
A Type System and Analysis for the Automatic
Extraction and Enforcement of Design

Information

Patrick Lam Martin Rinard

Laboratory for Computer Science
Massachusetts Institute of Technology

Cambridge, MA 02139
{plam, rinard}@lcs.mit.edu

Abstract. We present a new type system and associated type checker,
analysis, and model extraction algorithms for automatically extracting
models that capture aspects of a program’s design. Our type system
enables the developer to place a token on each object; this token serves
as the object’s representative during the analysis and model extraction.
The polymorphism in our type system enables the use of general-purpose
classes whose instances may serve different purposes in the computation;
programmers may also hide the details of internal data structures by
placing the same token on all of the objects in these data structures.
Our combined type system and analysis provide the model extraction
algorithms with sound heap aliasing information. Our algorithms can
therefore extract both structural models that characterize object refer-
encing relationships and behavioral models that capture indirect interac-
tions mediated by objects in the heap. Previous approaches, in contrast,
limited by an absence of aliasing information, have focused on control-
flow interactions that take place at procedure call boundaries. We have
implemented our type checker, analysis, and model extraction algorithms
and used them to automatically extract design models. Our experience
indicates that it is straightforward to produce the token annotations and
that the extracted models provide useful insight into the structure and
behavior of the program.

1 Introduction

Design abstractions such as object models [12] and module dependency diagrams
are a central feature of many software development processes. In this capacity
they provide a way to quickly and easily explore design alternatives and give the
members of the design team a common and effective language for communicating
important aspects of the design.
? This research was supported in part by a fellowship from Canada’s Natural Sciences
and Engineering Research Council, DARPA/AFRL Contract F33615-00-C-1692,
NSF Grant CCR-0086154, NSF Grant CCR-0073513, NSF Grant CCR-0209075,
an Eclipse Innovation Grant, and the Singapore-MIT Alliance.

2

In principle, the design abstractions should remain a primary source of in-
formation about the program for its entire lifetime. But the standard practice is
for programmers to manually implement the design once it has been finalized,
raising the possibility of the implementation diverging from the design. This di-
vergence becomes ever more likely over the lifetime of the program, limiting the
credibility of the original design and therefore its utility as a source of informa-
tion about the program. In most cases, the design is eventually discarded and
the code becomes the primary source of information about the program.

This paper presents a new type system and an associated analysis that to-
gether support the automatic extraction of design-level information from the
source code. The goal is to establish a guaranteed connection between the pro-
gram and its design, restore the credibility of the design as a reliable source of
information about the program, and enable developers to use design abstractions
effectively throughout the entire lifetime of the program.

We focus on abstractions that involve the structure of the heap and the infor-
mation flow (or lack of such flow) between different subsystems. One particularly
novel aspect of our technique is that it accurately captures even indirect inter-
actions mediated by objects in the heap. Existing approaches, in contrast, focus
only on the direct interactions that take place at procedure or method calls.

The key idea behind our approach is to allow the developer to use the type
system to place a token (chosen from a finite set of tokens fixed at program
analysis time) on each object in the program; this token serves as the object’s
representative during the analysis that extracts the design information from the
program. This approach addresses several common problems that complicate the
effective automatic extraction of design information:

– Multiple Design Elements, Single Code Element:Well-structured pro-
grams factor common behavior and structure into a single, general-purpose
code element (for example, a container class or object factory). Different
instantiations of such an element often have distinct conceptual purposes in
the computation and should therefore correspond to different elements in the
design. But standard analysis approaches treat each code element as a unit,
conflating the attributes of its different instantiations and failing to capture
important design-level distinctions.
The polymorphism in our type system eliminates this problem. It allows the
developer to place different tokens on different instantiations of the same
class so that the analysis separates objects with different conceptual purposes
even if the objects happen to be instances of the same general-purpose class.

– Single Design Element, Multiple Code Elements: Because the design
captures aspects of the computation at a higher level of abstraction than the
code, multiple code elements are often required to implement a single design
element. For example, a primary object may maintain complex internal data
structures that the design abstracts as conceptually part of the object. Any
approach that fails to abstract these internal data structures will deliver an
overly detailed model that obscures key aspects of the design.

3

Our type system addresses this problem by allowing the developer to place
the same token on both the primary object and all of the objects that im-
plement its internal data structures. The analysis then treats the entire col-
lection of objects as a unit and appropriately coalesces the combined infor-
mation from all of the objects into a single design element.
Consider, for example, a set object with an internal linked list of references
to items in the set. Our system allows the developer to place the same token
on both the set object and all of the linked list objects, with a separate token
on the items that the list nodes reference. In the extracted models, the set
and all of its internal linked list nodes comprise a single abstraction. Because
the items in the set have a different token, they correspond to a separate
abstraction.

– Aliasing: To accurately extract structural information (for example, refer-
encing relationships between objects) and behavioral information (for ex-
ample, how information flows between subsystems), the analysis needs to
have information about the aliasing relationships in the heap. An expensive
whole-program pointer analysis is the standard way to obtain this infor-
mation. Pointer analyses typically use the creation site of each object to
represent the object during the analysis, in which case the analysis results
conflate all objects allocated at the same site and fail to appropriately coa-
lesce internal objects.
In our type system, the type of each object completely characterizes the
referencing relationships (at the granularity of tokens) in the part of the
heap reachable from that object. Instead of processing all of the load and
store statements to construct a model of the heap, our analysis can simply
propagate token information across procedure boundaries to substitute out
the token variables in the polymorphic types. The resulting ground types
provide the required aliasing information.

We present the extracted design information to the developer via a set of
models. Each model is designed to capture a specific kind of design information;
together, the models provide a comprehensive summary of the relationships be-
tween the structural and behavioral aspects of the design. In particular, our
models help the developer visualize referencing relationships between objects
in the heap and understand the full range of interaction relationships between
subsystems.

1.1 Object Models

An object model identifies the kinds of objects in the heap and characterizes the
relationships between these different kinds of objects [12]. We model the objects
and relationships at the granularity of tokens. Specifically, there is a node in the
model for each token. There is a labelled edge between two tokens if the heap
may contain two objects represented by the tokens and one object may contain
a reference to the other. The label identifies the field containing the reference.

Building the model at the granularity of the tokens separates conceptually
distinct instances of the same class and enables the model to appropriately

4

capture the different structural relationships associated with these different in-
stances.The standard approach, in contrast, operates at the granularity of classes
and fails to capture these distinctions [18].

1.2 Subsystem Access Models

These models characterize how subsystems access objects. Each of these models
is a bipartite graph. There is a node for each token and a node for each subsystem,
with an edge from a subsystem to a token if the subsystem may access an object
represented by the token.

1.3 Interaction Models

Interaction models characterize interactions between subsystems at the granu-
larity of tokens. We support two kinds of models:

– Call/Return Interaction Model: This model characterizes the direct in-
teractions that take place at method calls and returns. The nodes in the
call/return model are subsystems. There is a solid directed edge from sub-
system s1 to s2 if a method in s1 invokes a method in s2. The edge is labelled
with the tokens that represent the objects passed as parameters in any s1

method calling s2. There is a dashed directed edge from s2 to s1 if some
method in the s2 subsystem returns a result to a method in s1. The edge is
labelled with all tokens representing objects returned from s2 to s1.

– Heap Interaction Model: This model characterizes the indirect interac-
tions that take place at reads and writes to and from objects in the heap.
The nodes in this model are tokens. There is a solid directed edge between
two tokens if a subsystem writes a reference to an object represented by the
first token into an object represented by the second token. The label on the
edge identifies the subsystem that performed the write. There is a dashed
directed edge between two tokens if a subsystem reads a field in an object
represented by the first token and obtains a reference to an object repre-
sented by the second token. The label on the edge is the subsystem that
performed the read.
This model smoothly generalizes to support higher-level actions (such as
insertions and removals) on abstract data types (such as hashtables and
lists).

Together, these models enable the developer to trace all of the dependences
between and flow of information through the subsystems in the program. They
also support useful projection operations — to focus on a particular aspect of
the interactions, the developer selects the relevant subsystems or tokens, then
hides those parts of the model that do not involve these subsystems or tokens.
The resulting projected models clearly expose the properties of interest.

Our enhanced subsystem models succinctly capture all of the information
in standard subsystem interaction models (which focus on aspects of the con-
trol flow; in particular, on how methods in one subsystem invoke methods in

5

other subystems). But the availability of a sound, relevant model of the heap
also enables the analysis to characterize not only the control flow but also the
information flow that occurs at method calls. Perhaps more significantly, it can
also characterize how subsystems access data and capture indirect subsystem
interactions mediated by objects in the heap.

1.4 Contributions

This paper makes the following contributions:

– Polymorphic Token Type System: It presents a polymorphic type sys-
tem that allows developers to place a token on each object. This type system
is structured as an extension to Java, and includes a type checking algorithm
that determines if the type declarations are correct.

– Analysis and Model Extraction Algorithms: It presents an analysis
algorithm and model extraction algorithms that, together, use the type sys-
tem to extract models that capture aspects of the design of the program.
This extraction-based approach ensures that the models correctly reflect
the design of the program. In contrast with many previous approaches, the
presence of sound heap aliasing information enables the extraction of both
structural models that characterize object referencing relationships and be-
havioral models that capture indirect interactions mediated by objects in
the heap.

– Experience: We have implemented our type system, analysis, and model
extraction algorithms. We have used these algorithms to produce design
models. Our experience indicates that it is straightforward to produce the
token annotations and that the extracted models provide useful insight into
the structure and behavior of the program.

2 Example

We next present an example that illustrates how our analysis produces inter-
action models. Figure 1 presents a program in which a driver coordinates the
activities of a producer and a consumer. The producer and consumer interact
via a stack of objects; the driver creates the stack, then repeatedly invokes the
producer (which pushes some Int items on to the stack) and the consumer
(which pops the Int items off of the stack). There are two kinds of interactions:
call/return interactions in which the stack flows between the driver, the pro-
ducer, and the consumer, and heap interactions in which the produced items
flow from the producer through the stack to the consumer. We next discuss how
our analysis produces models that present information about this program.

2.1 Subsystems

Our analysis describes the behavior of the system at the granularity of subsys-
tems. Each subsystem corresponds to a set of method invocations that serve

6

token P, C, D, PCS, PCI;
subsys EP, EC, ED;

class Int<i> {
int v;
Int(int v) { this.v = v; }

}
class Node<s,i> {

Node<s,i> next;
Int<i> data;

}
class Stack<s,i> {

private Node <s,i> first;
public void push (Int<i> k) {

Node <s,i> n =
new Node<s,i>();

n.data = k;
n.next = first;
first = n;

}
public Int<i> pop() {

Int<i> r = first.data;
first = first.next;
return r;

}
}
class Producer<p,s,i> enter EP {

int n = 0;
public void produce

(Stack<s,i> s) {
s.push(new Int<i>(n++));

}
}

class Consumer<c,s,i> enter EC {
Int<i> r;
public void consume

(Stack<s,i> s) {
r = s.pop();

}
}
class Driver<d> enter ED {

public void enter() {
Stack<PCS,PCI> s =

new Stack<PCS,PCI>();
Producer<P,PCS,PCI> p =

new Producer<PT,PCS,PCI>();
Consumer<C,PCS,PCI> c =

new Consumer<C,PCS,PCI>();
while (true) {

p.produce(s);
c.consume(s);

}
}

}
class ProducerConsumer {

public static void main
(String[] argv) {

new Driver<D>().enter();
}

}

Fig. 1. Example Producer/Consumer Program

the same conceptual purpose in the computation. Our example contains four
subsystems: the MAIN subsytem that executes the main method, the EP (Event
Producer) subsystem that produces the data, the EC (Event Consumer) subsys-
tem that consumes the data, and the ED (Event Driver) subsystem that invokes
the EP and EC subsystems.1

The program identifies some of the classes as subsystem entry points. In our
example, the program uses the enter EP clause to identify all of the methods
in the Producer class as entry points to the EP subsystem, and similarly for the
EC and ED subsystems. In particular, any call to a static or instance method on

1 In practice, we would expect the subsystems to be much larger. We adopt this fine
subsystem granularity in our example for expository purposes.

7

a class which is a subsystem entry point triggers a subsystem change; we define
an entry method to be any method on an entry class.

Once the program enters a subsystem, it remains within that subsystem until
it invokes a method in a class that is an entry point for a different subsystem.
So in our example, execution starts within the MAIN subsystem, then moves into
the ED subsystem when the main method invokes the enter method. The ED
subsystem then invokes the EP and EC subsystems to produce and consume the
data.

Note that because the push and pop methods are not subsystem entry points,
invocations of these methods are part of the same subsystem that invoked them.
This approach enables the construction of general-purpose classes that may be
used for different purposes in different subsystems.

2.2 Polymorphic Token Types

Each class has a set of token parameters. The first parameter identifies the token
placed on the class; the other parameters are used to declare the types of the
reference fields of instances of the class. In our example, the Stack <s, i>
class has two parameters: the token variable s identifies the token placed on
stack instances and the token variable i identifies the token placed on items in
the stack. The class can use these token variables to declare the types of its
reference fields and the types of the parameters of its methods.

The program specifies values for the token parameters at object creation
sites. In our example, the enter method uses the statement

Stack<PCS,PCI> s = new stack<PCS,PCI>();
to create a new instance s of the Stack class with tokens PCS (producer/consumer
stack) and PCI (producer/consumer item). This object creation site uses concrete
token values (PCS and PCI). It is possible, however, for the program to use token
variables to specify the tokens at object creation sites. Consider, for example,
the object creation site new Int<i>(n++); inside the produce method. This site
uses the token variable i to identify the token placed in the newly created Int
object.

As our example illustrates, token variables support a form of polymorphism
in which different instantiations of the same class can have different tokens. This
mechanism supports general classes whose instances serve different conceptual
purposes in the computation.

2.3 Analysis

The goal of our analysis is to compute, at the granularity of tokens, the refer-
encing relationships within the program. This information allows the analysis to
characterize structural relationships in the heap. It also serves as a foundation
for computing behavioral information about how subsystems access and share
information.

Our analysis processes the object creation and method call statements to
propagate token variable binding information from callers to callees. In effect,

8

the analysis substitutes out all of the token variables from all of the types,
replacing the variables with the concrete tokens on objects that actually appear
when the program runs.

In our example, the analysis propagates token bindings from the enter
method to the produce and consume methods as follows. At the call to the
produce method, the analysis uses the declared types of p and s to gener-
ate the binding [p 7→ P, s 7→ PCS, i 7→ PCI] for the token variables in the
produce method. It then propagates these bindings to generate the binding
[s 7→ PCS, i 7→ PCI] for the token variables in the push method. In a similar
way, the analysis can substitute out the token variables in the consume and pop
methods to obtain a complete set of bindings for all of the token variables in the
program.

The token propagation algorithm also propagates the current subsystem iden-
tifier between invoked methods. The combined analysis result contains both the
token variable bindings and a binding that indicates the subsystems that may
execute each method. So, in our example, the analysis computes that the push
method may execute as part of the EP subsystem, and that the pop method may
execute as part of the EC subsystem.

At this point, the analysis can use the bindings to compute, for each local
variable, the set of tokens that represent the objects to which the variable may
refer. As described below in Sections 3.4, 3.5, and 3.6, this information enables
the analysis to produce models that characterize the objects that each subsystem
may access and the ways that information may flow between subsystems.

As described below in Section 3.3, the bindings at object creation sites, when
combined with the type declarations for object fields, enable the analysis to
produce an object model that characterizes the referencing relationships between
objects at the granularity of tokens.

Finally, the question may arise how to combine binding information when
different invocations of a single method may have different token variable bind-
ings. Our framework supports both context sensitive approaches (which provide
a separate result for each different combination of the values of the token vari-
ables and subsystems in each method) and context-insensitive approaches (which
combine the different contexts to generate a single mapping of token variables
to possible values valid for all executions). An intermediate approach combines
contexts from the same subsystem but keeps contexts from different subsystems
apart. Our implementation uses a context sensitive approach, which keeps dis-
tinct sets of token variable bindings for each distinct invocation of a method.

2.4 Object Models

In our system, the concrete type of each object, in combination with the types
of the objects that it (transitively) references, characterizes the structure of the
heap reachable from the object. Once our analysis has computed the bindings
for the token variables at each object allocation site, it can use the type declara-
tions for the fields of the object to build an object model that characterizes the
referencing relationships in the part of the heap reachable from that object. This

9

object model is a labelled, directed graph. The nodes in the graph correspond
to tokens; there is an edge between two tokens if one of the objects represented
by the first token may contain a reference to an object represented by the sec-
ond token. The label on the edge is the name of the field that may contain the
reference.

By combining the object models from each of the object creation sites, the
analysis can produce a single object model that characterizes, at the granularity
of tokens, all of the referencing relationships in the entire heap. In some cases it is
also desirable to summarize local variable referencing relationships in the object
model. Our tool can therefore process the local variable declarations to insert an
unlabelled edge between two tokens if a method of an object represented by the
first token has a local variable that may refer to an object represented by the
second token. Figure 2 presents the object model from our example; this object
model contains the unlabelled edges from local variables.2

2.5 Subsystem Access Models

Our analysis processes the statements in each method in the context of the token
variable binding information to extract a subsystem access model. This model
characterizes how subsystems access objects at the granularity of tokens. Each
subsystem access model is a bipartite graph. The nodes in the graph correspond
to subsystems and tokens; there is an edge connecting a subsystem and a token
if the subsystem may access objects represented by the token.

Figure 3 presents the subsystem access model from our example program.
The square nodes represent subsystems; the ellipse nodes represent tokens. The
edge between EP and PCS, for example, indicates that EP may access the stack
used to pass values between the producer and consumer.

Note that this model is not designed to reflect object creation relationships.
For example, the ED (example driver) subsystem creates the Stack object (repre-
sented by the token PCS), the Producer object (represented by the token P), and
the Consumer object (represented by the token C). The subsystem interaction
model is not intended to present these relationships — our analysis does have
enough information to present this object creation information, but we believe it
would be best presented in a separate model that deals only with object creation
relationships. Note also that this model is not designed to present relationships
involving primitive fields — the EP subsystem accesses the primitive field n in
the Producer object, but the model does not contain this information. Once
again, the analysis has the information required to present such relationships,
but we believe it would be better presented elsewhere.
2 We have implemented our type system, analysis, and model extraction algorithms.
To ease the construction of the parser, it accepts a language whose surface syntactic
details differ a bit from those in our example. For example, our implemented system
encloses token parameters in *< and *> instead of < and >. We use the dot graph
presentation system [13] to automatically produce graphical representations of our
extracted models. All of the pictures in this paper were automatically produced using
our implemented system.

10

PCS

PCI

data

D

P C

r

Fig. 2. Object Model

EC

PCI CPCS

EP

Fig. 3. Subsystem Access Model

ED

EP

PCS

EC

PCS

Fig. 4. Call/Return Interaction
Model

C

PCI

EC

PCS

EP, EC EC

Fig. 5. Heap Interaction Model

2.6 Call/Return Interaction Models

Call/return interaction models characterize the control and data flow transfers
that take place when a method in one subsystem invokes a method in a different
subsystem. The model itself is a labelled, directed graph. The nodes correspond
to subsystems; there is a solid edge between two subsystems if a method in the
first subsystem may invoke a method in the second subsystem. There is a dashed
edge if the second method may return an object to the first subsystem. The labels
on the edges are the tokens that represent the objects passed as parameters or
returned as values.

We use the analysis results to extract the call/return interaction model as
follows. At each method call site, we retrieve the bindings that the analysis has
computed for each of the token variables in the types of the parameters. These
bindings identify the tokens that represent the objects passed as parameters
from the caller to the callee. We also extract the subsystems for the caller and
the callee.

11

If the callee is an entry method, the analysis generates a solid edge between
the two subsystems and labels the edge with the set of tokens that represent
the parameters. If the invoked method returns an object, it also generates a
return edge, using the analysis results at the return statement(s) in the callee
to extract the tokens on the label of the return edge. Figure 4 presents the
call/return interaction model in our example.

Note that the call/return model treats a callback as just another method call
in the program code. Like all other method calls, we draw the call and return
edges in the call/return model for callbacks.

2.7 Heap Interaction Models

Heap interaction models capture the indirect interactions that take place via
objects in the heap. The nodes in this model correspond to tokens. There is a
solid edge between two tokens if a subsytem may write a reference to an object
represented by the first token into an object represented by the second token;
there is a dashed edge (in the opposite direction) if a subsystem may read that
reference. The label on each edge is the subsystem that performed the write or
the read.

We use the analysis results to compute the heap interaction model as follows.
At each statement that reads or writes a reference from one object to another
object, we retrieve the subsystems that may execute the statement, and, for each
subsystem, the tokens that represent the two objects. There is an edge between
each possible pair of tokens that represent the source and target objects. The
label on each such edge is the corresponding retrieved subsystem.

Figure 5 presents the heap interaction model for our example. The solid lines
indicate that the EP subsystem may write a PCI object into a PCS object and
that the EC subsystem may write a PCI object into a C object. The dashed line
indicates that the EC subsystem may read the PCI object back out of the PCS
object.

Note that we have placed the PCS token on both the Stack object and the
Node objects that implement the Stack’s internal state, in effect collapsing all
of the objects into a single abstraction in the heap interaction model (and other
models as well). This is an example of how tokens allow the developer to hide
irrelevant detail in the generated models.

2.8 Discussion

As this example illustrates, extracting and using pointer analysis information is
relatively straightforward given the polymorphic token declarations. This infor-
mation allows us to create a broad range of models that characterize the heap
structure of the program, its information access behavior, and both the direct
and the indirect information flow between its subsystems.

We note that our analysis has more information about the program than
it presents in the extracted models. We have chosen our specific set of mod-
els based on our expectations of what developers would find most useful. We

12

envision, however, a much richer interactive program exploration system that
would allow developers to customize the models to include more or less detail
depending on their current needs. To cite just one example, the developer could
choose to display the name and method of each local variable that generated a
given unlabelled edge in the object model. Such a system would give developers
appropriate access to all of the information that the analysis extracts.

3 Analysis and Model Extraction

We next present the analysis and model extraction algorithms. The purpose
of the analysis is to determine all of the possible token variable bindings for
each method. The model extraction algorithms use the bindings to produce the
models.

3.1 Preliminaries and Notation

The program defines a set of tokens t ∈ T, token variables p, v ∈ V ∪ T, a set
of methods m ∈ M, a set of subsystem identifiers s ∈ S, a set of classes k ∈ K,
a set of call sites c ∈ C, and a set of object creation sites o ∈ O. Each class
k has a set of object reference fields f ∈ fields(k). Each call site c may invoke
a set of methods m ∈ callees(c); we compute the call graph information using
a variant of class hierarchy analysis. Each call site c is contained in a method
method(c) and each object creation site o is contained in a method method(o).
If a method m is an entry method, then entry(m) is its subsystem identifier s,
otherwise entry(m) = same, where same is a special identifier indicating that
each invocation of m is part of the same subsystem as its caller. The type of an
object created at an object creation site o is k 〈v1, . . . , vl〉 = type(o), where k is
the class of the new object and v1, . . . , vl are the actual token parameters of the
new object. Each local variable lv ∈ LV has a type k 〈v1, . . . , vl〉 = type(lv). Each
class k has a set of formal token parameters 〈p1, . . . , pl〉 = parms(k) and a set
of object references f k〈v1, . . . , vl〉, where k〈v1, . . . , vl〉 is the type of the object
which field f references.

The analysis produces bindings b ∈ B = T∪V→ T; we require that b(t) = t
for all t ∈ T. The identity function on tokens is Id = λt.t.

3.2 Analysis

The analysis propagates binding information from caller to callee to compute a
set of calling contexts for each method. More specifically, for each method m,
it produces a set of tuples 〈s, b〉 ∈ contexts(m). This set of tuples satisfies the
following context soundness condition:3

3 Note that constructors are treated just like any other method in this analysis.

13

If:

– c is a call site with l + 1 actual parameters4 whose types are
k0 〈v01, . . . , v0n0

〉, . . . , kl 〈vl
1, . . . , v

l
nl
〉,

– c is inside a method mc = method(c),
– 〈s, b〉 ∈ contexts(mc), m ∈ callees(c), and
– m has l + 1 formal parameters whose types are

k0 〈p0
1, . . . , p0

n0
〉, . . . , kl 〈pl

1, . . . , pl
nl
〉,

then 〈s′, [pj
i 7→ b(vj

i).0 ≤ j ≤ l, 1 ≤ i ≤ nj] ∪ Id〉 ∈ contexts(m), where s′ = s if
entry(m) = same, otherwise s′ = entry(m).

The analysis produces an analysis result that satisfies this condition by prop-
agating token bindings in a top-down fashion from callers to callees starting
with the main method. It initializes the analysis by setting contexts(main) =
{〈MAIN, Id〉}. It uses a fixed-point computation within strongly connected com-
ponents of the call graph to ensure that the final result satisfies the context
soundness condition. Note that this algorithm produces a completely context-
sensitive solution in that it records each context separately in the analysis result.
It is also possible to adjust the algorithm to merge contexts and produce a less
context-sensitive result.

3.3 Object Model Extraction

Figure 6 presents the object model extraction algorithm. This algorithm pro-
duces a set of nodes N ⊆ T and a set of labelled edges E of the form 〈t1, f, t2〉;
each such edge indicates that the field f in an object represented by token t1
may contain a reference to an object represented by token t2. The algorithm
processes all of the object creation sites o in the program; for each site, it uses
the token variable bindings produced by the analysis to determine the potential
token instantiations for objects created at that site. It then uses the bindings
to trace out the part of the heap reachable from objects created at that site.
The visit algorithm uses a set V of visited class/binding pairs to ensure that it
terminates in the presence of recursive data structures.

Note that this algorithm produces only the labelled edges for the heap refer-
ences. Our implemented algorithm also processes the local variable declarations
to add the unlabelled edges that summarize potential referencing relationships
associated with the local variables in each class.

3.4 Subsystem Access Model Extraction

Figure 7 presents the subsystem access model extraction algorithm. It produces
a set of nodes N ⊆ S ∪ T and a set of edges E of the form 〈s, t〉; each such edge
indicates that the subsystem s may access an object represented by token t. The
4 By convention, the receiver is parameter 0.

14

set N = ∅, E = ∅, V = ∅
for all object creation sites o ∈ O
let m = method(o)
let k〈v1, . . . , vl〉 = type(o)
let 〈p1, . . . , pl〉 = parms(k)
for all 〈s, b〉 ∈ contexts(m)
visit(k, [pi 7→ b(vi).1 ≤ i ≤ l] ∪ Id)

visit(k, b)
if 〈k, b〉 6∈ V then
let 〈v1, . . . , vl〉 = parms(k)
set N = N ∪ {b(v1)}
set V = V ∪ {〈k, b〉}
for all f k′〈v′1, . . . v′j〉 ∈ refs(k)
set E = E ∪ {〈b(v1), f, b(v′1)〉}
let 〈p1, . . . , pj〉 = parms(k′)
visit(k′, [pi 7→ b(v′i).1 ≤ i ≤ j] ∪ Id)

Fig. 6. Object Model Extraction Algorithm

algorithm processes all of the accesses in the program, retrieving the binding
information produced by the analysis to determine 1) the subsystems that can
execute the access and 2) the tokens that represent the accessed objects. Note
that, as described earlier in Section 2, this model is not designed to capture
accesses to primitive fields.

set N = ∅, E = ∅
for each method m
for each access lv.f in m
let k 〈v1, . . . , vl〉 = type(lv)
for each 〈s, b〉 ∈ contexts(m)
set N = N ∪ {s, b(v1)}
set E = E ∪ {〈s, b(v1)〉}

Fig. 7. Subsystem Access Model Extraction Algorithm

3.5 Call/Return Interaction Model Extraction

Figure 8 presents the call/return model extraction algorithm. It produces a set of
nodes N ⊆ S and a set of edges E of the form 〈s1, t, s2〉. The algorithm processes
all of the call sites in the program, retrieving the binding information produced
by the analysis to determine 1) if the call site may invoke an entry method of
a different subsystem, and 2) if so, the tokens that represent the objects passed
as parameters between the subsystems. Note that there is an edge for each such
token. To eliminate visual clutter, our model display algorithm coalesces all
edges between the same two subsystems, producing a single edge with a list of
the tokens passed as parameters between the subsystems.

The algorithm in Figure 8 does not generate the return edges. Our imple-
mented algorithm generates these edges by similarly processing the return state-
ments of entry methods.

15

set N = ∅, E = ∅
for each call site c
for each 〈s, b〉 ∈ contexts(method(c))
for each m ∈ callees(c)
let s′ = entry(m)
if s′ 6= same and s′ 6= s then
set N = N ∪ {s, s′}
let k0 〈v01, . . . , v0n0〉, . . . , kl 〈vl

1, . . . , vl
nl
〉 be the types

of the actual parameters at the call site c
set E = E ∪ {〈s, b(vi

1), s′〉.1 ≤ i ≤ l}

Fig. 8. Call/Return Model Extraction Algorithm

3.6 Heap Interaction Model Extraction

The heap interaction model extraction algorithm produces a set of nodes N ⊆ T
and two sets of edges. The write edges W ⊆ T × S × T summarize the write
interactions; an edge 〈t1, s, t2〉 ∈ W indicates that the subsytem s may write
a reference to an object represented by token t1 into an object represented by
token t2. The read edges R ⊆ T×S×T summarize the read interactions; an edge
〈t1, s, t2〉 ∈ R indicates that the subsytem s may read a reference to an object
represented by token t2 from an object represented by token t1.

set W = ∅
for each method m
for each write access lv1.f = lv2 in m
let k1 〈v11, . . . , v1l1〉 = type(lv1)
let k2 〈v21, . . . , v2l2〉 = type(lv2)
for each 〈s, b〉 ∈ contexts(m)
if (b(v11) 6= b(v21) then
set N = N ∪ {b(v11), b(v21)}
set W = W ∪ {〈b(v21), s, b(v11)〉}

Fig. 9. Heap Interaction Model Extraction Algorithm

Figure 9 presents the algorithm that extracts the write interactions W . The
algorithm processes all of the write accesses in the program, retrieving the bind-
ing information produced by the analysis to determine 1) the subsystems that
may perform the write and 2) the tokens that represent the accessed objects.
The algorithm that extracts the read interactions is similar. The set of nodes N
is initialized to ∅ before the read and write interaction algorithms execute.

16

4 Type System

We next present a formal treatment of the type system. The type system is used
to check token consistency constraints. Its primary purpose is to verify that
the token declarations match at assignment and method invocation statements.
These checks help ensure that our models are sound; in particular, they ensure
that the type declarations in object fields correctly reflect the structure of the
heap. We realize our type system as a set of typing rules for a simplified core
language, whose grammar is in Figure 10. To simplify the presentation, we omit
subsystems from the formal treatment.

P ::= token∗ defn∗

defn ::= class cn〈t∗〉 {field∗meth∗}
field ::= τ fd

τ ::= cn〈t+〉 | Object〈t〉
meth ::= pn〈t∗〉(arg∗) {local∗ s∗}
token ::= tn

t ::= formal | tn
arg ::= τ x

local ::= τ y

s ::= x = e | x.fd = y | x = new c〈t+〉 |
e.pn〈t∗〉(e∗) |
l : | goto l | if cond then l else l

e ::= y | y.fd
cond ::= e==e | e!=e

formal ∈ formal token names
cn ∈ class names
fd ∈ field names

mn ∈ method names
tn ∈ token names

x, y ∈ variable names
l ∈ statement labels

Fig. 10. Grammar for core language

Figure 16 presents the static type rules that define the type checker; their
meaning is explained in Figure 15. Formally, a program consists of a sequence
of class definitions, containing method, field and token definitions, as well as
token definitions (see Rule [PROG] in Figure 16). The goal is to derive the type
judgement ` P , indicating that the program satisfies the static type constraints.

The type system checks each method in turn by using the type declarations
of its class in conjunction with the method parameter definitions to construct

17

an initial typing environment for the method (see Rule [METH]). The type
system then checks each statement of the method in turn (Rules [STMT NEW]
through [STMT INVOKE]). For each statement, it attempts to derive a typing
judgement of the form P ; E ` s, which indicates that the statement type-checks
in the context of the program P and the typing environment E. The typing
environment E binds variables to types and provides the list of formal token
variables. The Rule [STMT INVOKE] ensures that a method call may only
occur when the necessary conditions hold.

5 Experience

We have implemented a prototype version of our system by extending the Kopi
Java compiler.5 We tested our approach on Tagger, a text formatting system
written by Daniel Jackson. Tagger consists of 1721 lines of Java code and 14
classes (not counting the standard Java libraries). It accepts a text file augmented
with formatting commands as input and produces as output another text file in
the Quark document definition language.

We first augmented Tagger with subsystem and token annotations. This aug-
mentation increased the number of lines of code to 1755. We added token and/or
subsystem annotations to a total of 201 lines of code. There was no perceptible
compile-time overhead associated with analyzing the annotated code and pro-
ducing models. Our system does not incur any run-time overhead because we
exclusively use static techniques.

5.1 Subsystems of Tagger

We first discuss the subsystems we added to Tagger. Our augmented version has
the following subsystems, with one subsystem entry point class per subsystem:

– ParsS: The parser subsystem, which contains code to read the input file,
group characters into words, and recognize formatting commands.

– PMapS: The property management subsystem, which manages the data
structures that control the translation between each Tagger formatting com-
mand and the corresponding Quark output.

– ActS: The action subsystem, which uses the property management subsys-
tem to translate Tagger commands into Quark commands, then passes the
output to the generation subsystem.

– GenS: The generation subystem, which produces the output Quark docu-
ment. This subsystem manages the translation of the Quark commands into
a flat stream of output symbols. It is responsible for generating the surface
syntax of the Quark document and producing the output file.

– EngS: The engine subsystem, which processes the Tagger commands and
serially dispatches each command to the Act subsystem.

5 Available at http://www.dms.at/kopi/

18

MainS

PMapS

StyMap, NumStr, PMap, PMap

ParsS

Pars, SrcTok, IRead, ParSty

EngS

Eng, Pars, Gen, PMap, IndStrm

GenS

Gen, OStrm

PSet, NumStr, PVal

PVal ActS

NumStr, PVal

SrcTok

PMap

Gen, OStrm

NumStr, PMap, PMap

Eng, Pars, Gen, PMap, IndStrm

Gen, OStrm

Fig. 11. Call/return model for Tagger

– MainS: The main subsystem, which initializes the system and implements
the connection between the Pars subsystem, which reads the input file, and
the Act subsystem, which processes the text and Tagger commands in the
file.

Of the original 14 classes, six are subsystem entry point classes in the an-
notated version. Two more are abstract superclasses of subsystem entry point
classes. Another two are used to transfer data between the Pars, Eng, Act, and
Gen subsystems; their methods simply store and retrieve the transferred data.
Another class reads in the configuration data that governs the translation from
Tagger to Quark formatting commands; this class is encapsulated within the
PMap subsystem. Another two store updatable processing state relating to the
output document, for example the current position in an itemized list of para-
graphs. These classes are encapsulated inside the Eng subsystem. The remaining
class manages assertions.

In Figure 11, we present the call/return interaction model for Tagger. We can
observe that the GenS subsystem is invoked by the ActS, EngS and MainS
subsystems; our analysis guarantees that GenS is only called by these three
subsystems. Note also that there is no edge between PMapS and GenS: the
generator does not invoke the property management subsystem. In addition to
the invocation relationships, this diagram presents the tokens that represent the
objects that carry data between subsystems.

5.2 Tokens of Tagger

To present the other models, we need to discuss the token structure of Tagger.
We have augmented Tagger with 16 tokens, some of which represent system
classes, such as EStrm, the standard error output stream. The tokens are:

19

NumStr

CtrPMap

style_map

EStrm

error_stream

PList Prop

Gen

OStrm

output_stream

Eng

Pars

error_reporter

IRead

reader

ParSty

parastyles

SrcTok

tok

StyMap

PName

property

PVal

value

Fig. 12. Object model for Tagger

– Gen, Eng, Pars: These tokens represent objects that are required by the
generator, engine, and parser, respectively.

– NumStr, Ctr: These tokens represent objects containing state for list coun-
ters used in the Tagger source.

– SrcTok: This token represents objects containing the input characters read
by the parser, and passed to the engine.

– PMap, PList, PName, PVal: These tokens are owned by the prop-
erty management subsystem PMapS, and represent objects containing text
properties and maps thereof.

– StyMap, ParSty: These tokens represent objects containing particular
property maps, used for storing character and paragraph style information.

– IRead: This token represents the input stream object, from which Tagger
reads its input data.

– EStrm, OStrm: These tokens represent the system output and error output
stream objects.

In Figure 12 we show the object model for Tagger. This model illustrates
the reachability relations in the heap, and records what state is held by which
tokens. Note that a Gen object refers only to an OStrm object, which holds
the output stream.

5.3 Combining Subsystems and Tokens

Our analysis makes both subsystem and token information available. We can
combine this information to give the subsystem access and heap interaction
models.

20

PMapS

PList PropNumStr StyMap Ctr PParsPMap

EngS

ActS

GenEng SrcTok

GenSParsS

Pars

Fig. 13. Subsystem Access Model for Tagger

The subsystem access model is illustrated in Figure 13. We can observe, for
instance, that the EngS, ActS and ParsS subsystems all use SrcTok tokens.
This strongly suggests that they might use heap objects with SrcTok tokens to
indirectly communicate between themselves: we expect that the parser subsys-
tem must somehow share information with the action subsystem, and there are
no direct interactions in the call/return model. In Figure 14 we present the heap
interaction model for Tagger.

6 Related Work

We discuss related work in the areas of software model extraction, pointer anal-
ysis, and ownership types. We also briefly compare the models we extract with
the models present in the Unified Modelling Language.

Pars

EStrm

PMapS

IRead

ParsS

SrcTok

ParsS

ParSty

ParsSActS, EngS

NumStr

PMapS PMapS

PMap

PMapS PMapS

Gen

OStrm

GenS GenSParsS ParsS ParsS

PName

Prop

PMapS PMapS

PVal

PMapS PMapS

Fig. 14. Heap Interaction Model for Tagger

21

6.1 Modeling Extraction

Software models play a key role in most software development processes [28, 12].
Modeling is usually carried out during the design phase as a way of exploring and
specifying the design. The design is then usually implemented by hand, opening
up the possibility of inconsistencies between the design and the implementation.
The software engineering community has long recognized the need for tools to
help ensure that the software conforms to its design [17]. Automatic model ex-
traction is a particularly appealing alternative, because it holds out the promise
of delivering models that are guaranteed to correctly reflect the structure of the
implementation.

There are tools currently on the market which can both automatically extract
UML models from code and generate skeletal code from UML models, e.g. To-
getherJ by TogetherSoft and Rational Rose. These tools use heuristics to extract
(possibly unsound) UML design information from the source code. There is also
a Java Specification Request underway[4] which would extend Java to permit
developers to embed arbitrary metadata into their code, including for instance
UML design information. While this embedding may facilitate the process of
manually updating the design information to match the implementation, there
is still no guaranteed connection.

Control-Flow Interactions Most previous model extraction systems have fo-
cused on control-flow interactions. The software reflexion system [21], for exam-
ple, automatically extracts an abstraction of the call graph and enables the devel-
oper to compare this abstraction with a high-level module dependency diagram.
Like our system, ArchJava [1] enables the extraction of software architecture
information embedded directly into program code. Its approach augments Java
with the software architecture concepts of components, connections, and ports;
ArchJava then enforces the constraint that all inter-component control transfers
must take place through ports (ensuring communication integrity). This enables
the automatic extraction of communication diagrams similar to our call/return
interaction models. Note in particular that ArchJava summarizes only control-
flow interactions; it does not handle heap-mediated interaction between compo-
nents; our system, on the other hand, was designed to capture the structure of
heap-mediated interaction between subsystems.

Our use of polymorphic token types and the associated analysis enables us
to capture a wider range of design issues; specifically structural issues associated
with referencing relationships between objects in the heap and information flow
issues associated with method invocations. Most importantly, we also capture
indirect information flow between subsystems that takes place via objects in the
heap. To the best of our knowledge, all previous systems do not attempt to per-
form the analysis that would enable them to capture these kinds of dependences.
This raises the possibility that the extracted models fail to accurately capture
all important interactions.

22

Object Model Extraction Standard approaches for extracting object models
from code treat each class as a unit. In type-safe languages, it is even possible
to extract a (relatively crude) object model directly from the type declarations
of the fields in the objects. Problems with this approach include conflation of
different instances of general-purpose classes and overly detailed object models
because of a failure to abstract internal data structures. Womble [18] attacks the
latter failure by treating collection classes separately as relations between ob-
jects. Womble is also unsound in that the extracted model may fail to accurately
characterize the referencing relationships. In contrast, our extracted object mod-
els are sound and avoid both conflation of instances of general-purpose classes
and excessive detail associated with failing to abstract internal data structures.

6.2 Comparison with UML

We next compare our extracted models to UML models. A primary difference
underlying the two approaches is that UML was designed solely as a design
abstraction with (at least in principle) no formally precise connection with the
code that implements the design. One of the primary goals of our approach, on
the other hand, is to establish such a connection and to ensure that our extracted
models are sound (i.e., correctly reflect all potential implementation behaviors).
We view this connection as necessary to ensure that the models remain consistent
with the implementation and therefore a useful source of information about the
design. We have found that realizing such a connection caused our models to
differ, in some cases substantially, from standard UML models.

Class Diagrams and Object Models UML class diagrams are designed, in
part, to characterize relationships between objects in the heap. The standard
interpretation of a UML object model is that each box represents a class and
each arrow represents a relationship between instances of the involved classes.
Our object models also capture this kind of structural information. But each
box corresponds to a token, not a class, and the arrows represent relationships
derived from object referencing relationships in the heap.

We found that the lack of a connection between the design and code can
actually help the designer to deliver a clear, effective design — the designer has
great flexibility to adjust the design to present the most important and relevant
aspects of the envisioned implementation. In particular, UML allows designers
to elide instances of auxiliary classes such as the list nodes in a collection. It
also allows designers to draw two distinct boxes that correspond to the same
class in the implementation — a clear case of the designer using multiple design
elements that correspond to a single code element. We designed tokens, in part,
to enable the designer to adjust the granularity of the extracted design in similar
ways.

UML also allows the developer to present arbitrary relationships that may
be implemented in a variety of ways. All of the relationships in our models, on
the other hand, are derived from referencing relationships in the implemented

23

data structures. While we support derived relationships that are implemented
by multiple fields working together and enable the developer to hide irrelevant
referencing relationships, our models do not capture relationships that do not
have a concrete realization as references in the heap. As this discussion illustrates,
we believe that any guaranteed connection will inevitably reduce the flexibility
of expressing the design because of the constraints imposed by the enforcing the
connection.

Interaction Diagrams and Call/Return Models UML interaction dia-
grams (sequence and collaboration diagrams) typically summarize the control-
flow interactions which occur in one specific or several related executions of a
program (a use case). Our call/return models also summarize these kinds of in-
teractions, but because they are sound, they capture all potential interactions
that may happen in any execution, not just the execution that corresponds to a
given use case.

We note that this distinction reflects the different contexts in which UML
and our system were developed. UML diagrams are primarily intended to be
produced by designers. It is much easier and more productive for the designer to
produce partial diagrams that capture important scenarios rather than tediously
listing all possible interactions. An automated tool, however, has no problem
enumerating all possible interactions. It is, of course, possible to eliminate any
clutter by hiding interactions that may be considered irrelevant.

State Diagrams UML state diagrams capture the conceptual state transitions
that objects take during their lifetimes in the computation. In our system, the
state of an object can be represented by the token on the object and changed
when there is a change in the object state. Currently, we support token changes
only for objects which have at most one heap reference; in this case, the holder of
the reference can change the token on the object. Because of problems associated
with ensuring the soundness of such token changes in the presence of aliasing, we
do not currently support token changes for objects that may have multiple ref-
erences. Once we extend our system using roles [19] to allow controlled aliasing
of objects, we will be able to generate transition diagrams for arbitrary objects
as their tokens (and therefore their conceptual states) change throughout the
computation. This discussion highlights another complication which arises be-
cause of our goal of establishing a sound connection between the design and the
implementation.

Indirect Interaction Models We view our indirect interaction models as
providing a substatial benefit missing in UML: they summarize the indirect in-
teractions that may take place via objects allocated in the heap. We decided
to support indirect interaction models both because of the importance of these
kinds of interactions in many programs, and for completeness: we wished to allow
developers to reason about the independence of different subsystems. Specifically,

24

our goal was to ensure that if none of our models indicated a potential interaction
between two subsystems, one subsystem could not affect the other subsystem.6
We believe that UML would benefit from the introduction of a model that cap-
tured indirect heap interactions.

6.3 Pointer Analysis

Pointer analysis has been an active area of research for well over 15 years. Ap-
proaches range from efficient flow- and context-insensitive approaches [3, 27, 26,
23, 15, 11, 16] to potentially more precise but less efficient flow- and context-
sensitive approaches [24, 29, 14, 8, 20, 25]. These approaches vary in whether they
create a result for each program point (flow-sensitive analyses) or one result for
the entire program (flow-insensitive analyses). They also vary in whether they
produce a result for each calling context (context-sensitive analyses) or one result
that is valid for all calling contexts (context-insensitive analyses). There are also
flow-insensitive but context-sensitive analyses that produce a single parameter-
ized result for each procedure that can be specialized for each different calling
context [22].

From our perspective, a primary difference between existing pointer analysis
algorithms and our approach is the flexibility our approach offers in selecting
object representatives. Specifically, our polymorphic type system enables the
developer to separate objects allocated at the same object creation site in the
generated model. We believe this separation is crucial to delivering models that
accurately reflect the conceptual purposes of the different objects in the compu-
tation. Of course, obtaining this additional precision requires the developer to
provide the polymorphic type declarations.

Another difference is that because the type declarations in our programs
characterize the points-to relations in the reachable region of the heap, there
is no need to analyze the individual store and load instructions to synthesize a
points-to graph. Instead, the analysis can simply propagate tokens to substitute
token variables out of the polymorphic types. The analysis needs to process the
load and store instructions only to generate the heap interaction graph.

Our approach is quite flexible in the degree of context-sensitivity that it
provides. It is possible to tune the analysis to produce a separate result for
each combination of token variable and subsystem values, a result that separates
subsystems but combines information within a single subsystem, or a single result
for each method. Our implementation currently produces a separate result for
each distinct instantiation of token variable and subsystem values.

6.4 Ownership Types

Ownership type systems are designed to enforce object encapsulation proper-
ties [10, 7, 6, 9, 2]. In this capacity, they can be used to ensure that objects from
one instance of an abstraction are not used to inappropriately communicate with
6 With the possible exception of timing channels.

25

other instances of the same abstraction [5, 2]. For example, one might use own-
ership types in a multithreaded web server to ensure that the sockets associated
with one server thread do not escape to be used by another server thread.

Our system focuses on extracting communication patterns. Encapsulation
violations in our system therefore show up as unexpected communication. We
would attack the problem of verifying encapsulation properties by enabling the
developer to state desired properties, then checking the appropriate extracted
model to verify that the program did not violate these properties.

7 Conclusion

The software engineering community has long recognized the need for tools to
help ensure that the software conforms to its design. Our implemented system,
with its polymorphic type system, analysis, and automatic model extractors,
takes an important step towards this goal of verified design. Our models cap-
ture important information about the program; because they are automatically
generated, they are guaranteed to accurately reflect the program’s structure and
behavior. The sound heap aliasing information provided by our combined type
system and analysis enables the extraction of both structural object referencing
models and behavioral models that characterize not only direct interactions that
take place at method and procedure calls, but also indirect interactions mediated
by objects in the heap.

We believe our approach holds out the promise of integrating the design
effectively into the entire lifecycle of the software. Today, in contrast, design
models tend to become increasingly less reliable (and therefore less relevant)
as development proceeds into the implementation and maintenance phases. The
potential result would be a more powerful and pervasive notion of design, leading
to more reliable systems and more economical development.

Acknowledgements

The authors would like to thank Derek Rayside for much useful feedback on the
paper.

References

1. J. Aldrich, C. Chambers, and D. Notkin. Archjava: Connecting software architec-
ture to implementation. In 24th International Conference on Software Engineering,
Orlando, FL, May 2002.

2. J. Aldrich, V. Kostadinov, and C. Chambers. Alias annotations for program un-
derstanding. In Proceedings of the 17th Annual Conference on Object-Oriented
Programming Systems, Languages and Applications, Seattle, WA, Nov. 2002.

3. L. O. Andersen. Program Analysis and Specialization for the C Programming Lan-
guage. PhD thesis, DIKU, University of Copenhagen, May 1994.

26

4. J. Bloch et al. JSR175: A metadata facility for the JavaTM programming language,
Apr 2002.

5. B. Bokowski and J. Vitek. Confined types. In Proceedings of the 14th Annual Con-
ference on Object-Oriented Programming Systems, Languages and Applications,
Denver, CO, Nov. 1999.

6. C. Boyapati, R. Lee, and M. Rinard. Ownership types for safe programming:
Preventing data races and deadlocks. In Proceedings of the 17th Annual Conference
on Object-Oriented Programming Systems, Languages and Applications, Seattle,
WA, Nov. 2002.

7. C. Boyapati and M. Rinard. A parameterized type system for race-free Java pro-
grams. In Proceedings of the 16th Annual Conference on Object-Oriented Program-
ming Systems, Languages and Applications, Tampa Bay, Florida, Oct. 2001.

8. J. Choi, M. Burke, and P. Carini. Efficient flow-sensitive interprocedural computa-
tion of pointer-induced aliases and side effects. In Conference Record of the Twenti-
eth Annual Symposium on Principles of Programming Languages, Charleston, SC,
Jan. 1993. ACM.

9. D. Clarke and S. Drossopoulou. Ownership, encapsulation and disjointness of
type and effect. In Proceedings of the 17th Annual Conference on Object-Oriented
Programming Systems, Languages and Applications, Seattle, WA, Nov. 2002.

10. D. Clarke, J. Potter, and J. Noble. Ownership types for flexible alias protection.
In Proceedings of the 13th Annual Conference on Object-Oriented Programming
Systems, Languages and Applications, Vancouver, Canada, Oct. 1998.

11. M. Das. Unification-based pointer analysis with directional assignments. In Pro-
ceedings of the SIGPLAN ’00 Conference on Program Language Design and Im-
plementation, Vancouver, Canada, June 2000.

12. D. D’Souza and A. Wills. Objects, Components, and Frameworks with UML: the
catalysis approach. Addison-Wesley, Reading, Mass., 1998.

13. J. Ellson, E. Ganser, E. Koutsofios, and S. North. Graphviz. Available from
http://www.research.att.com/sw/tools/graphviz.

14. M. Emami, R. Ghiya, and L. Hendren. Context-sensitive interprocedural points-
to analysis in the presence of function pointers. In Proceedings of the SIGPLAN
’94 Conference on Program Language Design and Implementation, pages 242–256,
Orlando, FL, June 1994. ACM, New York.

15. M. Fahndrich, J. Foster, Z. Su, and A. Aiken. Partial online cycle elimination in
inclusion constraint graphs. In Proceedings of the SIGPLAN ’98 Conference on
Program Language Design and Implementation, Montreal, Canada, June 1998.

16. N. Heintze and O. Tardieu. Ultra-fast aliasing using CLA: A million lines of code
in a second. In Proceedings of the SIGPLAN ’01 Conference on Program Language
Design and Implementation, Snowbird, UT, June 2001.

17. D. Jackson and M. Rinard. The future of software analysis. In A. Finkelstein,
editor, The Future of Software Engineering. ACM, New York, June 2000.

18. D. Jackson and A. Waingold. Lightweight extraction of object models from byte-
code. In 21st International Conference on Software Engineering, Los Angeles, CA,
May 1999.

19. V. Kuncak, P. Lam, and M. Rinard. Role analysis. In Proceedings of the 29th
Annual ACM Symposium on the Principles of Programming Languages, Portland,
OR, Jan. 2002.

20. W. Landi and B. Ryder. A safe approximation algorithm for interprocedural
pointer aliasing. In Proceedings of the SIGPLAN ’92 Conference on Program Lan-
guage Design and Implementation, San Francisco, CA, June 1992.

27

21. G. Murphy, D. Notkin, and K. Sullivan. Software reflexion models: Bridging the
gap between source and high-level models. In Proceedings of the ACM SIGSOFT
95 Symposium on the Foundations of Software Engineering, Washington, DC, Oct.
1995.

22. R. O’Callahan. Generalized Aliasing as a Basis for Program Analysis Tools. PhD
thesis, School of Computer Science, Carnegie Mellon Univ., Pittsburgh, PA, Nov.
2000.

23. R. O’Callahan and D. Jackson. Lackwit: A program understanding tool based on
type inference. In 1997 International Conference on Software Engineering, Boston,
MA, May 1997.

24. E. Ruf. Context-insensitive alias analysis reconsidered. In Proceedings of the SIG-
PLAN ’95 Conference on Program Language Design and Implementation, La Jolla,
CA, June 1995.

25. A. Salcianu and M. Rinard. Pointer and escape analysis for multithreaded pro-
grams. In Proceedings of the 8th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, Snowbird, UT, June 2001.

26. M. Shapiro and S. Horwitz. Fast and accurate flow-insensitive points-to analysis. In
Proceedings of the 24th Annual ACM Symposium on the Principles of Programming
Languages, Paris, France, Jan. 1997.

27. B. Steensgaard. Points-to analysis in almost linear time. In Proceedings of the
23rd Annual ACM Symposium on the Principles of Programming Languages, St.
Petersburg Beach, FL, Jan. 1996.

28. J. Warmer and A. Kieppe. The Object Constraint Language: Precise Modeling with
UML. Addison-Wesley, Reading, Mass., Redwood City, CA, 1998.

29. R. Wilson and M. Lam. Efficient context-sensitive pointer analysis for C programs.
In Proceedings of the SIGPLAN ’95 Conference on Program Language Design and
Implementation, La Jolla, CA, June 1995. ACM, New York.

Judgement Meaning
` P program P is well-typed
P ` token token is a well-formed token
P ` defn defn is a well-formed class definition
P ;E ` meth meth is a well-formed method
P ;E ` field field is a well-formed field
P ` field ∈ cn〈f1..n〉 class cn with formal parameters f1..n declares field field
P ;E ` wf E is a well-formed typing environment
P ;E `token t t is a token defined in the program or the environment
P ;E ` τ τ is a well-formed type
P ;E ` e:τ expression e has type τ
P ;E ` cond condition cond is well-typed
P ;E ` s statement s is well-typed

Fig. 15. Meaning of Judgements in Type System

28

` P

[PROG]
ClassesOnce(P) FieldsOnce(P)

MethodsOnce(P) TokensOnce(P) JumpsLocal(P)
P = token1..mdefn1..n P ` tokeni P ` defni

` P

P ` defn

[CLASS]
gi = tokenfi E = g1..n

P ;E ` fieldi P ;E ` methi

P ` class cn〈f1..n〉 {field1..j meth1..m}

P ;E ` meth

[METH]
P ` class c〈f1..n〉 {· · ·methmn · · · }

argi = cni〈fi1..imi
〉vni localj = cnj〈fj1..jmj

〉lnj

E = E0, arg1..n, localn+1..n+l ∀i ∈ [1..t]. P ;E ` si

∀n, k. (∃m. fnk
= fm ∨ P `token fnk

) P ;E0 ` wf
P ;E ` mn〈f1..r〉(arg1..n) {localn+1..n+l s1..t}

P ;E ` wf

[ENV ∅]

P ;∅ ` wf

[ENV TOKEN FORMAL]
P ;E ` wf tn 6∈ Dom(E)

P ;E, token tn ` wf

[ENV X]
P ;E ` τ x 6∈ Dom(E)

P ;E, τ x ` wf

P ;E ` field

[FIELD INIT]
P ;E ` τ

P ;E ` τ fd

P ;E ` field ∈ c

[FIELD DECLARED]
P ;E ` class c〈f1..n〉 {· · · fd · · · }

P ;E ` τ fd
P ;E ` fd ∈ c〈f1..n〉

P ` token

[TOKEN]

P ` token tn

P ;E `token t

[TOKEN GB’L REF]
P = · · · token t · · ·

P ;E `token t

[TOKEN FORMAL]
E = E1, token t, E2

P ;E ` wf
P ;E `token t

P ;E ` τ

[TYPE OBJECT]
P ;E `token t

P ;E ` Object〈t〉

[TYPE C]
P ` class cn〈f1..n〉 · · ·

P `token t1..n

P ;E ` cn〈t1..n〉
P ;E ` cond

[COND EQ]
P ;E ` e1
P ;E ` e2

P ;E ` e1==e2

[COND NEQ]
P ;E ` e1
P ;E ` e2

P ;E ` e1!=e2

P ;E ` e:τ

[EXP VAR READ]
E = E1, τ y, E2

τ = c〈t1..n〉
P ;E ` y:τ

[EXP FIELD READ]
E = E1, τy y, E2 τy = cy〈ty

1..m〉
τf = cf 〈tf

1..n〉 P ` (τf fd) ∈ τy

P ;E `token ty
1 P ;E `token tf

1
P ;E ` y.fd:τf [tf

1/ty
f(1)] · · · [tf

m/ty
f(m)]

P ;E ` s

[STMT NEW]
E = E1, τ x, E2 τ = c〈t1..n〉

P ;E ` c〈f1..n〉
P ;E ` x = new c〈t1..n〉

[STMT READ/COPY]
E = E1, τ x, E2

P ;E ` e:τ
P ;E ` x = e

[STMT LABEL]
P ;E ` wf
P ;E ` `:

[STMT GOTO]
P ;E ` wf

P ;E ` goto `

[STMT IF]
P ;E ` `1: P ;E ` `2:

P ;E ` cond
P ;E ` ifcond then `1else `2

[STMT WRITE]
E = E1, τx x, E2 E = E′1, τy y, E′2

τx = cx〈tx
1..n〉 τy = cy〈ty

1..m〉
P ;E `token tx

1 P ;E `token ty
1

P ;E ` (τy fd) ∈ τx

P ;E ` x.fd = y

[STMT INVOKE]
P ;E ` mn〈f1..r〉(τj yj)j∈1..n{· · · }

P ;E `token ai τj = cnj〈fj1..jmj
〉 τ ′j = τj [ai/fi] aj1 = fj1 [ai/fi] P ;E `token aj1

P ;E ` e′j :τ
′
j P ;E ` a0:τ0 τ0 = cn〈f1..m0 〉 methmn ∈ cn

P ;E ` a0.mn〈a1..r〉(e′1..n)

Fig. 16. Type Rules

