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Key Issue: Naming Code and Objects
Objects

Unbounded number of objects
But we want finite model

⇒ Need finite abstraction for objects

Code
Huge number of code elements
(procedures, statements, etc.)
Want comprehensible model

⇒ Need comprehensible abstraction for code
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Example: Drawing Program
Subsystems:

Front-end subsystem
(processes mouse clicks)

Engine subsystem
(builds and displays shapes)

Both use lists to represent data

Front-end subsystem:
List of mouse clicks

Engine subsystem:
List of polygons
List of polygon vertices
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Example: Data Layout
Consider a List data structure.

class List {
Node head;

}

class Node {
Node next;
Object elt;

}
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Example: Heap Structure
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Modelling the Heap Structure
Using classes to abstract objects:

A Type System and Analysis for the Automatic Extraction and Enforcement of Design Information – p. 9



Modelling the Heap Structure
Using classes to abstract objects:

A Type System and Analysis for the Automatic Extraction and Enforcement of Design Information – p. 9



Modelling the Heap Structure
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Key Insight
Let the programmer guide abstraction:

Tokens abstract objects

Programmer explicitly places tokens
onto objects

Tokens represent objects in the model
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Tokenization of Example
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Heap Structure Model with Tokens
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Comparing Models
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Expressing Model Information in Source
class Point<P> { int x, y; }

class List<T,P> { Node<T,P> head; }
class Node<T,P>
{ Node<T,P> next; Object<P> elt; }

class Polygon<S>
{ List<S,PolygonPt> vertices; }

class Engine {
List<PolygonList,Polygon> polygons;

}
class EventHandler {
List<ClickList,ClickPt> clicks;

}
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Mismatch Between Code and Model Elements

Multiple code elements for one model element.

Caused by implementation complexity
Model needs to abstract away from complexity

Multiple model elements for one code element.

Caused by (desirable!) reuse
Different instances of same class in different contexts
Model needs to capture conceptual distinctions,

not implementation distinctions

Mismatches are inevitable and desirable:
Code and model have different concerns.
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Problems modelling code by method
An obvious abstraction is to model code at the
granularity of methods.
Too fine-grained:

We don’t want to see every method in every
subsystem; need coarser granularity.

Too coarse-grained:

Shared libraries, and other shared code,
execute in multiple contexts;

Should be part of the context that invokes
them, not their own context.
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Code in Example
class FrontEnd {
List clicks;

receiveClick(Point p) {
if (relevant(p))

clicks.insert(p);

... }

processClickQueue() {
...

while (l.canIterate()) {

x = clicks.iterate();

doClick(x);

} } }

class Engine {
List polys;
List genPoly() {
...

polys.insert();

}

displayPoly(List vx) {
Point p, oldP;

while (vx.canIterate()) {

p = vx.iterate();

if (oldP) drawLine(p, oldP);

} } }

class List {
Node head,ptr;
insert(Object o) {...}
startIteration() {ptr=head;}
canIterate() {return ptr == null;}

Object iterate() { ptr=ptr.next; }

}
A Type System and Analysis for the Automatic Extraction and Enforcement of Design Information – p. 17



Code in Example
class FrontEnd {
List clicks;

receiveClick(Point p) {
if (relevant(p))

clicks.insert(p);

... }

processClickQueue() {
...

while (l.canIterate()) {

x = clicks.iterate();

doClick(x);

} } }

class Engine {
List polys;
List genPoly() {
...

polys.insert();

}

displayPoly(List vx) {
Point p, oldP;

while (vx.canIterate()) {

p = vx.iterate();

if (oldP) drawLine(p, oldP);

} } }

class List {
Node head,ptr;
insert(Object o) {...}
startIteration() {ptr=head;}
canIterate() {return ptr == null;}

Object iterate() { ptr=ptr.next;}

}
A Type System and Analysis for the Automatic Extraction and Enforcement of Design Information – p. 17



Code in Example
class FrontEnd {
List clicks;

receiveClick(Point p) {
if (relevant(p))

clicks.insert(p);

... }

processClickQueue() {
...

while (l.canIterate()) {

x = clicks.iterate();

doClick(x);

} } }

class Engine {
List polys;
List genPoly() {
...

polys.insert();

}

displayPoly(List vx) {
Point p, oldP;

while (vx.canIterate()) {

p = vx.iterate();

if (oldP) drawLine(p, oldP);

} } }

class List {
Node head,ptr;
insert(Object o) {...}
startIteration() {ptr=head;}
canIterate() {return ptr == null;}

Object iterate() { ptr=ptr.next;}

}
A Type System and Analysis for the Automatic Extraction and Enforcement of Design Information – p. 17



Subsystems
Concept of subsystem

Set of method invocations that serve same conceptual
purpose in computation

Concept of subsystem entry point

Some classes identified as subsystem entry points

Subsystem does not change until invocation of method
in another subsystem entry point class

Invocation of different methods may be in same subsystem
Different invocations of one method may be in different
subsystems.
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Mediating the Mismatch
Mismatch between code and model elements.

Tokens and component identifiers allow
developer to guide abstraction:

Can merge objects (with tokens)
Can merge methods (with subsystems)

Token parameterization enables model to
separate instances of shared classes.

Subsystem entry points enable model to
separate different invocations of
shared methods.
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Our Models
We use our program element abstraction to
produce the following models:

Heap Structure Model

Subsystem Access Model

Call/Return Interaction Model

Heap Interaction Model
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Experience
Implemented as extension to Polyglot

(Andrew Myers, Cornell University)
Tested on Tagger application

Text formatting system (Daniel Jackson)

Translates Tagger documents into Quark

1721 lines of code

14 classes in application

Development overhead

Changed 201 lines of code

Final version 1755 lines of code
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Subsystems

Pars Parser for Tagger document
PMap Property Management
Act Translates Tagger commands to Quark
Gen Generates Quark document
Eng Dispatches Tagger commands to Act
Main Initializes, connects subsystems
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Tokens

Gen, Eng, Pars (objects for subsystems)
NumStr, Ctr (list counters in Tagger source)
SrcTok (parser tokens)
PMap, PList (text properties
PName, PVal and maps thereof)
StyMap, ParSty (style information)
IRead (input stream object)
EStrm, OStrm (error and system output)
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Tagger: Heap Structure Model

NumStr

CtrPMap

style_map
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Tagger: Call/Return Interaction Model

MainS

PMapS

StyMap, NumStr, PMap, PMap

ParsS

Pars, SrcTok, IRead, ParSty

EngS

Eng, Pars, Gen, PMap, IndStrm

GenS

Gen, OStrm

PSet, NumStr, PVal

PVal ActS

NumStr, PVal

SrcTok

PMap

Gen, OStrm

NumStr, PMap, PMap

Eng, Pars, Gen, PMap, IndStrm

Gen, OStrm
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Tagger: Subsystem Access Model

PMapS

PList PropNumStr StyMap Ctr PParsPMap

EngS
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GenEng SrcTok
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Pars
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Tagger: Heap Interaction Model
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Analysis and Model Extraction
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Analysis Algorithm
Algorithm traverses call graph; for each call site:

Compute contexts—combinations of
parameter values.

Properties of analysis:

Top-down, context-sensitive algorithm.
Analyzes callers before callees
Each context specifies combination of
parameter values for instantiation
One context for each distinct use
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What is a Context?
For each code element (method), we track a set
of tuples:

〈Sub, TMap〉

Sub is the subsystem which called this
instance of the method.

TMap is a map from token formals to token
actuals e.g. [t 7→ Polygon, p 7→ PolygonPt]
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Analysis in Action
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Analysis in Action
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Analysis in Action
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Analysis in Action
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Analysis in Action
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Analysis in Action
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Model Extraction: Heap Structure Model

Iterate over all instantiation sites in program and
record which tokens can point to which.
class List<t,p> { Node<t,p> next; Obj <p> elt; }

new List<ClickList, p>();

Possible context:
〈EventHandler, {p 7→ ClickPoint}〉

computed by analysis algorithm gives HSM edge

ClickList ClickPoint
elt
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Model Extraction: Subsystem Access Model

Iterate over field accesses and determine which
subsystem accesses which tokens from context.
class List<t,p> { Node<t,p> first;

Obj getFirst() {

Node<t,p> n = this.first; return n.elt; }}

Context
〈EventHandler, {t 7→ ClickList, p 7→ ClickPoint}〉

gives subsystem access edges
EventHandler

ClickList ClickPoint
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Extraction: Call/Return Interaction Model
Iterate over method invocations and record transfer of
control between subsystems.
class E entry Engine {

<p, pt> insertPoint(Polygon<p,pt> poly, Point<pt> point);
}

class U<pt> entry UI { Polygon<Poly,pt> p;

receivePoint(Point<pt> userPt) {

s: eng.insertPoint<Poly,pt>(userPoly, userPt);

}}

Context at s:
〈UI, {pt 7→ PolyPt}〉

gives subsystem interaction edge:

UI Engine
Poly,PolyPt
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Model Extraction: Heap Interaction Model

Iterate over program actions, adding edge for
each program action, labelled by subsystem.
class E<p,pt> entry Engine {

insertPoint(Polygon<p,pt> poly, Point<pt> point) {

poly.vertices.insert(point); }

}

class List<t,p> {

insert(Obj<p> pt) { Node<t,p> n; ...

s: n.elt = pt;
}

Context at s:
〈Engine, {t 7→ Polygon, p 7→ PolyPt}〉

Polygon PolyPt
Engine
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Related Work
UML:

Our models designed to be embeddable inside program code.

Automatic Model Extraction:
Commercial tools do UML models ⇐⇒ code

[TogetherSoft, Rational Rose]
Womble extracts UML models from code. [Waingold and Jackson]
ArchJava expresses and enforces software architecture

constraints embedded in code [Aldrich et al.]

Pointer Analysis:
Unlike pointer analysis, we allow developer to choose
most suitable abstraction of heap for program.
Standard pointer analysis is allocation-site based.
Our approach dodges need for flow-sensitivity.

Ownership Types [Boyapati and Rinard]:
We focus on inter-subsystem communication.
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Conclusion
Type system for extracting design information

Heap Structure Models
Object Access Models
Interaction Models

Key Issue: Mediating Granularity Mismatch
Key Concepts: Tokens, Subsystems, Polymorphism

Tokens abstract objects (multiple code elements,
Subsystems abstract code single design element)
Polymorphism supports reuse
(single code element, multiple design elements)

Implemented and used on Tagger program

Models provide useful insight into design of program
Development overhead quite small
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