to display the proof state of a deductive

verifier. Ernst et al. [19] integrated a debugging feature into

the SecC deductive program verification tool, which also

relies on symbolic execution. TLC, a model checker for TLA
+

models and specifications [47], offers a debugger through its

VS Code extension [27].

There have also been proposals for performing debugging-

like stepping through static analysis results using custom

graphical user interfaces (GUIs). For instance, CBMC-UI by

Clarke et al. [12] allows users to step through counterex-

ample traces in a manner similar to traditional debuggers.

Similarly, Beyer and Dangl [7] proposed an interface where

the counterexample traces are highlighted within an ARG

and can be replayed by stepping through the trace.

Similar to our approach, the aforementioned methods use

static analysis results to perform debugging-like stepping

through those results within an IDE or GUI. However, instead

of debugging with results from a specific analysis technique,

our approach is configurable and enables debugging using

analyses based on abstract interpretation, model checking,

or something in between. This abstraction of concrete debug-

gers is based on our formalization of a concrete debugger’s

operational semantics. While we have seen some formaliza-

tions of programming tools [6, 33], we are not aware of any

other operational semantics for a standard debugger.

Debugging Static Analyzers. While the above works pri-

marily target the end-users of the analysis tools, and thus

aim to make the analysis computation less visible, there is

also an important area of research focused on the debug-

ging and maintenance of the analysis tools themselves. Vi-

suFlow [16, 17] and Mopsa [30] allow simultaneous tracing

of both source code and the static analyzer, which is ideally

suited to find static analyzer bugs or precision loss during

fixpoint computation. Mopsa [30] offers debugging using a

GDB-like interface integrated into an IDE using the Debug

Adapter Protocol, whereas VisuFlow is a separate Eclipse

plugin that does not aim to mimic a traditional debugger.

VanMolle et al. [44] introduced a technique called cross-level

debugging, specifically designed to enhance the debugging

of static analyzers.

In contrast to the aforementioned tools and techniques,

our focus is on inspecting analysis results to understand the

results computed for a given program under analysis, rather

than on debugging the static analyzer itself. We still found

the abstract debugger to be useful for understanding the

causes of false alarms; however, our tool cannot be used to

debug computational aspects. For example, if our analysis

does not terminate or crashes, there is no output for our

abstract debugger to inspect.

11 Conclusion
We have introduced the concept of configurable abstract de-

bugging and an instantiation of it based on the static analyzer

Goblint. Abstract debugging allows developers to confirm

or refine hypotheses about the behavior of their programs

by interactively exploring the abstract states computed by

static analysis tools. Unlike concrete debugging, which only

shows results for executions that actually run, abstract de-

bugging leverages static analysis to enable reasoning over

all executions.

We have derived the operational semantics of abstract

debugging from the operational semantics of concrete de-

bugging, and implemented an abstract debugging tool that

makes Goblint’s analysis results available to the VS Code

debugger via the Debug Adapter Protocol. Our approach en-

sures the soundness of abstract debugging w.r.t. the concrete

semantics of the program. We aim to make state-of-the-art

over-approximating analyses more accessible to developers

and suggest the potential for further research in this direc-

tion. While additional evaluation is needed, our proposed

approach could enhance both developer understanding and

the effectiveness of these tools.

Acknowledgments
This research was co-funded by the European Union and the

Estonian Research Council via project TEM-TA119. We grate-

fully acknowledge SIGPLAN-M for introducing the authors

of this paper, thus making this collaboration possible.

References
[1] Kalmer Apinis, Helmut Seidl, and Vesal Vojdani. 2012. Side-Effecting

Constraint Systems: A Swiss Army Knife for Program Analysis. In

Programming Languages and Systems, Ranjit Jhala and Atsushi Igarashi
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 157–172. https:
//doi.org/10.1007/978-3-642-35182-2_12

https://doi.org/10.1007/978-3-642-35182-2_12
https://doi.org/10.1007/978-3-642-35182-2_12

Onward! ’24, October 23–25, 2024, Pasadena, CA, USA Karoliine Holter, Juhan Oskar Hennoste, Patrick Lam, Simmo Saan, and Vesal Vojdani

[2] Kalmer Apinis, Varmo Vene, and Vesal Vojdani. 2018. Demand-driven

interprocedural analysis for map-based abstract domains. Journal of
Logical and Algebraic Methods in Programming 100 (Nov. 2018), 57–70.

https://doi.org/10.1016/j.jlamp.2018.06.003
[3] Kalmer Apinis and Vesal Vojdani. 2023. Context-Sensitive Meta-

Constraint Systems for Explainable Program Analysis. In Tools and
Algorithms for the Construction and Analysis of Systems (Lecture Notes
in Computer Science), Sriram Sankaranarayanan and Natasha Shary-

gina (Eds.). Springer Nature Switzerland, Cham, 453–472. https:
//doi.org/10.1007/978-3-031-30820-8_27

[4] Rifqi Adlan Apriyadi, Hidehiko Masuhara, and Youyou Cong. 2023.

Program State Visualizer with User-Defined Representation Conver-

sion (WIP). In Proceedings of the 1st ACM International Workshop
on Future Debugging Techniques (Seattle, WA, USA) (DEBT 2023).
Association for Computing Machinery, New York, NY, USA, 5–10.

https://doi.org/10.1145/3605155.3605863
[5] Christel Baier and Holger Hermanns. 2021. From Verification to Ex-

planation (Track Introduction). In Leveraging Applications of Formal
Methods, Verification and Validation: Tools and Trends, TizianaMargaria

and Bernhard Steffen (Eds.). Springer International Publishing, Cham,

1–7. https://doi.org/10.1007/978-3-030-83723-5_1
[6] Karen L. Bernstein and Eugene W. Stark. 1995. Operational Semantics

of a Focusing Debugger. Electronic Notes in Theoretical Computer
Science 1 (1995), 13–31. https://doi.org/10.1016/S1571-0661(04)80002-
1 MFPS XI, Mathematical Foundations of Programming Semantics,

Eleventh Annual Conference.

[7] Dirk Beyer and Matthias Dangl. 2016. Verification-Aided Debug-

ging: An Interactive Web-Service for Exploring Error Witnesses. In

Computer Aided Verification, Swarat Chaudhuri and Azadeh Farzan

(Eds.). Springer International Publishing, Cham, 502–509. https:
//doi.org/10.1007/978-3-319-41540-6_28

[8] Dirk Beyer, Thomas A. Henzinger, and Grégory Théoduloz. 2007.

Configurable software verification: concretizing the convergence of

model checking and program analysis. In Proceedings of the 19th In-
ternational Conference on Computer Aided Verification (Berlin, Ger-

many) (CAV’07). Springer-Verlag, Berlin, Heidelberg, 504–518. https:
//doi.org/10.1007/978-3-540-73368-3_51

[9] François Bourdoncle. 1993. Abstract debugging of higher-order imper-

ative languages. In Proceedings of the ACM SIGPLAN 1993 Conference
on Programming Language Design and Implementation (Albuquerque,

New Mexico, USA) (PLDI ’93). Association for Computing Machinery,

New York, NY, USA, 46–55. https://doi.org/10.1145/155090.155095
[10] Marco Campion, Mila Dalla Preda, and Roberto Giacobazzi. 2022. Par-

tial (In)Completeness in abstract interpretation: limiting the impreci-

sion in program analysis. Proceedings of the ACM on Programming Lan-
guages 6, POPL (Jan. 2022), 59:1–59:31. https://doi.org/10.1145/3498721

[11] Maria Christakis and Christian Bird. 2016. What Developers Want

and Need from Program Analysis: An Empirical Study. In Proceedings
of the 31st IEEE/ACM International Conference on Automated Software
Engineering (ASE 2016). ACM, New York, NY, USA, 332–343. https:
//doi.org/10.1145/2970276.2970347

[12] Edmund Clarke, Daniel Kroening, and Flavio Lerda. 2004. A Tool

for Checking ANSI-C Programs. In Tools and Algorithms for the Con-
struction and Analysis of Systems, Kurt Jensen and Andreas Podel-

ski (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 168–176.

https://doi.org/10.1007/978-3-540-24730-2_15
[13] Edmund M. Clarke, E. Allen Emerson, and Joseph Sifakis. 2009. Model

checking: algorithmic verification and debugging. Commun. ACM 52,

11 (Nov. 2009), 74–84. https://doi.org/10.1145/1592761.1592781
[14] Patrick Cousot, Roberto Giacobazzi, and Francesco Ranzato. 2019. A2I:

abstract2 interpretation. Proceedings of the ACM on Programming
Languages 3, POPL (Jan. 2019), 42:1–42:31. https://doi.org/10.1145/
3290355

[15] Lisa Nguyen Quang Do and Eric Bodden. 2022. Explaining Static

Analysis With Rule Graphs. IEEE Transactions on Software Engineering
48, 2 (Feb. 2022), 678–690. https://doi.org/10.1109/TSE.2020.2999534
Conference Name: IEEE Transactions on Software Engineering.

[16] Lisa Nguyen Quang Do, Stefan Krüger, Patrick Hill, Karim Ali, and

Eric Bodden. 2018. VisuFlow: A Debugging Environment for Static

Analyses. In 2018 IEEE/ACM 40th International Conference on Software
Engineering: Companion (ICSE-Companion). Association for Comput-

ing Machinery, New York, NY, USA, 89–92. https://doi.org/10.1145/
3183440.3183470

[17] Lisa Nguyen Quang Do, Stefan Krüger, Patrick Hill, Karim Ali, and

Eric Bodden. 2020. Debugging Static Analysis. IEEE Transactions on
Software Engineering 46, 7 (July 2020), 697–709. https://doi.org/10.
1109/TSE.2018.2868349

[18] Julian Erhard, Simmo Saan, Sarah Tilscher, Michael Schwarz, Karoli-

ine Holter, Vesal Vojdani, and Helmut Seidl. 2022. Interactive

Abstract Interpretation: Reanalyzing Whole Programs for Cheap.

arXiv:2209.10445 [cs.PL] https://arxiv.org/abs/2209.10445
[19] Gidon Ernst, Johannes Blau, and Toby Murray. 2021. Deductive

Verification via the Debug Adapter Protocol. In Proc. of Formal In-
tegrated Development Environment (F-IDE). arXiv:2108.02968 [cs.LO]
https://arxiv.org/abs/2108.02968

[20] José Fragoso Santos, PetarMaksimović, Sacha-Élie Ayoun, and Philippa

Gardner. 2020. Gillian, part i: a multi-language platform for symbolic

execution. In Proceedings of the 41st ACM SIGPLAN Conference on
Programming Language Design and Implementation (London, UK) (PLDI
2020). Association for ComputingMachinery, New York, NY, USA, 927–

942. https://doi.org/10.1145/3385412.3386014
[21] Roberto Giacobazzi, Francesco Logozzo, and Francesco Ranzato. 2015.

Analyzing Program Analyses. In Proceedings of the 42nd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL ’15). Association for Computing Machinery, New York, NY, USA,

261–273. https://doi.org/10.1145/2676726.2676987
[22] Ken Gu, Eunice Jun, and Tim Althoff. 2023. Understanding and Sup-

porting Debugging Workflows in Multiverse Analysis. In Proceedings
of the 2023 CHI Conference on Human Factors in Computing Systems
(CHI ’23). Association for Computing Machinery, New York, NY, USA,

1–19. https://doi.org/10.1145/3544548.3581099
[23] Karoliine Holter, Juhan Oskar Hennoste, Simmo Saan, Patrick Lam, and

Vesal Vojdani. 2024. Abstract Debugging with GobPie. In Proceedings
of the 2nd ACM International Workshop on Future Debugging Techniques
(Vienna, Austria) (DEBT 2024). Association for Computing Machinery,

New York, NY, USA, 2 pages. https://doi.org/10.1145/3678720.3685320
[24] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert

Bowdidge. 2013. Why Don’t Software Developers Use Static Analysis

Tools to Find Bugs?. In Proceedings of the 2013 International Conference
on Software Engineering (ICSE ’13). IEEE Press, Piscataway, NJ, USA,

672–681. https://doi.org/10.1109/ICSE.2013.6606613
[25] Nat Karmios, Sacha-Élie Ayoun, and Philippa Gardner. 2023. Symbolic

Debugging with Gillian. In Proceedings of the 1st ACM International
Workshop on Future Debugging Techniques (Seattle, WA, USA) (DEBT
2023). Association for Computing Machinery, New York, NY, USA, 1–2.

https://doi.org/10.1145/3605155.3605861
[26] Amy J. Ko and Brad A. Myers. 2004. Designing the whyline: a debug-

ging interface for asking questions about program behavior. In Proceed-
ings of the SIGCHI Conference on Human Factors in Computing Systems
(Vienna, Austria) (CHI ’04). Association for Computing Machinery,

New York, NY, USA, 151–158. https://doi.org/10.1145/985692.985712
[27] Markus Alexander Kuppe. 2021. TLA+ for Visual Studio Code: Add

TLC Debugger. https://github.com/tlaplus/vscode-tlaplus/pull/214
[28] Linghui Luo, Julian Dolby, and Eric Bodden. 2019. MagpieBridge: A

General Approach to Integrating Static Analyses into IDEs and Editors

(Tool Insights Paper). In 33rd European Conference on Object-Oriented
Programming, ECOOP 2019, July 15-19, 2019, London, United Kingdom

https://doi.org/10.1016/j.jlamp.2018.06.003
https://doi.org/10.1007/978-3-031-30820-8_27
https://doi.org/10.1007/978-3-031-30820-8_27
https://doi.org/10.1145/3605155.3605863
https://doi.org/10.1007/978-3-030-83723-5_1
https://doi.org/10.1016/S1571-0661(04)80002-1
https://doi.org/10.1016/S1571-0661(04)80002-1
https://doi.org/10.1007/978-3-319-41540-6_28
https://doi.org/10.1007/978-3-319-41540-6_28
https://doi.org/10.1007/978-3-540-73368-3_51
https://doi.org/10.1007/978-3-540-73368-3_51
https://doi.org/10.1145/155090.155095
https://doi.org/10.1145/3498721
https://doi.org/10.1145/2970276.2970347
https://doi.org/10.1145/2970276.2970347
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1145/1592761.1592781
https://doi.org/10.1145/3290355
https://doi.org/10.1145/3290355
https://doi.org/10.1109/TSE.2020.2999534
https://doi.org/10.1145/3183440.3183470
https://doi.org/10.1145/3183440.3183470
https://doi.org/10.1109/TSE.2018.2868349
https://doi.org/10.1109/TSE.2018.2868349
https://arxiv.org/abs/2209.10445
https://arxiv.org/abs/2209.10445
https://arxiv.org/abs/2108.02968
https://arxiv.org/abs/2108.02968
https://doi.org/10.1145/3385412.3386014
https://doi.org/10.1145/2676726.2676987
https://doi.org/10.1145/3544548.3581099
https://doi.org/10.1145/3678720.3685320
https://doi.org/10.1109/ICSE.2013.6606613
https://doi.org/10.1145/3605155.3605861
https://doi.org/10.1145/985692.985712
https://github.com/tlaplus/vscode-tlaplus/pull/214

Abstract Debuggers Onward! ’24, October 23–25, 2024, Pasadena, CA, USA

(LIPIcs, Vol. 134), Alastair F. Donaldson (Ed.). Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, Dagstuhl, Germany, 21:1–21:25. https://doi.
org/10.4230/LIPIcs.ECOOP.2019.21

[29] PetarMaksimović, Sacha-Élie Ayoun, José Fragoso Santos, and Philippa

Gardner. 2021. Gillian, Part II: Real-World Verification for JavaScript

and C. In Computer Aided Verification, Alexandra Silva and K. RustanM.

Leino (Eds.). Springer International Publishing, Cham, 827–850.

[30] Raphaël Monat, Abdelraouf Ouadjaout, and Antoine Miné.

2024. Easing Maintenance of Academic Static Analyzers.

arXiv:2407.12499 [cs.PL] https://arxiv.org/abs/2407.12499
[31] Marcus Nachtigall, Lisa Nguyen Quang Do, and Eric Bodden. 2019.

Explaining Static Analysis - A Perspective. In 2019 34th IEEE/ACM
International Conference on Automated Software Engineering Workshop
(ASEW). 29–32. https://doi.org/10.1109/ASEW.2019.00023 ISSN: 2151-

0830.

[32] George C. Necula, Scott McPeak, Shree P. Rahul, and Westley Weimer.

2002. CIL: Intermediate Language and Tools for Analysis and Trans-

formation of C Programs. In Compiler Construction, R. Nigel Hor-
spool (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 213–228.

https://doi.org/10.1007/3-540-45937-5_16
[33] Cyrus Omar, Ian Voysey, Michael Hilton, Jonathan Aldrich, and

Matthew A. Hammer. 2017. Hazelnut: a bidirectionally typed structure

editor calculus. In Proceedings of the 44th ACM SIGPLAN Symposium
on Principles of Programming Languages (Paris, France) (POPL ’17).
Association for Computing Machinery, New York, NY, USA, 86–99.

https://doi.org/10.1145/3009837.3009900
[34] Matthias Pasquier, Ciprian Teodorov, Frédéric Jouault, Matthias Brun,

Luka Le Roux, and Loïc Lagadec. 2023. Temporal Breakpoints for

Multiverse Debugging. In Proceedings of the 16th ACM SIGPLAN In-
ternational Conference on Software Language Engineering (SLE 2023).
Association for Computing Machinery, New York, NY, USA, 125–137.

https://doi.org/10.1145/3623476.3623526
[35] Thomas Reps, Susan Horwitz, and Mooly Sagiv. 1995. Precise Inter-

procedural Dataflow Analysis via Graph Reachability. In Proceedings
of the 22Nd ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages (POPL ’95). ACM, New York, NY, USA, 49–61.

https://doi.org/10.1145/199448.199462
[36] Simmo Saan, Michael Schwarz, Kalmer Apinis, Julian Erhard, Helmut

Seidl, Ralf Vogler, and Vesal Vojdani. 2021. Goblint: Thread-Modular

Abstract Interpretation Using Side-Effecting Constraints. In Tools and
Algorithms for the Construction and Analysis of Systems, Jan Friso

Groote and Kim Guldstrand Larsen (Eds.). Springer International Pub-

lishing, Cham, 438–442. https://doi.org/10.1007/978-3-030-72013-
1_28

[37] Anthony Savidis and Vangelis Tsiatsianas. 2021. Implementation of

Live Reverse Debugging in LLDB. arXiv:2105.12819 [cs.SE] http:
//arxiv.org/abs/2105.12819

[38] Michael Schwarz, Simmo Saan, Helmut Seidl, Kalmer Apinis, Julian

Erhard, and Vesal Vojdani. 2021. Improving Thread-Modular Abstract

Interpretation. In Static Analysis (Lecture Notes in Computer Science),
Cezara Drăgoi, SuvamMukherjee, and Kedar Namjoshi (Eds.). Springer

International Publishing, Cham, 359–383. https://doi.org/10.1007/978-
3-030-88806-0_18

[39] Michael Schwarz, Simmo Saan, Helmut Seidl, Julian Erhard, and Vesal

Vojdani. 2023. Clustered Relational Thread-Modular Abstract Inter-

pretation with Local Traces. In Programming Languages and Systems
(Lecture Notes in Computer Science), Thomas Wies (Ed.). Springer Na-

ture Switzerland, Cham, 28–58. https://doi.org/10.1007/978-3-031-
30044-8_2

[40] Helmut Seidl and Ralf Vogler. 2021. Three improvements to the top-

down solver. Mathematical Structures in Computer Science 31, 9 (2021),
1090–1134. https://doi.org/10.1017/S0960129521000499

[41] Micha Sharir and Amir Pnueli. 1981. Two approaches to interprocedu-

ral data flow analysis. Program flow analysis: theory and applications

(1981), 189–234.

[42] Daniil Tiganov, Lisa NguyenQuangDo, and KarimAli. 2022. Designing

UIs for static-analysis tools. Commun. ACM 65, 2 (Jan. 2022), 52–58.

https://doi.org/10.1145/3486600
[43] Carmen Torres Lopez, Robbert Gurdeep Singh, Stefan Marr, Elisa

Gonzalez Boix, and Christophe Scholliers. 2019. Multiverse Debugging:

Non-Deterministic Debugging for Non-Deterministic Programs. In

33rd European Conference on Object-Oriented Programming (ECOOP
2019) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 134),
Alastair F. Donaldson (Ed.). Schloss Dagstuhl – Leibniz-Zentrum für

Informatik, Dagstuhl, Germany, 27:1–27:30. https://doi.org/10.4230/
LIPIcs.ECOOP.2019.27

[44] Mats Van Molle, Bram Vandenbogaerde, and Coen De Roover. 2023.

Cross-Level Debugging for Static Analysers. In Proceedings of the 16th
ACM SIGPLAN International Conference on Software Language Engi-
neering (Cascais, Portugal) (SLE 2023). Association for Computing

Machinery, New York, NY, USA, 138–148. https://doi.org/10.1145/
3623476.3623512

[45] Vesal Vojdani, Kalmer Apinis, Vootele Rõtov, Helmut Seidl, Varmo

Vene, and Ralf Vogler. 2016. Static race detection for device drivers: the

Goblint approach. In Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering (Singapore, Singapore)

(ASE ’16). Association for Computing Machinery, New York, NY, USA,

391–402. https://doi.org/10.1145/2970276.2970337
[46] Vesal Vojdani, Kalmer Apinis, Vootele Rõtov, Helmut Seidl, Varmo

Vene, and Ralf Vogler. 2016. Static race detection for device dri-

vers: the Goblint approach. In Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering. Asso-
ciation for Computing Machinery, New York, NY, USA, 391–402.

https://doi.org/10.1145/2970276.2970337
[47] Yuan Yu, Panagiotis Manolios, and Leslie Lamport. 1999. Model Check-

ing TLA+ Specifications. In Correct Hardware Design and Verification
Methods, Laurence Pierre and Thomas Kropf (Eds.). Springer Berlin

Heidelberg, Berlin, Heidelberg, 54–66. https://doi.org/10.1007/3-540-
48153-2_6

[48] Andreas Zeller. 2005. Why Programs Fail: A Guide to Systematic De-
bugging. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

https://doi.org/10.4230/LIPIcs.ECOOP.2019.21
https://doi.org/10.4230/LIPIcs.ECOOP.2019.21
https://arxiv.org/abs/2407.12499
https://arxiv.org/abs/2407.12499
https://doi.org/10.1109/ASEW.2019.00023
https://doi.org/10.1007/3-540-45937-5_16
https://doi.org/10.1145/3009837.3009900
https://doi.org/10.1145/3623476.3623526
https://doi.org/10.1145/199448.199462
https://doi.org/10.1007/978-3-030-72013-1_28
https://doi.org/10.1007/978-3-030-72013-1_28
https://arxiv.org/abs/2105.12819
http://arxiv.org/abs/2105.12819
http://arxiv.org/abs/2105.12819
https://doi.org/10.1007/978-3-030-88806-0_18
https://doi.org/10.1007/978-3-030-88806-0_18
https://doi.org/10.1007/978-3-031-30044-8_2
https://doi.org/10.1007/978-3-031-30044-8_2
https://doi.org/10.1017/S0960129521000499
https://doi.org/10.1145/3486600
https://doi.org/10.4230/LIPIcs.ECOOP.2019.27
https://doi.org/10.4230/LIPIcs.ECOOP.2019.27
https://doi.org/10.1145/3623476.3623512
https://doi.org/10.1145/3623476.3623512
https://doi.org/10.1145/2970276.2970337
https://doi.org/10.1145/2970276.2970337
https://doi.org/10.1007/3-540-48153-2_6
https://doi.org/10.1007/3-540-48153-2_6

	Abstract
	1 Introduction
	2 Running Example
	3 Debugging in the Concrete World
	4 Debugging in the Abstract World
	5 Constructing the iARG in Goblint
	6 Implementation
	7 Advanced Features
	8 Examples
	9 Discussion
	10 Related Work
	11 Conclusion
	References

