
A Type System and Analysis for
the Automatic Extraction and

Enforcement of Design
Information

Patrick Lam and Martin Rinard
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology

A Type System and Analysis for the Automatic Extraction and Enforcement of Design Information – p. 1



Research Goal

A Type System and Analysis for the Automatic Extraction and Enforcement of Design Information – p. 2



Research Goal

A Type System and Analysis for the Automatic Extraction and Enforcement of Design Information – p. 3



Key Issue: Naming Code and Objects
Objects

Unbounded number of objects
But we want finite model

⇒ Need finite abstraction for objects

Code
Huge number of code elements
(procedures, statements, etc.)
Want comprehensible model

⇒ Need comprehensible abstraction for code

A Type System and Analysis for the Automatic Extraction and Enforcement of Design Information – p. 4



Outline
Example

Experience

Analysis and Model Extraction

Related Work & Conclusion

A Type System and Analysis for the Automatic Extraction and Enforcement of Design Information – p. 5



Example: Drawing Program
Subsystems:

Front-end subsystem
(processes mouse clicks)

Engine subsystem
(builds and displays shapes)

Both use lists to represent data

Front-end subsystem:
List of mouse clicks

Engine subsystem:
List of polygons
List of polygon vertices

A Type System and Analysis for the Automatic Extraction and Enforcement of Design Information – p. 6



Example: Data Layout
Consider a List data structure.

class List {
Node head;

}

class Node {
Node next;
Object elt;

}

A Type System and Analysis for the Automatic Extraction and Enforcement of Design Information – p. 7



Example: Heap Structure

A Type System and Analysis for the Automatic Extraction and Enforcement of Design Information – p. 8



Modelling the Heap Structure
Using classes to abstract objects:

A Type System and Analysis for the Automatic Extraction and Enforcement of Design Information – p. 9



Modelling the Heap Structure
Using classes to abstract objects:

A Type System and Analysis for the Automatic Extraction and Enforcement of Design Information – p. 9



Modelling the Heap Structure
Using classes to abstract objects:

A Type System and Analysis for the Automatic Extraction and Enforcement of Design Information – p. 9



Key Insight
Let the programmer guide abstraction:

Tokens abstract objects

Programmer explicitly places tokens
onto objects

Tokens represent objects in the model

A Type System and Analysis for the Automatic Extraction and Enforcement of Design Information – p. 10



Tokenization of Example

A Type System and Analysis for the Automatic Extraction and Enforcement of Design Information – p. 11



Heap Structure Model with Tokens

A Type System and Analysis for the Automatic Extraction and Enforcement of Design Information – p. 12



Comparing Models

A Type System and Analysis for the Automatic Extraction and Enforcement of Design Information – p. 13



Expressing Model Information in Source
class Point<P> { int x, y; }

class List<T,P> { Node<T,P> head; }
class Node<T,P>
{ Node<T,P> next; Object<P> elt; }

class Polygon<S>
{ List<S,PolygonPt> vertices; }

class Engine {
List<PolygonList,Polygon> polygons;

}
class EventHandler {
List<ClickList,ClickPt> clicks;

}

A Type System and Analysis for the Automatic Extraction and Enforcement of Design Information – p. 14



Mismatch Between Code and Model Elements

Multiple code elements for one model element.

Caused by implementation complexity
Model needs to abstract away from complexity

Multiple model elements for one code element.

Caused by (desirable!) reuse
Different instances of same class in different contexts
Model needs to capture conceptual distinctions,

not implementation distinctions

Mismatches are inevitable and desirable:
Code and model have different concerns.

A Type System and Analysis for the Automatic Extraction and Enforcement of Design Information – p. 15



Problems modelling code by method
An obvious abstraction is to model code at the
granularity of methods.
Too fine-grained:

We don’t want to see every method in every
subsystem; need coarser granularity.

Too coarse-grained:

Shared libraries, and other shared code,
execute in multiple contexts;

Should be part of the context that invokes
them, not their own context.

A Type System and Analysis for the Automatic Extraction and Enforcement of Design Information – p. 16



Code in Example
class FrontEnd {
List clicks;

receiveClick(Point p) {
if (relevant(p))

clicks.insert(p);

... }

processClickQueue() {
...

while (l.canIterate()) {

x = clicks.iterate();

doClick(x);

} } }

class Engine {
List polys;
List genPoly() {
...

polys.insert();

}

displayPoly(List vx) {
Point p, oldP;

while (vx.canIterate()) {

p = vx.iterate();

if (oldP) drawLine(p, oldP);

} } }

class List {
Node head,ptr;
insert(Object o) {...}
startIteration() {ptr=head;}
canIterate() {return ptr == null;}

Object iterate() { ptr=ptr.next; }

}
A Type System and Analysis for the Automatic Extraction and Enforcement of Design Information – p. 17



Code in Example
class FrontEnd {
List clicks;

receiveClick(Point p) {
if (relevant(p))

clicks.insert(p);

... }

processClickQueue() {
...

while (l.canIterate()) {

x = clicks.iterate();

doClick(x);

} } }

class Engine {
List polys;
List genPoly() {
...

polys.insert();

}

displayPoly(List vx) {
Point p, oldP;

while (vx.canIterate()) {

p = vx.iterate();

if (oldP) drawLine(p, oldP);

} } }

class List {
Node head,ptr;
insert(Object o) {...}
startIteration() {ptr=head;}
canIterate() {return ptr == null;}

Object iterate() { ptr=ptr.next;}

}
A Type System and Analysis for the Automatic Extraction and Enforcement of Design Information – p. 17



Code in Example
class FrontEnd {
List clicks;

receiveClick(Point p) {
if (relevant(p))

clicks.insert(p);

... }

processClickQueue() {
...

while (l.canIterate()) {

x = clicks.iterate();

doClick(x);

} } }

class Engine {
List polys;
List genPoly() {
...

polys.insert();

}

displayPoly(List vx) {
Point p, oldP;

while (vx.canIterate()) {

p = vx.iterate();

if (oldP) drawLine(p, oldP);

} } }

class List {
Node head,ptr;
insert(Object o) {...}
startIteration() {ptr=head;}
canIterate() {return ptr == null;}

Object iterate() { ptr=ptr.next;}

}
A Type System and Analysis for the Automatic Extraction and Enforcement of Design Information – p. 17



Subsystems
Concept of subsystem

Set of method invocations that serve same conceptual
purpose in computation

Concept of subsystem entry point

Some classes identified as subsystem entry points

Subsystem does not change until invocation of method
in another subsystem entry point class

Invocation of different methods may be in same subsystem
Different invocations of one method may be in different
subsystems.

A Type System and Analysis for the Automatic Extraction and Enforcement of Design Information – p. 18



Mediating the Mismatch
Mismatch between code and model elements.

Tokens and component identifiers allow
developer to guide abstraction:

Can merge objects (with tokens)
Can merge methods (with subsystems)

Token parameterization enables model to
separate instances of shared classes.

Subsystem entry points enable model to
separate different invocations of
shared methods.

A Type System and Analysis for the Automatic Extraction and Enforcement of Design Information – p. 19



Our Models
We use our program element abstraction to
produce the following models:

Heap Structure Model

Subsystem Access Model

Call/Return Interaction Model

Heap Interaction Model

A Type System and Analysis for the Automatic Extraction and Enforcement of Design Information – p. 20



Outline
Example

Experience

Analysis and Model Extraction

Related Work & Conclusion

A Type System and Analysis for the Automatic Extraction and Enforcement of Design Information – p. 21



Experience
Implemented as extension to Polyglot

(Andrew Myers, Cornell University)
Tested on Tagger application

Text formatting system (Daniel Jackson)

Translates Tagger documents into Quark

1721 lines of code

14 classes in application

Development overhead

Changed 201 lines of code

Final version 1755 lines of code

A Type System and Analysis for the Automatic Extraction and Enforcement of Design Information – p. 22



Subsystems

Pars Parser for Tagger document
PMap Property Management
Act Translates Tagger commands to Quark
Gen Generates Quark document
Eng Dispatches Tagger commands to Act
Main Initializes, connects subsystems

A Type System and Analysis for the Automatic Extraction and Enforcement of Design Information – p. 23



Tokens

Gen, Eng, Pars (objects for subsystems)
NumStr, Ctr (list counters in Tagger source)
SrcTok (parser tokens)
PMap, PList (text properties
PName, PVal and maps thereof)
StyMap, ParSty (style information)
IRead (input stream object)
EStrm, OStrm (error and system output)

A Type System and Analysis for the Automatic Extraction and Enforcement of Design Information – p. 24



Tagger: Heap Structure Model

NumStr

CtrPMap

style_map

EStrm

error_stream

PList Prop

Gen

OStrm

output_stream

Eng

Pars

error_reporter

IRead

reader

ParSty

parastyles

SrcTok

tok

StyMap

PName

property

PVal

value

A Type System and Analysis for the Automatic Extraction and Enforcement of Design Information – p. 25



Tagger: Call/Return Interaction Model

MainS

PMapS

StyMap, NumStr, PMap, PMap

ParsS

Pars, SrcTok, IRead, ParSty

EngS

Eng, Pars, Gen, PMap, IndStrm

GenS

Gen, OStrm

PSet, NumStr, PVal

PVal ActS

NumStr, PVal

SrcTok

PMap

Gen, OStrm

NumStr, PMap, PMap

Eng, Pars, Gen, PMap, IndStrm

Gen, OStrm

A Type System and Analysis for the Automatic Extraction and Enforcement of Design Information – p. 26



Tagger: Subsystem Access Model

PMapS

PList PropNumStr StyMap Ctr PParsPMap

EngS

ActS

GenEng SrcTok

GenSParsS

Pars

A Type System and Analysis for the Automatic Extraction and Enforcement of Design Information – p. 27



Tagger: Heap Interaction Model

Pars

EStrm

PMapS

IRead

ParsS

SrcTok

ParsS

ParSty

ParsSActS, EngS

NumStr

PMapS PMapS

PMap

PMapS PMapS

Gen

OStrm

GenS GenSParsS ParsS ParsS

PName

Prop

PMapS PMapS

PVal

PMapS PMapS

A Type System and Analysis for the Automatic Extraction and Enforcement of Design Information – p. 28



Outline
Example

Experience

Analysis and Model Extraction

Related Work & Conclusion

A Type System and Analysis for the Automatic Extraction and Enforcement of Design Information – p. 29



Analysis and Model Extraction

A Type System and Analysis for the Automatic Extraction and Enforcement of Design Information – p. 30



Analysis Algorithm
Algorithm traverses call graph; for each call site:

Compute contexts—combinations of
parameter values.

Properties of analysis:

Top-down, context-sensitive algorithm.
Analyzes callers before callees
Each context specifies combination of
parameter values for instantiation
One context for each distinct use

A Type System and Analysis for the Automatic Extraction and Enforcement of Design Information – p. 31



What is a Context?
For each code element (method), we track a set
of tuples:

〈Sub, TMap〉

Sub is the subsystem which called this
instance of the method.

TMap is a map from token formals to token
actuals e.g. [t 7→ Polygon, p 7→ PolygonPt]

A Type System and Analysis for the Automatic Extraction and Enforcement of Design Information – p. 32



Analysis in Action

A Type System and Analysis for the Automatic Extraction and Enforcement of Design Information – p. 33



Analysis in Action

A Type System and Analysis for the Automatic Extraction and Enforcement of Design Information – p. 34



Analysis in Action

A Type System and Analysis for the Automatic Extraction and Enforcement of Design Information – p. 35



Analysis in Action

A Type System and Analysis for the Automatic Extraction and Enforcement of Design Information – p. 36



Analysis in Action

A Type System and Analysis for the Automatic Extraction and Enforcement of Design Information – p. 37



Analysis in Action

A Type System and Analysis for the Automatic Extraction and Enforcement of Design Information – p. 38



Model Extraction: Heap Structure Model

Iterate over all instantiation sites in program and
record which tokens can point to which.
class List<t,p> { Node<t,p> next; Obj <p> elt; }

new List<ClickList, p>();

Possible context:
〈EventHandler, {p 7→ ClickPoint}〉

computed by analysis algorithm gives HSM edge

ClickList ClickPoint
elt

A Type System and Analysis for the Automatic Extraction and Enforcement of Design Information – p. 39



Model Extraction: Subsystem Access Model

Iterate over field accesses and determine which
subsystem accesses which tokens from context.
class List<t,p> { Node<t,p> first;

Obj getFirst() {

Node<t,p> n = this.first; return n.elt; }}

Context
〈EventHandler, {t 7→ ClickList, p 7→ ClickPoint}〉

gives subsystem access edges
EventHandler

ClickList ClickPoint

A Type System and Analysis for the Automatic Extraction and Enforcement of Design Information – p. 40



Extraction: Call/Return Interaction Model
Iterate over method invocations and record transfer of
control between subsystems.
class E entry Engine {

<p, pt> insertPoint(Polygon<p,pt> poly, Point<pt> point);
}

class U<pt> entry UI { Polygon<Poly,pt> p;

receivePoint(Point<pt> userPt) {

s: eng.insertPoint<Poly,pt>(userPoly, userPt);

}}

Context at s:
〈UI, {pt 7→ PolyPt}〉

gives subsystem interaction edge:

UI Engine
Poly,PolyPt

A Type System and Analysis for the Automatic Extraction and Enforcement of Design Information – p. 41



Model Extraction: Heap Interaction Model

Iterate over program actions, adding edge for
each program action, labelled by subsystem.
class E<p,pt> entry Engine {

insertPoint(Polygon<p,pt> poly, Point<pt> point) {

poly.vertices.insert(point); }

}

class List<t,p> {

insert(Obj<p> pt) { Node<t,p> n; ...

s: n.elt = pt;
}

Context at s:
〈Engine, {t 7→ Polygon, p 7→ PolyPt}〉

Polygon PolyPt
Engine

A Type System and Analysis for the Automatic Extraction and Enforcement of Design Information – p. 42



Related Work
UML:

Our models designed to be embeddable inside program code.

Automatic Model Extraction:
Commercial tools do UML models ⇐⇒ code

[TogetherSoft, Rational Rose]
Womble extracts UML models from code. [Waingold and Jackson]
ArchJava expresses and enforces software architecture

constraints embedded in code [Aldrich et al.]

Pointer Analysis:
Unlike pointer analysis, we allow developer to choose
most suitable abstraction of heap for program.
Standard pointer analysis is allocation-site based.
Our approach dodges need for flow-sensitivity.

Ownership Types [Boyapati and Rinard]:
We focus on inter-subsystem communication.

A Type System and Analysis for the Automatic Extraction and Enforcement of Design Information – p. 43



Conclusion
Type system for extracting design information

Heap Structure Models
Object Access Models
Interaction Models

Key Issue: Mediating Granularity Mismatch
Key Concepts: Tokens, Subsystems, Polymorphism

Tokens abstract objects (multiple code elements,
Subsystems abstract code single design element)
Polymorphism supports reuse
(single code element, multiple design elements)

Implemented and used on Tagger program

Models provide useful insight into design of program
Development overhead quite small

A Type System and Analysis for the Automatic Extraction and Enforcement of Design Information – p. 44


	Research Goal
	Research Goal
	Key Issue: Naming Code and Objects
	Outline
	Example: Drawing Program
	Example: Data Layout
	Example: Heap Structure
	Modelling the Heap Structure
	Modelling the Heap Structure
	Modelling the Heap Structure

	Key Insight
	Tokenization of Example
	Heap Structure Model with Tokens
	Comparing Models
	large Expressing Model Information in Source
	large Mismatch Between Code and Model Elements
	Problems modelling code by method
	Code in Example
	Code in Example
	Code in Example

	Subsystems
	Mediating the Mismatch
	Our Models
	Outline
	Experience
	Subsystems
	Tokens
	Tagger: Heap Structure Model
	Tagger: Call/Return Interaction Model
	Tagger: Subsystem Access Model
	Tagger: Heap Interaction Model
	Outline
	Analysis and Model Extraction
	Analysis Algorithm
	What is a Context?
	Analysis in Action
	Analysis in Action
	Analysis in Action
	Analysis in Action
	Analysis in Action
	Analysis in Action
	large Model Extraction: Heap Structure Model
	large Model Extraction: Subsystem Access Model
	large Extraction: Call/Return Interaction Model
	large Model Extraction: Heap Interaction Model
	Related Work
	Conclusion

