Enhancing Security through Modularization

A Counterfactual Analysis of Vulnerability Propagation and Detection Precision

7 Oct 2024

Mohammad M. Abdollahpour*, Jens Dietrich”, Patrick Lam*

* University of Waterloo "‘
" Victoria University of Wellington L.

1€S Call

more modular librar

O
e
v
2
N
o
9p)
O
i
=
Q
O
9p)
O
i
=
@)
fd
@)
4w
D
rm—

:dl

tl

y W ,.
.\x.’ . ; S ..”.__.\.
w‘e S Bl

%
/

RURA X vuwwi
PRESENT

ALL MODERN DIGITAL
INFRASTRUCTURE

A

-

mg\

i

K

l;

A PROJECT SOME
RANDOM PERSON

IN NEBRASKA HAS
BEEN THANKLESSLY

MAINTAINING
SINCE 2003

T

=

3rd-party libraries are awesome!

PAGE 3

But they come at a cost:
Security vulnerabilities!

PAGE 4

oftware Composmon Analysis
(SCA) to the rescue

PAGE 5

Software Composition Analysis (SCA) to the rescue

A

O,

2 - B

Dependency Tree CVE Database

PAGE 6

tion Analysis (SCA) te-theresene

1

Software Compos

PAGE 7

Software Composition Analysis (SCA) to-the-resete

e 1
X

Too many
false positives

Call graph
analysis is
expensive

Rely on
reported CVEs

PAGE 8

pkg:mvn/org.json/json used by >1k other libraries

CDL

CookieList HELE JSONML
4
} i ! JSONMLParserConfiguration
Cookie Property JSONStringer HTTPTokener XML*
v v
< ONObject* § XML.ParserConfiguration
B
‘ ' , v
JSONString JSONPropertylgnore | | JSONPropertyName JSONPointerException XML.XsiTypeConverter
v v
E JSONException z

PAGE 9

CVE-2022-45688: vulnerability in the XML transformer

CDL

JSONML

Y

JSONML ParserConfiguration

XML*

XML.ParserConfiguration

XML.XsiTypeConverter

N

CookieList HTTP
A Y
Cookie Property JSONStringer HTTPTokener
v v
3l JSONObject* <
i
A i A Y
JSONString JSONPropertylgnore | | JSONPropertyName JSONPointerException
Y ¢
§ JSONException é

PAGE 10

But I don’t need the XML stuft!

CookieList HTTP % JSONML o }‘,;)
JSONMLES buration
A Y .
Cookie Property JSONStringer HTTPTokener
¢ Y
CDL 3| ISONObject* < ML arcrl
N
A i Y Y
JSONString JSONPropertylgnore | | JSONPropertyName JSONPointerException
Y ¢
§ JSONException %

PAGE 11

What if clients could reference only what they need?

\

PAGE 12

What if clients could reference only what they need?

\

= What if libraries were more modularized?

PAGE 13

Actually most clients do not need the whole library!

Only 6% of clients use
functionalities from
all modules

Fewer false

alarms from
SCA tools

Smaller attack
surface due to
dependencies

If libraries were
more modularized

Less worry about
dormant/undiscovered
vulnerabilities

We need study subjects

We need study subjects, but ...

-3

{/

Hard to find a large number Hard to control the
of libraries transitioned confounding factors
from monolith to modular

PAGE 17

We opted for a simulation-based counterfactual analysis

Q .

'

We simulate library
modularization

Measure security metrics
before and after
modularization

PAGE 19

Modularization can substantially increase the effectiveness of
metadata-based SCA tools

%
My A_
\QT/

SCA precision reached
71% after modularization
(before: 35%)

PAGE 20

Modularization can substantially increase the effectiveness of
metadata-based SCA tools

N rd

94.5% of safe* clients
would not receive false
security alerts

* Refers to transitive constant pool reference to any vulnerability in the class-level dependency graph PAGE 21

Modularization has great potential to isolate the vulnerabilities

Vv

More than half of the
modules (51%) become
safe* after modularization

* Refers to transitive constant pool reference to any vulnerability in the class-level dependency graph PAGE 22

Modularization can greatly enhance security of client deployments

.

78.26% of statically safe
clients are no longer
susceptible to attacks
targeting inactive
vulnerabilities

PAGE 23

Gadget Chains:
Attacks Targeting
Inactive Vulnerabilities

. d

Modularization can greatly enhance security of client deployments

Public attack surface
shrinks by 64% after
modularization

PAGE 25

Client

Public Methods
Non-(oublic Methods

frisi %
P

Public AI surface shrinks
b 64% after modularization

v

Our modularization can save org.json’s clients from the XML
vulnerability

CookieList HTTP | JSONML
| A 4
i JSONML ParserConfiguration
Y \ 4 = Y
Cookie Property JSONStringer HTTPTokener XML*
SR— N — I S — i v
CDL < JSONObject* ; b XML.ParserConfiguration
= 3
‘ v v : | v
JSONString JSONPropertylgnore | | JSONPropertyName JSONPointerException » XML.XsiTypeConverter
v
> JSONException <

PAGE 27

4 0%
)

W

115
b

What modularization technique do we use?

N\ Y \

O O

We need a notion of We need a graph
dependency graph partitioning algorithm

PAGE 29

We use constant pool references to construct dependency graphs

Constant
#2
#3 =
#7 =
19 =

pool:
Class
Methodref
Methodref
Methodref

= Methodref

Class

= Methodref
= Methodref
= Fieldref

= Methodref
= Methodref
= Methodref
= Methodref

Methodref

= Methodref
= Methodref

Methodref

= Fieldref

Fieldref

= Fieldref

#290
#2.#291
#76.#295
#76 .#309
#137.#319
#320
#35.4#291
#137.#325
#76.#326
#137.#327
#137.#329
#137.#330
#137.#333
#334.#335
#71.4#336
#137.#338
#137.#339
#76.#341
#76 . #342
#76 . #3U3

'/ org/json,

org/json/JSONException."

P | ~cane ¢
- .Mustescape:. (1)

(MLTokener

- L

ONExcep

.unescapeEntity: (

cion

json/XMLTokener.next

son/XMLParserConfigur

ILTokener.

MLTokener.back: ()V

MLTokener.r

SONObject.acc

Tokener

(MLTokener.

.hextl

C

We use constant pool references to construct dependency graphs

NN

Constant pool:

#2 Class #290

#3 = Methodref #2.#291

#7 Methodref #76.#295

19 = Methodref #76.#309
Methodref #137.4#319

#35 = Class #320

Methodref #35.#291

Includes all*
sorts of
dependencies

#42
#43
#uy
#46
#47
#50
#51
#52
#54
#55
#57

Methodref #137.4#325
Fieldref #76.#326
Methodref #137.#327
Methodref #137.#329
Methodref #137.#330
Methodref #137.#333
Methodref #33U.4#335
Methodref #71.#336
Methodref #137.#338
Methodref #137.4#339
Fieldref #76 . #341
Fieldref #76.#3U2
Fieldref #76.#3U3

Super

fast!

* Excluding dynamic dependencies

Preserve
compilability

PAGE 31

We need a proper modularization technique for reliable results

Sme

/
e

We use constant pool
references to construct the
dependency graphs

PAGE 32

The resulting modules should not have dependency cycles

iel - oo

PAGE 33

Convert the dependency graph
to a DAG,
and partition that

We need a proper modularization technique for reliable results

/O

/
e

We use constant pool
references to construct the
dependency DAGs

We need a DAG
partitioning algorithm

PAGE 35

We need a proper modularization technique for reliable results

Minimizes
the edge cut!

We use constant pool We use dagP*
references to construct the to partition dgpendency
dependency DAGs graphs without

introducing cycles

* J. Herrmann, J. Kho, B. Ucar, K. Kaya and U. V. Catalyiirek, "Acyclic Partitioning of
Large Directed Acyclic Graphs," 2017 PAGE 36

Are the created modules
balanced?

=
L N -

count

Yes: module sizes resulting from dagP
are reasonably balanced

12;

101

A R

I~
N
N
S
| NN

)

0 20 40

60

80

100

mean(#classes per module / #classes per library)

PAGE 38

Do the created modules
align with existing
hierarchies?

Yes: modules are well-aligned with the current library hierarchies.

10+ ..|
...|
3 -
.o _..|
= ¢ A Mt
4 o—;{

21 o |
0 20 40 60 80 100

ratio of #packages in at most N modules per library

PAGE 40

How did we collect our data?

PAGE 41

Find Latest Find root of vulnerability Identify the root cause

Affected Version from the diff of commit classfiles in JAR
l@‘ snyk—>€n:aven central
GitHub
CVE
Library GA
Affected Versions Query the clients
of each library
Github Patch Download the JARs

J p
y ' .—»@wen central——

libraries.1io

PAGE 42

Find Latest Find root of vulnerability Identify the root cause

Affected Version from the diff of commit classfiles in JAR
l@‘ snyk—>@1:aven central
GitHub
CVE
| + data from

Library GA .
preV10uS

Affected Versions Query the clients research

of each library

Github Patch ' Download the JARs
»' ' .—»@ven central——

libraries.10

PAGE 43

We collected
7k <CVE, Library>
83k <CVE, Lib, Client>
records

Exploiting vulnerabilities is often more challenging
than it initially appears

Only one class is causing
the vulnerability (median)

Have to go through two
classes to hit a vulnerability
(median)

95% of classes are public

PAGE 45

Are you a library developer?

Try to release smaller
coherent artifacts and let @ —
people decide what they need @

You can use our
modularization approach
as a starting point

PAGE 46

Do you use large third-party libraries?

You also can use our
technique to break large
artifacts

Use smaller artifacts

(sometimes from the same
project!) when possible

PAGE 47

Clipart attributions: all CC-BY 3.0 from Noun Project

- Vector Points

- Sam Designs

- Cosmin Petriser
- Solikin

- Amethyst Studio
- Gofficon

- choirun niswah
- ramacae

Photos from Patrick Lam collection

PAGE 48

tulpan

Meko

SeeMoo
Suharsono

Imam Kurniadi
canvas dazzle
Ifanicon

Olena Panasovska

Hot Takes

1. Many libraries out there are too big.

2. Humans shouldn’t have to do grunt work to
modularize libraries.

3. dotnet is better than Java (in terms of clients not
including extra libraries).

PAGE 49

