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Abstract

Standard techniques for analysing sequential programs are severely constrained when
applied to a concurrent program because they cannot take full advantage of the con-
current structure of the program. In this work, we overcome this limitation using a
novel approach which “lifts” a sequential dataflow analysis to a concurrent analysis.
First, we introduce concurrency primitives which abstract away from the details of
how concurrency features are implemented in real programming languages. Using
these primitives, we describe how sequential analyses can be made applicable to con-
current programs. Under some circumstances, there is no penalty for concurrency:
our method produces results which are as precise as the sequential analysis. Our
lifting is straightforward, and we illustrate it on some standard analyses — available
expressions, live variables and generalized constant propagation. Finally, we describe
how concurrency features of real languages can be expressed using our abstract con-
currency primitives, and present analyses for finding our concurrency primitives in

real programs.
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Résumé

Les méthodes généralement utilisées pour analyser les programmes sequentiels sont
tres limitées lorsqu’appliquées aux programmes construits avec des processus indép-
endents: elles ne peuvent se servir pleinement de la structure partiellement ordonnée
des élements du programme. Nous proposons ici une approche originale qui dépasse
ces limites en permettant d’appliquer des méthodes d’analyses standards aux pro-
grammes paralleles. Nous commencons par introduire des primitives qui nous per-
mettent de faire abstraction des différentes implantations de synchronizations et de
démarrage de processus indépendants. Graces a ces primitives nous décrivons com-
ment des analyses séquentielles peuvent étre appliquées aux programmes simultanés.
Nous démontrons que, dans certains cas, les résultats de ces analyses sont aussi précis
que ceux d’analyses classiques. Notre méthode de généralisation d’analyse est sim-
ple. Nous en donnons quelques exemples: <available expressions»>, «live variables> et
<generalized constant propagation>. Finalement, nous décrivons comment les primi-
tives de quelques langages de programmation correspondent aux primitives que nous

avons présentés, et proposons des algorithmes pour décerner ces dernieres.
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Chapter 1

Introduction

Concurrent programs exist, and in increasing numbers. Compiler techniques have
traditionally focussed on improving sequential programs. In this work, we provide a
general method for making analyses of sequential programs applicable to concurrent
programs. Our method is general in the sense that it is applicable to a large num-
ber of sequential analyses; furthermore, our examples will show that our method is
quite simple to apply. Using our techniques, compilers will also be able to improve

concurrent programs.

Two recent trends have accelerated the development of concurrent programs. Sym-
metric multi-processor (SMP) computers are becoming increasingly available; writers
of concurrent programs hope that parallelism will make their programs execute more
quickly. At the same time, concurrency primitives are appearing in mainstream pro-
gramming languages such as Java; they have long been present in Ada and CML. Pro-
grammers may use concurrency hoping for improved performance from parallelism,
or alternately because it is the best way to solve a problem at hand. The latter
phenomenon occurs when programming window systems, for example; each window
corresponds readily to a separate thread. In any case, compiler writers must account

for the effects of concurrency to correctly translate, and optimize, these programs.

In this work, we will deal with concurrent programs. There is a large body of work

examining how to extract parallelism from ordinary sequential programs, in order to



speed them up. Our study is orthogonal to this body of work. In our case, we have

a program explicitly containing concurrency primitives, and we wish to analyse it.

The key difference between sequential programs and concurrent programs is that
sequential programs have a single thread of execution and a total ordering between
statements, while concurrent programs have many threads of execution and a partial
ordering between statements. On appropriate hardware, threads may actually execute

in parallel; in any case, execution of the various threads is certainly interleaved.

Compilers usually analyse programs in order to deduce aspects of their run-time
behaviour. This allows a compiler to produce target code which run more quickly, or
take up less space, than the naive translation. This process is known as optimization.
There is a vast body of work concerning optimizations for sequential programs; there
is relatively little work on optimizing concurrent programs. This thesis presents a

general method for lifting sequential analyses to concurrent programs.

Many program analyses are flow-sensitive; that is, they use the execution ordering
of instructions in programs to deduce facts about these programs. In order to apply
flow-sensitive analyses to multithreaded programs, we must use the partial ordering
between instructions. At our disposal, we have information about inter-thread com-
munication, in terms of primitives scattered through the program. These primitives —

fork, join, and synchronization — affect the order in which instructions are executed.

To carry out flow-sensitive analyses, we must estimate the flow of control. For
sequential programs, the major source of imprecision in this estimate is due to deter-
ministic choice. In general, we do not estimate which choices will be taken at runtime;
instead, we conservatively assume that each branch is possible. In a concurrent pro-
gram, the interleaving of instructions introduces another sort of imprecision into the

estimate of the flow of control.



1.1 Thesis Contributions

Traditional compiler frameworks are generally ineffective for optimizing concurrent
programs because they must make much too conservative assumptions about the ef-
fects of concurrency. The main contribution of this thesis is to provide a compiler
framework which overcomes these limitations and allows the optimization of concur-
rent programs. This is achieved by proposing a general lifting for sequential dataflow
analyses: given a sequential analysis, we describe how an equivalent, “lifted”, analysis
for concurrent programs may be carried out. For many dataflow analyses, this lifting

is the best possible one.

Our lifting is described using a set of abstract concurrency primitives, so that
many languages can be analysed. We present analyses to detect these primitives for

several programming languages, like Java and Ada.

To provide the new optimization framework, the thesis makes the following original

contributions:

e We introduce concurrency primitives which are more expressive than the simple
fork and join primitives considered in earlier work. In particular, they can
handle mutual exclusion and synchronization. Conservative assumptions were
used in previous work for these primitives; our lifting deals with them more

effectively in a sense that we will make precise.

e We provide techniques for the detection of statements which can happen in par-
allel, for Java programs with procedures, and inexact information about syn-
chronization. Previous work only considered the case of Java programs without

procedures and exact synchronization information.

e Using this infrastructure, the main contribution of this work is a general lifting
for sequential dataflow analyses. Given a sequential dataflow analysis, we will
provide the concurrent analogue. Under some conditions, we provide the best

possible analogue. This lifting behaves well in the presence of our expressive



concurrency primitives.

1.2 Thesis Organization

The remainder of this thesis is organized as follows. We first present classical material
about temporal ordering, program traces and standard sequential flow analysis in
Chapter 2. Next, we discuss traces of concurrent programs in Chapter 3; we describe
how causal relations between statements affects the set of traces, and we provide a
description of how some simple concurrency primitives map into our causal relations.
We briefly treat the effects of approximation, and we also provide an example showing
why traditional sequential techniques cannot be applied. The central part of our work
is in Chapter 4; we describe the lifting of sequential analyses to the concurrent setting
and prove that it has several desirable properties. Some examples of liftings are
described in Chapter 5; in particular, we lift the available expressions, live variables
and generalized constant propagation analyses. We return to the topic of traces in
Chapter 6, showing how our analyses are applicable to real Java and Ada programs.

Finally, we discuss related work in Chapter 7 and conclude in Chapter 8.



Chapter 2

Background

The background material splits into three parts. The first part is, by now, clas-
sical material from distributed systems and derives from the fundamental paper,
“Time, Clocks and the Ordering of Events in a Distributed System” by Leslie Lam-
port [Lam77]. Next, we introduce a notation for discussing program traces. Finally,
we present material from sequential data-flow analysis; it is included for completeness,

and also to adapt the terminology to our concurrent setting.

2.1 Causal and temporal ordering

In any computational (or physical) system the fundamental unit of activity is the
event. In a simple system all events are totally ordered and the ordering is temporal
precedence. This order is unambiguous because the effect of an event is instantaneous.
In a distributed system we have the notion of location as a site of activity. The effect
of an event at one location does not propagate instantly to other locations. Thus the
notion of temporal precedence between events loses its absolute significance; what

survives as an absolute notion is causal precedence.

In order to set up a general theory of concurrent systems we have to work with the

causality relation. An essential part of concurrency is that one deals with autonomous



computing agents or, what amounts to the same thing, different loci of activity. It is
not just that there are multiple threads of control, there is a delay in the interaction

between threads.

This clean picture was enunciated by Lamport using a close analogy with the
notion of causal structure in relativity [Wal84]. In our case, however, there is a
further complication. Threads — unlike processes communicating via messages — may
share state. Thus the separation into local and global is less clear cut. Some effects are
felt instantly and some are felt through the mediation of synchronization mechanisms

and are delayed.

We define a causal relation between events that reflects the effects of interaction
through synchronization mechanisms and ignores the effects of shared state. This still
determines a sensible partial ordering on events but the name “causal order” is now
less apt; the phrase “happens before” popularized by Lamport is more appropriate.
Nevertheless this partial order that we define is still the determinant of temporal
precedence. The possible temporal orders are captured as the set of all linearizations
of the partial order. The effect of immediate interaction through the shared state will

manifest itself through the equations for computing flow information.

2.1.1 The happens-before relation

Let us assume that events can be unambiguously associated with threads. An execu-
tion of a multithreaded program consists of a vector of sequences of events indexed
by the threads. Thus, for each thread we have a sequence of events; this reflects the
idea that at a single locus of activity the events are totally ordered. If there were
no synchronization mechanism and no interaction between threads this would be the
complete temporal structure. Suppose that we have a synchronization mechanism
that enforces a temporal precedence between an event z in one thread and an event
y in another thread. This could take the form of a wait-notify pair in Java, a ren-
dezvous in Ada, or a send-receive pair in any message-passing formalism. Whatever

the mechanism, we posit a primitive binary relation denoted —. This relation is

6



called “happens immediately before”.

Restricted to a thread, — is just the immediate temporal precedence order. It is

irreflexive.

In a language like CML or Occam where communication is synchronous one can
have x — y and y — z but in languages with asynchronous communication this will

never happen.

Definition 2.1.1 We define the happens-before relation, written x — vy, as the

reflerive transitive closure of —».

Because we could have a situation where x — y and y — x it will not be true, in
general, that — is a partial order. We say that a cycle in — is trivial if it is also a
cycle of — and involves just two events. We say that an execution is causal if there

are no nontrivial cycles in —.
We assume henceforth (until chapter 6) that no cycles occur.

We point out that neither z — y nor x — y guarantee that if x executes, then y
executes. Nor does it guarantee that if y occurs than z occurred before. If both x

and y occur, then x occurs before y.

If x — y then we specifically do not require any temporal relation between the

successors of x and anything in y’s thread.

Definition 2.1.2 A trace of a program execution is a sequence of all the events from

an ezecution of the program, ordered in such a way as to extend —.

Recall that in any trace of the program execution with both x and y, z — y means

that x occurs before y in any trace.

Definition 2.1.3 If x /A y and y /4 x, then we say that x and y are independent

(x 1ly)-



This means that x does not necessarily precede y and vice-versa. If there were no
shared state one could also say that z || ¥y means that z and y do not influence or

affect each other, but this is definitely not true in our case.

A trace of a sequential program is the semantic entity that is used for all issues of
correctness of a flow analysis. It says “what actually happens” in a program execution.
In the case of concurrent programs this is still true, but a trace, as we have defined
it, contains too much incidental temporal information. It turns out that it will be

much more convenient to have as the basic semantic entity the poset defined by —.

In a sequential program, resolving the conditional branches gives a trace of the
execution. In a multithreaded program, there are still conditional branches, but the
trace also depends on the interleaving of the executions of various threads, at the
scheduler’s whim. We resolve the deterministic choice by selecting a branch from
each conditional. We are left with a set of events (program points) in various threads
organized into a vector of sequences as defined above. The — relation partially orders

the events.

Remark about sequential merges We will emphasize that — specifically does
not apply at sequential merges of control. This is because —» applies between events

in the same trace; it does not relate events in different traces.

Definition 2.1.4 A scenario! is the poset of events in a program ezecution, related

by —.

A diagrammatic representation of a scenario showing time proceeding horizontally,
thread executions as horizontal lines stacked vertically, and instances of — as arrows
across threads is called a Lamport diagram; see, for example, Figure 2.1. In a scenario,
no program point is executed more than once; there are no “loops”, as different

executions of the same program point are represented as different events?.

!This term was used by Brock and Dennis in an early formalization of concurrency semantics.
21f we viewed different executions of the same program point as the same event we would have a
multiset of events with the causal structure; in short we would have a pomset.



Figure 2.1: A typical Lamport diagram

2.2 Execution sequences

In the previous section, we have discussed the trace of a program’s execution. We
will now introduce a notation for these traces. This notation is useful for reasoning

about the flow of control in both sequential and concurrent programs.

Definition 2.2.1 A configuration is a pair (s,o), where s is a program point, and o

1S a store.

Definition 2.2.2 A control trace is a sequence
805519+ ySpy---

where Yi. there is an edge from s; to s;y1 in the control-flow graph. We denote the

set of all control traces as P.

Definition 2.2.3 An actual execution trace e is a sequence

(SOaO-O); (Slao-l)a s ’(Snao-n)a s

where Yi. (s;,0;) — (Sit1,0i41) in the operational semantics. We denote by & the
set of all actual execution traces. We write Il(e) for the projection of e obtained by

removing the stores. Similarly we write II(E) for the projection of every sequence in

€.



For sequential programs, an actual execution trace is completely determined by
the inputs; however, this is not true for concurrent programs. In a concurrent pro-
gram, many actual execution traces may arise from one set of inputs (because many

interleavings of statements from various threads are possible.)

It is very difficult to reason about the actual set of executions, as it is undecidable
to determine whether or not a given statement appears in any actual execution. We

will introduce an approximation to the actual set of executions.

Definition 2.2.4 A plausible set of executions E is any set such that P O E D TI(£).
We also define a plausible graph G'g corresponding to E by taking the edges in G

which correspond to transitions s, — Sp+1 in E.

The point of introducing plausible executions is that they represent an easy-to-define
set of executions that are guaranteed to contain the projected actual executions. It

is thus easier to reason about program behaviour with plausible executions.

The standard set of plausible executions used in dataflow analysis is the set of all
control traces. If we can remove never-visited edges from G, we get a better set of

plausible executions.

An execution will, in general, contain many instances of a given program point.
We distinguish between them by using the index of the occurrence of a program point

in the sequence.

Example 2.2.5 Consider the following program.

S: i=8;
t: while (i < 10)
{
u: print ("Counting") ;
v: i++;
}

10



Two plausible execution traces are (s,t,u,v) and (s,t,u,v,t,u,v). Of these two, only

(s,t,u,v,t,u,v) is an actual execution trace.

2.3 Sequential flow analysis

In this section we recapitulate the basic definitions and framework of sequential flow
analysis as a preparation for our treatment of concurrent flow analysis, using the
notation introduced in the previous section. The treatment here is not original, and is
included for completeness. The classical works on flow analysis are by Kildall [Kil73],
Kam and Ullman [KU77] and Cousot and Cousot [CC77]. Our treatment principally

reviews the results of Kildall.

Typically, flow analysis is used to determine information about the run-time be-
haviour of a program. We must approximate the exact information because, for any
nontrivial flow problem, it is undecidable to find exactly which dataflow facts would

hold at any given program point.

The basic setup is that we have a graph representing the program (perhaps suitably
abstracted) and we have a function that propagates information through this graph.
We start with a crude approximation to the required flow information — one that
will, in general, be valid only at the start node — and iterate to a fixed point by
propagating the flow information through the graph. The approximation of the run-
time information is represented in some abstraction domain, and it is with respect to
this structure that we carry out the iteration to the fixed point. We require that the
abstraction domain be a complete partial order with finite height. Usually, it turns

out that the domain is a lattice, or even a powerset.

Definition 2.3.1 A dataflow analysis F associates to each program point s € G two

elements of a complete partial order D. We can write:
fi : G—=D

11



We use the shorthand

IN(s) := F;p(s) and OUT(s) := Fypi(s)-

The IN set corresponds to run-time information about traces of the program just
before some program point s is executed, while OUT corresponds to the state just

after s executes.

Definition 2.3.2 A flow function f is a G-indexed family of functions of type D —
D; that is,
f:G— (D—D)

For a forward analysis, given s and a purported value £ for IN(s), fs(£) tells us
OUT(s); a backwards analysis similarly maps OUT(s) to IN(s).

We assume that flow functions are monotone: z Jy = f(z) 3 f(y).

Definition 2.3.3 A flow function f is multiplicative® if f(zMy) = f(z) N f(y); f is
additive if f(zUy) = f(z) U f(y)-

As long as the flow function is monotone, then a simple calculation gives us the

following weaker properties:
flauy) > fl@)ufly)  fleny) < fl=)0f(y)

Definition 2.3.4 (1) Given an abstracted actual sequence
62505182"'Sn"'

consider every occurrence of s in e; Say Si ., Siys--- 5, We evaluate f on this se-

P

quence as follows:

OUT,.(s) = Llfsij (fs,-jfl o fso(€))

3In the classical references on flow analysis, this condition is known as distributivity. We use the
correct terms here.

12



Let ty,...  ty be the statements preceding s in e. Then

INe(S) = |i| OUTe(tj)

(2) Given the set of actual execution sequences S we define the exact analysis

modulo f as

OUTexact(S) = |_| OUT.(s)

e€eS

(3) We write | |, f(e) to denote the flow analysis assigning IN and OUT sets to

each statement by taking the result of the exact analysis modulo f for that statement.

Example 2.3.5 Returning to the program of example 2.2.5, if we assume that the two
sequences (Sg, 1, Ug, v3) and (So, t1, us, 3, t4, us, vg) are the only two actual execution

sequences, then we would say that in the exact flow analysis modulo f, IN(t) = fs(£)U

An approzimate dataflow analysis can be computed given a direction (we consider
backward and forward flow analyses), a merge operator (e.g. join in a lattice), a
flow function, a plausible graph and an element of the domain for the start node
in the graph. The computation proceeds by evaluating the fixed point of the flow
function over the graph. When the merge operator is join or meet, we denote this

approximation by, respectively, fixg(f, ) or fixg(f,MN).

Definition 2.3.6 A some-path analysis s a dataflow analysis F such that for any
s € G and any execution sequence e ending with s, F;,(s) 3 OUT,(s). An all-paths
analysis is a dataflow analysis F such that Vs € G. V execution sequences e ending

with s, Fip(s) E OUT,(s).

If the abstraction domain is a powerset, a some-paths analysis may omit no elements;

an all-paths analysis may include no extraneous elements.

13



Observation A some-path analysis can be approximated using join (L) as the
merge operator; an all-paths analysis can be approximated using meet (M) as the

merge operator.

We now need to make precise what we mean by “evaluating the fixed point of the

flow function over the graph”.

First, label every edge in the control-flow graph: Ay, hs, ..., hy. The set of edges
is called H. Consider the H-indexed vector of elements of the cpo; we call this v; e.g.

Ulhg] is an element ¢ of the cpo.

Definition 2.3.7 We define the graph flow function ¢ : (H — D) — (H — D) for
some-path analyses:
!
(@) (ki) = f (l_l ﬁ(hjq))
q=1

where h;, ranges over edges going into h;’s source.
An analogous definition is made for all-paths analyses.

Proposition 2.3.8 The graph flow function ¢ is monotone and increases IN(s) and

OUT(s).

Proof. Clearly since f is monotone, ¢ is also monotone. Now, consider any cycle
to,t1,... ,tn,to in the plausible graph. Let g(x) represent the action of f on this
cycle. Iteration modifies the IN sets using the function Az.x U g(z), and clearly

z U g(xz) Jx. Since f is monotone, then OUT(s) is also increased. i

This function pushes the IN sets of every node through f and puts the resulting
value into the OUT set. Note that the first iteration of ¢ will push a lot of garbage IN
sets through f and produce garbage OUT sets; however, soundness spreads through
the graph from the correct value at the initial node. Since D is a cpo, and ¢ is

monotone, we know that ¢ has a least fixed point, denoted 1fp ¢.

14



Definition 2.3.9 Using the ¢ operator, we now provide a mathematical definition

for fizg(f):

fizg(f) =1ip ¢

Note that the flow function f needs to be multiplicative if we are to prove that
the exact analysis modulo f is equal to the result obtained by evaluating the fixed

point of f over the graph.

Example 2.3.10 We consider the example of reaching definitions. For reaching def-
initions, the cpo is the powerset of the set of pairs (variable, program point). This is
a forward analysis, and the merge operator is union. The flow function f, on a def-
inition statement “s : x = value”, adds (x,s) to IN(s), and removes any other pairs
containing x from IN(s). The initial approrimation assigns to all nodes the empty
set; this is correct at the start node since no definitions reach it. In this case, we
want to compute an approximation of reaching definitions such that every definition

that potentially reaches a point p is in the set IN(p).

2.3.1 Some-path analyses

We wish to show that iterating to the fixed point is correct in an appropriate sense.

To do so, we prove the following proposition about some-path flow analyses.

Proposition 2.3.11 Let f be additive with respect to U. Take any plausible graph

G; denote its corresponding plausible set of executions as P. Then

fizg(f;L)(s) = | | OUT.(s)

ecP
Proof. We first show that if f is additive, then fixq(f,U)(s) = | cpamsc) OUTn(s)-
Assume, without loss of generality, that L is the initial value. Then,
fixg(f,U) =1ip(p) = L U p(L)U¢*(L)-

15



We introduce the notation OUT* = L LU (L) Ll--- U (L) to represent the effect
of applying the graph flow function ¢ to the initial approximation & times; OUT*(s)
is the accumulated approximation at the statement s. Also, paths” (@) is the set of

paths in G starting at the initial node with length less than £.

The proof is an easy induction; we carry out the induction to point out explicitly

where additivity comes in.

For all s, we clearly have that OUT’(s) = Upepatnso(q) OUTn(s) = L. Fix k.
Assume that OUT*™(s) = | (@) OUTy(s).

pEpathsk—1

We wish to show that OUT*(s) = | |,cpamst () OUTp(s). By definition,

OUT*(s)=f, | || ouT(:)
i€preds(s)
Consider the set of paths 3 of length £ starting at the initial node and reaching
s. We know that, for any path p € 3, the penultimate node visited is a predecessor
of s. Let Z (C preds(s)) be the set of predecessors of s in paths of . We thus have,

|| ouT,(s)= || OuT,(s)u] | || OUT,()

pEpathsk(G) pepathsk_l(G) i€l PEpathsk_l(G)

Since we are interested in information at s, | | k-1(gy OUTy(s) is of the form

Ipcpaths

fs(£), for some element £ of the abstraction domain. We are thus computing

f@ul | £ || ouT,() | =£eul] || OUTG)

€T pepaths®~1(G) i pepaths*~1(Q)

where the equality is a consequence of additivity.

We can further deduce that £ is contained in | | ) OUT 561 (1), because a

) OUTy(s).

iE€preds(s
node must precede s for its contribution to be added as part of I_Ipepathsk—l

Furthermore, paths used in the computation of ¢/ must have length strictly less than

k. Hence,

(u || ouT,)= || OUT,®)

pEpathsk—1 pEpaths*~1(@)

16



That is, £ is already contained in the union over all paths of length £ — 1.

The equality

|| ouT,i)= |[] ourt'()

pEpaths* (@) i€preds(s)

holds because of the inductive hypothesis.

We have thus shown that

|| ouT,(s)=f| || OUTF'() | = OUT*(s)
pEpaths’“(G) i€preds(s)
The “corresponding plausible set of executions” is just the set of paths in the

graph, so fixg(f,U)(s) = ||,cp OUT.(s), proving the proposition. i

Definition 2.3.12 Given a flow function f for a some-path analysis, a plausible set
of executions £, and a flow analysis F, we say that F soundly approximates the exact

analysis modulo f if

Ve € £. Vs € G. Fjp(s) I IN,(s)

That is, a sound approximation to a some-path analysis must include all the infor-

mation arising from at least one possible path; it may include more.

We have thus shown

Proposition 2.3.13 Iterate a flow function to its fixed point over a plausible graph,
taking merge operator union. The resulting flow analysis is a sound approximation of

the exact flow analysis.

Soundness is typically what one sees proved in the literature. However this does
not rule out an absurdly conservative analysis. In fact most of the analyses in the
literature are the “best one can do” given the usual dataflow assumptions, viz. that
every edge in the control-flow graph is taken on some execution sequence. We for-

malize this concept in the following definition.
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Definition 2.3.14 An approximation F of a flow analysis Fy is said to be tight
with respect to a plausible graph Gg if, whenever IN(s) I p, then Jej,eq,... ,€; €

E. 3ny,ny, ... ,n; € N. where (s,;,n;) € e; such that

BICIOEY

This means that if we claim that s has property p, then there is a set 71" of
plausible executions containing s, such that taking the merge of the result obtained
by evaluating f on each ¢ € T gives an element above p. This does not mean that any
of these plausible executions actually get taken on some actual execution — if we knew
that we would have exact information. Tightness says that the only imprecision in
the approximation comes from either not knowing the exact path, or is an artifact of
the coarseness of the abstraction domain. Tightness is usually implicit and one does
not emphasize it in the sequential case, but for concurrent programs this is important

and worth saying explicitly.

Proposition 2.3.15 Iterating a flow function to its fixed point, with merge operator

union, on a plausible graph Gg gives an approrimation which is tight with respect to

Gg.

Proof. Also immediate from proposition 2.3.11. | |

Reaching definitions (as introduced in the extended example) is a some-path anal-

ysis.

2.3.2 All-paths analyses

There is a pleasing duality between some-paths and all-paths analysis.

Definition 2.3.16 An approximation of an all-paths flow analysis is sound with
respect to a plausible graph E if IN(s) 3 p implies that Ye € E containing $,.

f(elnr) 2 p also.
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Definition 2.3.17 An approximation of an all-paths flow analysis is tight with re-
spect to a plausible graph Gg if Vs. if s, € e, where e is a plausible execution sequence

of E, and f(e|,_1) 3 p imply that IN(s) 3 p also.

This definition says that if a fact holds through all plausible execution sequences,

it must be identified by the approximation.

It is usually appropriate to assign T to all non-start nodes for all-paths analysis as
an initial approximation; the choice of merge operation ensures that the cpo elements

strictly decrease on iteration.

We state a proposition analogous to Proposition 2.3.11, but applicable to all-paths

analyses.

Proposition 2.3.18 Let f be multiplicative. Take any plausible graph G; denote its

corresponding plausible set of executions as P.

fizg(f,1) =[] f(e)

ecP

The proof is exactly the same as that for Proposition 2.3.11, but the operators

are reversed.

Proposition 2.3.19 Iterating with intersection on a plausible graph gives a tight and

correct approximation of the corresponding flow analysis.

Proof. Immediate consequence of the proposition; tightness and correctness just say

that we compute the result over all plausible executions. [ |
An example of an all-paths analyses is available expressions, where the problem

is to find expressions which have certainly been computed, but where none of the

arguments have changed.
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2.3.3 Concluding remarks on flow analysis

We wrap up the discussion of flow analysis with some general observations about flow

analysis.

Duality of some-paths and all-paths analyses In this work, we will present
results for all-paths and some-paths analyses separately. However, they are actually
quite similar. Consider a case where the underlying abstraction domain is a power-
set. Typically, an all-paths analysis seeks to find an underapproximation of properties
which hold in a program — we cannot introduce any extraneous elements of the power-
set — while a some-paths analysis must overestimate the properties which hold. There

are no other conceptual differences between the two cases; they are dual.

Backward flow analyses The flow analyses we have discussed to date have been
forward analyses, in that the flow function computes the OUT set given the IN set.
These analyses give information about events that have occurred in the past. Some
analyses are designed to give information about events in the future. For instance, it
can be useful to know if there are any references to a variable in the future — that is,
whether or not the variable is live. To get this kind of information, we use a backward

flow analysis.

The distinguishing feature of a backward analysis is that the flow function com-
putes IN sets given OUT sets, and the initial value is for the end node of the graph,
rather than the start node. To approximate such an analysis, we can treat it just like

a forward analysis on a control-flow graph with reversed edges.

Non-multiplicative flow functions We have previously assumed that our flow
functions are always multiplicative or additive, depending on which type of analysis
we are considering. If we lack such an assumption, we still have inequalities showing
that the result obtained by iterating the graph flow function are sound. In general,

the graph flow function’s result will approximate, with some error, the result obtained
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by evaluating the flow function over all plausible sequences. Precision is lost because,
for every node s, the graph flow function combines all results at s after each iteration;
when the computation over plausible sequences is taken, combining is done only after

the function has been computed over all sequences.

21



Chapter 3

Generating Concurrent Traces

We now return to the model of concurrency described in section 2.1.1, providing more
explicit descriptions (in terms of execution sequences) of the effects of our temporal
relations on sets of execution sequences. We will also discuss what happens when
the relations are not exactly known; often, we are only provided with approximate
temporal relations. Even so, we still need to construct a set of plausible execution

sequences.

Our scheme for producing a set of plausible execution sequences is as follows.
We describe a set of explicit “arrow relations” between program statements. These
relations mirror the information gleaned from the program text. From the arrow
relations, we can then construct sets of plausible executions, our approximation to

the actual executions.

We emphasize that the causal relations between statements determine the set of
plausible execution sequences, not the other way around. They are the fundamental
objects under consideration. Causal relations are collected by considering the seman-
tics of various statements in the program text; they are then used to create the set
of plausible executions that we will reason about. Having a clearly-defined set of
plausible executions will allow proofs in later sections: we lift analyses by acting on
the relations present at various statements. In order to justify our liftings, we simply

consider the effect of the relations on the set of plausible execution sequences. This
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allows us to show that we are computing the result over all plausible sequences.

We will introduce explicit arrow relations between statements in section 3.1. These
relations put constraints on the interleavings between threads and hence on the set of
plausible execution sequences. We describe the plausible execution sequences issuing
from concurrent programs with these arrow relations. Subsequently, in section 3.2,
we will discuss how some concurrency primitives translate to arrow relations. Finally,

we discuss the effect of approximation in section 3.5.

3.1 Notation for propagation

In a sequential program, we construct the set of plausible executions by taking all
paths in the control-flow graph. A standard control-flow graph, however, has no
provisions for concurrency. In this section, we will describe a number of annotations
which we add to the control-flow graph so that it can handle concurrency. These
annotations are based on the program text. This section does not cover how the
annotations are collected for real languages; that is discussed in Chapter 6. Instead,

we discuss various concurrency primitives, from a number of languages.

For now, everything is discussed in an intraprocedural context. Chapter 4.4 will
describe the necessary modifications to handle an interprocedural analysis of a con-

current program.

Notation for happens-before We recall that we have defined x — y to mean that
x happens-before y. This is not appropriate for propagating information; usually, we
want to check that there exists a path between point z and y, such that the path
satisfies some property. To check the property at every point between x and y, we

cannot use the transitive closure of the — relation. We must use — itself.

The definition of — stated that x — y means that x temporally precedes, possibly

immediately, y. We give some informal semantics for —.
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Axiom 1 If x — y holds, then the semantics state that:

e whenevery is executed, then in every actual interleaving, x has already executed;

and,

e There exists a actual interleaving in which x occurs immediately before y.

This definition is equivalent to stating that there is no statement z which occurs
between x and y on all executions. If there is an actual interleaving putting x imme-
diately before y, then no such statement z could occur. If no statement z must occur

between x and y, then z could occur immediately before y.

It is important to recall that — does not guarantee that y will execute, and that
x — 1y does not require that z’s successors are ordered with respect to events in
y’s thread. Once a signal has been transmitted, —» does not impose any further
restrictions on events in the sending thread, regardless of whether or not the signal

gets received.

We can use — to represent joining, as in the following example:

T1 T2 E‘

w: 1 =1729; y: k = 3;

x: 1 = 5; end thread =

N
—
N
.
o
-
[=]
~
~

In the above example, we have x — z and also y — z, but not w —» z. Also,

w — a but not w — a.

Notation for interleaving FEarlier, we introduced the notion of independent in-
structions: z || y means that neither x — y nor y — x hold. Usually, this means that

just before or after x appears in a trace, y could also appear.
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A basic concurrency primitive is mutual exclusion; languages often provide a no-
tion of “locking”, where only one thread can hold a given lock at a time. Other
threads attempting to capture the lock must wait until the owner has relinquished

the lock. Mutual exclusion does not impose any ordering on program statements.

We can use mutual exclusion to guarantee that after a statement s, an independent

statement y does not execute until some lock is freed.

Definition 3.1.1 If the atomic events x and y are independent, and there exist in-
terleavings where x executes immediately before y and others where y executes imme-

diately before x, then we say that x and y are proximal. This is written as x > y.

In the presence of mutual exclusion or synchronous communication, 1 becomes
a strict subset of ||. If z > y then we certainly have z || y. Mutual exclusion
allows us to have independent statements z and y with no interleavings scrambling
them. Synchronous communication imposes additional requirements on the ordering

of successors of y, which allows us to remove < relations from them.

Plausible execution sequences We have described effects of our relations on the
set of plausible execution sequences. To recap, if x — vy, then all appearances of y
have a preceding z, and there is a plausible execution where z immediately precedes
y. On the other hand, if z < y, then there are plausible sequences containing xy and

yx, as well as a sequence where x appears without any adjacent y.

3.2 Various concurrency primitives

A control-flow graph for a concurrent program contains fork nodes and causality
information. These order the statements. We will now discuss some concurrency
primitives and how they translate to our arrow relations. Chapter 6 provides a more
detailed description of the mapping between languages and arrows; here, we discuss

a selection of primitives, in order to convey a sense of how arrows may be obtained.
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Forking A fork node is a special node s in the control-flow graph with two —»
successors. After a fork node, we say that the flow of execution splits into two
threads, each of which are executing concurrently. After any statement a in thread
to, any other statement z in thread ¢; can execute (so that a < 2), and vice-versa. In
the absence of further information, all statements in different, concurrently-executing

threads are related by .

Joining A join node is a special node s in the control-flow graph with two —»
relations into it: ¢ — s and b — s, with a, b belonging to different threads. Such
a node merges two threads into one. After a join, no < relations exist between the
successors of the join and any predecessors. Joining is equivalent to a rendezvous
followed by one of the threads involved in the rendezvous ending. Conversely, a

rendezvous can also be modelled by a join followed by the spawning of a new thread.

We can simulate concurrent joins using the previously-introduced arrows. How-
ever, it is difficult to recognize a simulated join to use it for improving analysis

information. We will thus provide an explicit notation for concurrent joins.

Asynchronous communication If we have additional synchronization informa-
tion, we can get smaller plausible sets, as we can place fewer i relations and more

—» relations.

For instance, in Java, if z is a notify statement and y immediately follows a
wait statement, both waiting on the same queue, we can write z — y. (Chapter 6
discusses why we must relate the notify with the successor of the wait statement). In
that case, we may remove < relations between predecessors of  and successors of y.

Furthermore, we can add — relations between statements.
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3.3 Concurrent programs are not like sequential

programs

It is tempting to believe that we can treat concurrent programs using the same ma-
chinery that we have developed for sequential programs. In particular, one might
think that it is possible to add edges representing the possible flow of control to a
concurrent thread and treat the resulting graph (now very edge-heavy) as a sequential

graph. This idea doesn’t work out; below, we elaborate on why this does not work.
Any statement s can be followed by another statement ¢ if any of the following

conditions applies:

e there is a sequential control flow edge from s to ¢
e s —»t
e st
Note that the first possibility is the only one for sequential programs; using it leads

to the standard set of plausible executions described for sequential programs.

This set is indeed a plausible set because of the definition of b<; it must capture all
statements which can execute concurrently with s; adding — and sequential control
flow edges complete the picture. However, it is too loose; proving tightness with

respect to this plausible set is not proving much at all.

Consider the following situation:

4 Q\

W= >

We notice that the following sequential control-flow graph would give exactly the

same plausible sequences using the above definition:
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d Q\C
Py

Note that there is no actual execution sequence containing the subsequence “BA”;

W= >

for instance, “BCA” is impossible as an actual execution sequence. Our set of plausi-
ble sequences, however, does include “CBCA”. In fact, it includes infinite loops when
no such loops are possible in any interleaving of the two threads. This leads to grossly

inaccurate results — there is no reason for the result of B to be propagated to A.

About our plausible set The above plausible set does not allow us to prove any
interesting tightness results. In the concurrent case, we can no longer consider the
set of plausible executions to be simply the set of paths in a graph. Instead, we must
take our set of plausible executions to be the set of all interleavings of the plausible
executions of each concurrent thread. Note that there are two V quantifiers in that
statement; the outside one is obvious, while the inside one is hidden within the phrase
“plausible executions of each concurrent thread”. This phrase expands all control-flow

choices.

3.4 Summary of concurrency primitives

Table 3.1 summarizes how we obtain the set of plausible executions for a concur-
rent program, in terms of our primitives. This has been developed in the preceding
discussion; we reiterate the rules for creating a set of plausible sequences from typ-
ical concurrency primitives. In Chapter 6 we will precisely give the arrows required
for each concurrency construct in a number of real languages, and argue that their

semantics we have given to the constructs match their actual semantics.
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Distinguished fork node with two — successors.
Fork All statements in concurrent threads are b un-

less otherwise stated.

Distinguished join node with two — predeces-
Join sors. No successors of the join have any i rela-

tions with any predecessors of the join.

Remove < relations from mutually exclusive
statements.

Mutual Exclusion

Let y wait for a signal from z. Then x — y, and
Asynchronous communication  predecessors of z are no longer || with successors
of y, and hence not <.

Table 3.1: From basic concurrency primitives to arrows

3.5 Approximating arrows

In [CS88], it is argued that in the FORTRAN model of post/wait concurrency, it is
co-NP hard to compute the “Preserved” sets for parallel FORTRAN programs. As
computing these sets are quite similar to computing — information, it is quite likely

that we will have to approximate the — and < information.

We can drop — relations. We need no notion of may-—», because — is by nature a
must relationship; lack of an arrow means that there may be an interleaving between
some statements. On the other hand, bt may appear extraneously; the interleaving

may occur, but is not bound to occur.

Imagine a situation in which we have a Java wait/notify pair. We have removed
the parelations between the successors of the wait and the predecessors of the notify. If
the — relation happened to be omitted, then we would have the negative information
— a lack of s — preventing us from affecting events which are indeed not concurrent,
but we would not have positive information: we could not propagate information

from the notify to the wait.
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Chapter 4

Lifting Sequential Analyses

We will now describe the general lifting at the core of this work. Given a unidirectional
sequential flow analysis, we apply a certain transformation, and get a sound analysis
for concurrent programs. First, we discuss the types of analyses appropriate for our
lifting. For each applicable type of analysis, we will show that our lifting is sound
and that, given exact synchronization information, we have the best possible, or tight,

analysis result. Finally, we briefly consider the case of interprocedural analyses.

Recall that a forward analysis is one where the flow function describes the OUT
set given the value of the IN set and a statement. We start by discussing forward

analyses; the situation for backward analyses is quite similar.

4.1 Scope of our liftings

Many flow analyses can be classified according to their merge operators; for instance,
a definition made on just one path may reach a program point, while an available
expression must be available on all paths to be available at a point. We will also treat
points-to analysis, which can simultaneously collect both all-paths and some-paths

information.

The information collected will be represented in a complete partial order, which
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we will denote by D.

Many different abstraction domains are used for flow analysis. Sometimes we track
sets of flow objects belonging to finite universes, as in available expressions. Elements
of these domains can be represented by finite sets, and the associated analyses are
called bitvector analyses. In general, there are often actions on the analysis domain
which can be called “kill” and “gen” for each statement. When we have sets of flow
objects, kill removes objects from the set, while gen adds objects. Most flow analyses

have a flow function of the form

out(s) = in(s) \ kill(s) U gen(s)

The gen and kill sets may be presented in the reverse order for some analyses. For
instance, the available expressions analysis generates expressions at a statement and
then kills expressions rendered unavailable. On the other hand, in points-to analysis,
kills are done first, and then gens are added. To present the results in a uniform way,
we can ensure that gen and kill can be commuted by ensuring that the kill set has no
intersection with the gen set. This can usually be done by trimming elements from

the kill set.

More generally, “kill” and “gen” are actually functions ks, g; : D — D. For a
some-path analysis, kill will tighten the estimate provided by flow analysis, whereas
gen loosens the estimate (but is required for correctness). The information ordering is
the reverse of the abstraction’s poset ordering of the underlying structure. However,
in the case of an all-paths analysis, gen tightens the estimate and kill loosens the
estimate. In this case, the information ordering coincides with the ordering for the
underlying poset. In our analysis, we will insist that the estimate is loosened first,

and then tightened.

Definition 4.1.1 A kernel operator is a function K which is idempotent (K o K =
K), monotone ({ C ¢' = K({) T K({')) and decreasing (K(£) C £). A closure

operator G is idempotent, monotone and increasing (¢ = G({)).
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Axiomatically, we require that:
e [k, is a kernel operator
® g, is a closure operator

This allows us to rewrite the flow function as follows:
out(s) = (gs o ks)(in(s))

On a powerset, the standard choices for our functions are gs(¢) = £ U gen(s) and
ks(¢) = £\ kill(s). Note that these choices for ks and g, are easily seen to satisfy our

axioms.

4.2 All-paths analyses

For a forward all-paths analysis, we have the following prototypical sequential rules:

in(s) = |_| out(z)

i€preds(s)

out(s) = (gsoks)(in(s))
Here, a kill just requires one path; a gen must hold on all paths.

We propose the following general rules for a concurrent all-paths analysis on a
powerset; we will show that they calculate a sound approximation of the result ob-
tained by evaluating over all plausible sequences. In general, the g; and k; functions
are used:

IN(s) = (kiyokio -0k iwes| []| OUTGE)U| |OUT()

i€preds(s) i—»s

OUT(s) = (ksogs)(IN(s))

For a bitvector analysis with simple flow functions, we can specialize the above
rules using set notation:

INGs) = (] OUT@) ulJouTE)\ [ Jkile)

i€preds(s) i—»s s

OUT(s) = IN(s) \ kill(s) U gen(s)
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The part of the IN rule combining information from predecessors using intersection
is the same as for sequential programs. If x — s, then at s, we have that on all
executions z has already executed. A proximal statement does produce a concurrent

kill; this is handled by the s a1 kills.

The above rules use LI to combine information for —» concurrent predecessors.
Depending on the abstraction, the meaning of LI may not be immediately obvious.
It should compute the least upper bound of its arguments, with respect to the in-
formation ordering. When the abstraction is just a powerset, then we can indeed
take the union; that is the least upper bound. For soundness, any element bounding

above all of the arguments of the LI will do. We do this in order to guarantee that

IN(s) 3 OUT(z) for all z — s.

We will now argue for the soundness of our rules.

Proposition 4.2.1 The proposed rules for concurrent all-paths forward analysis com-

pute a sound approximation of the dataflow information.

Proof. The semantics of the arrow relations allow us to argue for soundness. As we
already have soundness for sequential analysis, we need only show that soundness
holds in the presence of multiple threads. The changes in the set of plausible exe-
cutions caused by concurrency are determined by the arrow relations present in the

flow graph. We proceed to show that the rules for each type of relation are sound.

Rules for < are sound If we assert z < s, then the plausible execution sequences
include subsequences zs,sr and s. Since we are concerned with the result imme-
diately after s executes, we discard the sz subsequence. Hence we must compute
fz immediately before s executes, combining with the result if f, never runs. We

calculate as follows:

INGs)= [] ouT@nf| [] OUT()
(s) (s)

i€preds(s i1€preds(s
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To simplify the notation, let £ =[] OUT (). We need to show that £Mk, o

9:(£) = k4(¢). By assumption, we know £ C ¢,(¢) and k,(¢) C ¢; hence

i€preds(s)

ko (€) C golka(0)]

This inequality shows soundness of our rules.

Hence, we need only carry out z’s kill at s in order to take into account possible

concurrent executions.

Rules for —» are sound If i — s, then ¢ has already completed, possibly immedi-
ately. Any intervening statements are related by <, so their kills have already been

accounted for by the above argument.

If s executes, the semantics of 7+ — s guarantee the existence of a plausible execu-

tion sequence containing the subsequence is. It is thus clear that the relation IN(s) C

OUT(z) holds; from this, we can deduce the soundness of IN(s) =[], OUT(¢).

We assert that it is sound to take the least upper bound, as shown in the rules
described above. Consider any /¢ satisfying

[ JoUTG) Cec| |OUT(@)

i—»s is
In that case, £ is above all of the OUT(3)’s but below some OUT(j). In particular, ¢ is
generated in j’s thread, and survives the < kills corresponding to actions in concurrent
threads. Recall that a gen in a thread does not get propagated to concurrent threads;
we cannot guarantee that it has definitely occured at any point of the concurrent
thread. Since j does definitely occur before s, j asserts £, and no concurrent thread’s

action has reached j to Kkill £, it is thus safe to say that £ holds at s.

Hence we can soundly let IN(s) be the least upper bound

IN(s)=| |oUuT()u [] OUT()
18 i€preds(s)

This calculation guarantees soundness at — targets; our approximation is contained

in the ideal result. |
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Remark 4.2.2 In order to establish tightness for the > rule, we must also show that
CT1 golka (0)] E ko(£)

For powersets and simple kill/gen functions, this is false exactly when some p is
killed but then regenerated by a statement x. In this case, we simply insist that
Vz kill(x) Ngen(z) = (. Given that condition, a simple argument shows that z N ((x\
kill(z)) U gen(z)) = z.

This condition is more difficult to state if arbitrary kill and gen functions are
involved; when needed, we will prove it explicitly for the kill and gen functions at
hand. In general, we may need to manipulate the functions so that nothing gets killed
and generated in the same statement. If we cannot establish the equality, we only
risk a loose approximation — it will be sound. Note that this condition subsumes the

one requiring k, and g, to commute.

If we can show the technical condition ¢ g,[k;(¢)] C k.(¢) we have that the
rule for i is equivalent to the result over all plausible sequences, thus giving both

soundness and tightness.

Lifting is not tight Figure 4.1 shows that the lifting we have shown so far is not
tight. The generation of “r” is inevitable: possible sequences are “ABCD”, “ACBD”,
“ACDB”, “CABD”, “CADB”, and “CDAB?”; in each one, a “gen r” occurs. However,

the possibly-concurrent “kill r” intervenes and always kills r.

A C
I N={} INS{}
kill r kill r
aut={} aut={}
B D
IN={} IN={}
gen r gen r
aut={}

aur={}
YIN:{}

Figure 4.1: Example showing that our lifting is not tight on all-paths
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4.2.1 Tightness for bitvector all-paths analyses

Given that our general lifting for all-paths analysis is not tight, we wish to use more
sophisticated rules to ensure tightness. Note that we already have proven that our
naive lifting is sound; under additional assumptions on the analysis, we can gain

tightness.

In this section, we will assume that the abstraction domain is a powerset, and
that the flow functions are simple; g;(¢) = £ U gen(¢), and ks(¢) = £\ kill(¢).
The presence of statements which are proximal to themselves (s b s) confuses our

improved analyses. We do not consider this situation.

Proposition 4.2.3 Our rule for — is tight as long as x >y = gen(x) N gen(y) = 0.

Proof. Consider some element of the abstraction domain p. For the moment, we are
interested in the approximation at statements s such that some number of statements
J1sJo2, - - - 5 Jn satisfy j; = s. We have already shown that our rule is sound. We would
now like to show that if all plausible sequences declare p at s, then our approximation

also declares p at s.

To prove this proposition, we carry out a case analysis. By assumption, a gen of
p only occurs at most once in any set of concurrent threads. Let p be generated at
statement ¢. Say p is killed at some statement 7 > ¢. Any such kill eliminates p from
sets associated with all concurrent statements: this kill may temporally succeed ¢, so
we cannot assert any gens. This is exactly what our > rule ensures. Since p does not
survive on any path, it does not hold at s either. If no kill occurs on any concurrent
thread, the sequential rules correctly treat gen and kill of p within the thread where

it was generated, and taking unions at — propagates p into s, as desired. [ |

This condition imposes a strong restriction on the types of analyses which can
be lifted, if we demand that our liftings be tight. If we carry out the available

expressions analysis, making sure that different instances of a given expression are
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distinct, this condition would be satisfied. An implementation of this sequential
analysis is described in a technical report [Lam00]; the analysis considers two instances
of x + y to be different if they belong to different statements. In general, however,

we would like to lift more types of all-paths analyses.

It turns out that if we instead require that the kill sets are disjoint for concurrent
statements, we can also prove that our lifting is tight. Although this condition may
seem to be more difficult to satisfy, we can use it to provide revised rules which are

tight.

Proposition 4.2.4 The condition x <y = kill(x) N kill(y) = O guarantees that the
lifting we have presented s tight.

Proof. Consider the prototypical example where s is a statement with two — prede-

cessors (e.g. a join node). Statements 7 and j happen before s and are proximal.

Let some p be killed at a statement . By assumption, p cannot also be killed at
any statement i’ <1 4. We consider the case where 3¢ such that ¢ i and p € gen(t).
If that is the case, the concurrent kill at ¢ ensures that p does not survive at any

statement concurrent to ¢ — including ¢ — nor at the eventual — successor s.

Thus, the only way that p can survive at an eventual — successor is for some gen
of p to happen after any kill of p. Except for — relations, the only way to get such
an ordering would be for the gen and the kill to occur on the same thread. This is
correctly handled by the sequential rules; our assumption that there are no concurrent
kills means that if p survives, it definitely survives unhindered by concurrent Kkills,
and reaches the — successor s. Our rule for — thus gives a tight approximation in

this case. [ |

We observe, from the above proposition, that a necessary condition for asserting
p at a — node is that, in the presence of any Kkills of p, an effective gen of p must
be on the same thread. We are led to propose additional rules, where we ignore the

effects of concurrent threads at each point; we account for concurrent kills only at
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— nodes. Since we will take intersections, the concurrent kills affect statements on

other nodes.

We first want to track what flow objects potentially get killed in which threads.
We first need to associate program statements with threads; we shall separate the
statements preceding s into classes. We gather all statements which are p<-related to
any 7, preceding s in a set I. We then split I into classes [y,...,I,, according to
which thread these nodes belong to. In order to do so, we set I, = {i € I | i b4 4y}
we put into [ the elements of I which are not concurrent with 7;. In the presence of
mutual exclusion, we are required to add all sequential successors of any nodes in ;

actions which are parallel but not proximal must be taken into account.

We have already excluded self-concurrent statements; if they were admitted, the

I}, set for a self-concurrent statement would be empty, which is undesirable.

Finally, we define HAS-KILL; in any thread, we track which flow objects have
been killed. We define it as follows:

HAS-KILL(i) = | kill(i)

For any given thread, these sets add all results from nodes in that thread. A kill
need only occur on one thread; we thus use union instead of intersection to combine

kill information.

Now we evaluate local sets on all nodes in the I set. These sets are computed
using the usual flow analysis rules, except that concurrent effects from statements in

I are not considered.

IN-LOCAL(s) = [l OUT-LOCAL(i) U | J OUT-LOCAL(i)
i€preds(s) —>S$
\ U kill(z’)) U IN*(s)
SSERTZT A

OUT-LOCAL(s) = f, (IN-LOCAL(s))

For an all-paths analysis, initial values for the IN-LOCAL sets should be L. Note

that, when p € IN-LOCAL(s), we are not asserting that p holds at s; we can not assert
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p as we are not considering the effects of concurrent kills. We use OUT-LOCAL when
we have — relations. The following rules will use OUT-LOCAL, albeit indirectly.

INs) = (] OuT@)ulJOouTe)\ [ Jkill(s) UIN*(s)

i€preds(s) i—»s s

OUT(s) = IN(s) \ kill(s) U gen(s)

The calculation of IN*(s) is somewhat tricky to describe. Recall that we need only
consider elements p which are killed on more than one thread. Let us say that p is
killed at least twice. Any threads in which p is not killed cannot influence whether or
not p should appear at s: kills of p are interleaved with any potential gen in concurrent
threads; only gens that are ordered with respect to the kill can propagate to the —».
We will take an intersection on OUT-LOCAL sets, so it is in our interest to only
include the threads which have kills; other threads can only dilute the information

collected, and they are not required for soundness.

We can think about the calculation of IN*(s) this way. For each p in the domain,
we consider the maximal set I of statements, where i € [ = (i - s) A (p €

HAS-KILL(z)). We assert p € IN*(s) iff p € (); OUT-LOCAL(7).

We first show that at a — node, the intersection of the OUT-LOCAL sets to give

IN* is sound. Then we show that our overall IN sets are tight.
Proposition 4.2.5 Adding IN*(s) sets at — destinations is sound.

Proof. Let p € IN*(s). Then we have a maximal set I, for which p € HAS-KILL(z),
and p is in the OUT-LOCAL set of each element of I,. This is enough to ensure
that p definitely holds at s: on each thread where p potentially got killed, it gets

regenerated. Hence p certainly holds at s. [ |

Proposition 4.2.6 The proposed IN(s) sets are tight for statements with — prede-

CESSors.
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Proof. We need only consider the case where p is killed on multiple threads because
of proposition 4.2.4. Let a statement s have a set S of — predecessors. In some
threads, there are kills of p; the set of all predecessors with potential kills of p is
called I,,. There are at least 2 elements in I,. In the presence of concurrency, only the
threads in I, — that is, on which kills of p occur — could regenerate p, as an ordering

is needed between the kill and the regeneration.

When considering individual threads, we know that the result of sequential flow
analysis is sufficient, as long as we intersect the result over all threads killing p. This
accounts for all kills of p. Hence we have reduced the problem of tightness to that for

sequential programs, which we have shown earlier. |

We did not give an effective algorithm for computing IN* sets; obviously, it is not
practical to iterate over all elements of the abstraction domain. The calculation is
actually quite easy for a node which has only two — predecessors i and j; we need

only compute

IN*(s) = (OUT-LOCAL(i) N OUT-LOCAL(j))
N (HAS-KILL(i) N HAS-KILL(j))

Recall that we need to take the largest subset I, for which HAS-KILL holds; further-
more, the intersection is only relevant when we are considering more than one thread.
Hence the subsets in question must consist of both — predecessors, 7 and j. It is
thus sufficient to take the intersection of the HAS-KILL sets to find the p which are
covered by both threads; for these p, we intersect the appropriate OUT-LOCAL sets.

If there are more than two — predecessors for a statement s, we must then consider
all subsets I of the set of — predecessors S with at least two members. To ensure that
these are the largest possible subsets, we must check that HAS-KILL of all members
of I is true, yet HAS-KILL of all nonmembers of I is false. If this holds, we take the
intersection of OUT-LOCAL over I. We write concisely:

IN*(s) = | J | ()HAS-KILL(i) n (1) HAS-KILL() | N () OUT-LOCAL(:)

ICS \iel 1€S\T i€l
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That is, p can be asserted at s if, in the maximal HAS-KILL set of p (which we call
I,), the intersection of the OUT-LOCAL sets of I, contains p.

4.3 Some-path analyses

We will now treat some-path analyses. In fact, these analyses are quite similar to
all-paths analyses; however, a conservative approximation must overestimate the flow
sets, instead of underestimating them. As before, we first propose a simple lifting
for these analyses, and provide conditions under which this lifting is tight. We then

provide additional rules to make our lifting tight.

Consider a typical sequential some-path forward analysis:

in(s) = |_| out(z)

i€preds(s)

out(s) = (gsoks)(in(s))gen(s)

Observe that a dataflow object is generated if it appears along just one path, but

must be killed on all paths, because the merge operator is union.

In order to lift this analysis to the concurrent case, we need to consider the effect

of possible interleavings. Doing so leads to the following lifted rules:

IN(S) = (91,9600 Gir)irosinses | || OUT(@E)L| |OUT(s)

i€preds(s) i—»s

OUT(s) = (ksogs)(IN(s))

The same rules can be specialized for bitvector analyses as follows:

INGs) = [J OUT(#)u()OUT()U( Jgen(i)

i€preds(s) i—»s s

OUT(s) = (IN(s)\ kill(s)) U gen(s)

As expected, we produce concurrent gen’s at every point, reflecting possible exe-

cutions. A twist is the use of the intersection operator — that is, taking the greatest
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lower bound — for combining information from concurrent threads. We argue for the

soundness of these rules. In general, they are not tight.

Proposition 4.3.1 The proposed rules for lifting a some-paths concurrent analysis

are sound.

Proof. Once again, we proceed by offering an argument based on the structure of the
plausible execution sequences, which is completely determined by the arrow relations

asserted.

Treatment of <1 is sound When the relation z < s holds, plausible executions

contain s and xs. Once again, we set up £ =] sy OUT(2). At s we evaluate,

i€preds
IN(s) = £U fo(£)

The bound £ U g, (k;(£)) C g.(¢) is clear; this guarantees soundness.

Hence, the correct treatment for pa-related statements is to add the gen set.

Treatment of — is sound Let sy and s; have a common join successor ¢ (so that
sg = t,s1 — t). Clearly OUT(sq) LU OUT(sq) is a sound approximation of IN(%), but
we want to prove that it is sound to take OUT(sq) M OUT(sy).

We reuse the argument from the all-paths case. Consider any element ¢ of the
domain between the intersection and the union:
[JouT@) < ¢<| |OUT()
We claim that any such £ is a sound estimate for IN(s).

Consider some such £. It is below every one of the OUT(¢)’s and above some
OUT(j). This corresponds to some kill in j’s thread which survives concurrent gens
to reach the join node. Since kills do not propagate to concurrent threads, taking the

union is clearly suboptimal. Now, j definitely occurs before s, j asserts something
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less than ¢, and no concurrent thread gens something above /. Hence we can assert

that the exact answer at s is at most 4.

Since this applies for all such ¢, we can soundly declare

IN(s) = [ |OUT(G) L || OUT()

1—»s i€preds(i)

Remark 4.3.2 When we proved that the rule for b was sound, we established the

bound,

01 gy (ks (£)) T g4(0)

The reverse bound follows either if we establish the technical condition ensuring that
gen N kill = (), or by a direct proof for some specific analysis. If the reverse bound is

established, then our rule for 0 is also tight.

Example of a non-tight lifting Consider the variant of constant propagation
where the merge operator combines the possible constants on each branch. For in-
stance, if {(x,5)} is propagated on one branch, and {(z, 3)} is propagated on another
branch, then at the merge point, {(z,5), (z,3)} would be asserted.

The fact that our lifting is not tight is illustrated by the program fragment in
figure 4.2. Inspection of the fragment shows that we need not assert (z,1) at the join
node, but it is not eliminated by the intersection, because it gets regenerated on both

threads.

4.3.1 Tightness for bitvector some-paths analyses

We now restrict our attention to analyses which operate on powersets. Once again, we
assume that the flow functions are of the form g,(¢) = ¢ U gen(s) and k,(¢) = £\kill(s).

We also do not consider self-parallel statements.
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INS{(x, 1), (x,4)} x=1 x=1 INS{(x, 1), (x,2)}
QUT={(x, 1), {x, 4)} QUT={(x, 1), (x,2)}
IN={(x, 1), (x,4)} x=2 Xx=4 IN={(x,1), (x,2)}
ouUT={ (X%, 1), (X, 2), ouUT={(x, 1), (X, 2),
{x,4)} {x,4)}

IN={(x,1),(x,2),(x,4)}

Figure 4.2: Example showing that our naive lifting is not tight

As in the all-paths case, we claim that if flow objects also carry information
distinguishing identical gens in different threads, then the situation in the figure
cannot arise, and tightness would hold. Similarly, if kills are not shared between

threads, tightness also holds.

Proposition 4.3.3 Our rule for — is tight when x >y = kill(z) N kill(y) = 0.

Proof. Let some element p be killed at a statement ¢; by assumption, it can be killed
nowhere else in the set of concurrent statements. If p is generated at some concurrent
¢  t, then the kill of p does not have any effect; this is handled by the tx rules.
Otherwise, the usual sequential rules correctly handle the kill of p on #’s thread with
respect to interfering gens, ensuring the correct result holds at the predecessor to s.
Taking an intersection at s propagates the kill of p to s exactly when all plausible

sequences kill p. [ |

Proposition 4.3.4 Our rule for — is tight when x Xy = gen(x) N gen(y) = 0.

Proof. This proof mirrors the one from the all-paths case when we insisted that
kill sets be disjoint on concurrent nodes. Let p be generated at some statement t.
We assume that there are no gens of p on any concurrent threads. Any kills of p

concurrent to ¢t have no effect, because they have no ordering with respect to the gen
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at t; only kills in ¢’s thread could cause p to be removed from flow sets. Such kills are
correctly handled by the sequential rules for ¢’s thread: a kill takes effect at s exactly
when there are no concurrent gens of p, as long as the kill of p is propagated to s by

the sequential rules. [ |

Since there is a counterexample showing that our simple lifting is not tight, we

will have to improve the rules in order to get a tight lifting.

This time, it is necessary to track only threads on which gens occur; these are the
ones that can affect the result at a — node. To do so, we reuse the I, sets introduced
for all-paths analysis in section 4.2.1, which track sets of statements belonging to

various threads. However, now we compute whether or not a thread has any gen.

HAS-GEN(ix) = | J gen(i

1€l

We also compute local sets, ignoring the effect of concurrent threads, for all nodes
in I. Initial values for each of the IN-LOCAL sets should be T: we assume that there

are no kills in the past.

IN-LOCAL(s) = |J OUT-LOCAL(s) U () OUT-LOCAL(i)
i€preds(s) 18§
U U gen(z’)) N IN*(s)
s, i@l

OUT-LOCAL(s) = f,(IN-LOCAL(s))

These allow us to construct IN* sets. For each p in the domain, we consider the
maximal set I, of CFG nodes on which HAS-GEN(p) holds. Then, if s has multiple
— predecessors, we say p € IN*(s) iff p € ﬂiap OUT-LOCAL(%). Hence the IN* set
tracks statements which must be let through; in particular, the elements which have
been killed on any thread and not regenerated are not let through. A formula for

IN*(s) is

IN*(s) = |J (ﬂ HAS-GEN(i) N ()HAS-GEN(i ) [JOUT-LOCAL(:)

ICS \iel gl el
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We can propose the following improved rules for lifting some-path analyses.

IN(s) = lJ ouUT()u(OoUT@E) Ul Jgen(i) | N IN*(s)

i€preds(s) i—»s s

OUT(s) = (IN(s) \kill(s)) U gen(s)

Proposition 4.3.5 For all s, the IN*(s) sets contain the result obtained by evaluating
the flow function over all plausible sequences and are hence sound; we may intersect

them with the naive IN(s) sets.

Proof. Let s be a statement with multiple — predecessors. Assume p ¢ IN*(s). We
will show that there is no plausible execution reaching s for which the evaluation of
f contains p. Now, we have the set HAS-GEN of predecessors with a gen of p. Our
assumption p ¢ IN*(s) implies that p ¢ OUT-LOCAL(:) on each thread where p
might have been generated: there is a kill of p whenever there is a gen. Note that
other threads, not being in HAS-GEN, will not contribute to deciding whether or not

p holds at s.

We discuss the case where p is in the IN set of some predecessor of a node in
I. If there happen to be no gens of p at all in I, then I, is empty. By convention,

the intersection (),., OUT-LOCAL(%) contains p (and every other element of the

i€l
domain) if I, is empty. When there are some gens of p in I, then we have the above

situation; the presence of p in the IN set of a predecessor is irrelevant.

In summary, no plausible execution sequence will omit any information at s; the

IN* set is sound. ||

Proposition 4.3.6 The proposed rule for the IN sets, including the intersection with
IN*(s), is tight.

Proof. We now need to show that any p € IN(s) must be there: for all plausible

executions, there is some gen of p and a kill-free path from the gen to s.
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As in the all-paths case, we have narrowed the question down to proving tightness
for the case in which some p is generated on multiple threads. Assume, without loss
of generality, that p is generated on at least two threads. The set HAS-GEN tracks
all threads on which p is generated. If p € IN*(s), then on some thread where p is
generated, it is not killed. If this gen is run after all interleavings where p is killed,

we exhibit a plausible execution where p holds at s. [ |

Backwards analyses Backwards analyses follow the same basic rules, with direc-

tions reversed. For instance, sequential rules for an all-paths analysis are:

out(s) = |_| in(s)

i€suces(s)

in(s) = fs(out(s))

We can view a backwards analysis as a forward analysis on a control-flow graph
with reversed arrows. In terms of execution sequences, a backwards analysis does
not consider heads of sequences, but instead tails of sequences; it seeks to discover

properties that will hold in the future, rather than properties about the past.

We provide the rules for a naive lifting for the backwards all-paths analysis. We
omit rules for the tight lifting and proofs of any sort; these can be deduced easily

from the treatment of the forward lifting.

OUT(s) = |_| OUT(s) U |_| gen(7)

i€succes(s) s

IN(s) = f,(OUT(s))

4.4 Interprocedural analysis for concurrent pro-

grams

It is often quite important to analyse programs interprocedurally; analysing just one

method at a time forces very conservative assumptions to be made. This is especially
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true for concurrent programs. For instance, in Java, starting a new thread is an
interprocedural operation: the new thread starts executing the run() method of

some object, instead of continuing the method which was running previously.

An interprocedural analysis on a concurrent program has significantly more in-
terference from other procedures than one on a sequential program. In a sequential
program, the program points where procedures are called are readily identifiable, even
if the target might not be known at compile-time. A concurrent program, on the other
hand, has possible interleavings at every statement, although the interleavings are not

equivalent to procedure calls: no mapping of arguments is made, for instance.

We believe that many of the fundamental problems in lifting dataflow analyses
arise in the intraprocedural case, and that proposing intraprocedural liftings illustrate
the most important principles involved in analysis of concurrent programs. Never-
theless, attempting to lift interprocedural analyses is still quite complicated, and we

do not treat this situation in this work.
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Chapter 5

Examples of Analyses and Their
Liftings

The claim that we make in this work is that it is fairly straightforward to consider a
standard sequential program analysis and provide the corresponding analysis for con-
current programs. This will now be demonstrated: we lift several sequential analyses

to the concurrent case.

5.1 Available expressions

A standard program optimization is common subexpression elimination, where redun-
dant computations of an expression are suppressed. To carry out common subexpres-
sion elimination, the results of the available expressions analysis are required. The
sequential version of this analysis has been implemented and the practical behaviour
of the common subexpression elimination optimization on Java programs has been
investigated in a technical report [Lam00]. We will now describe this analysis and its

lifting.

This analysis operates on the universe of expressions. Elements in this universe

can be represented by bitvectors, so the situation is particularly simple here. In order
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to carry out common subexpression elimination, we require that distinct instances
of an expression (for instance, x + y may occur at two program points) be treated
as different expressions. With this requirement, our lifting is guaranteed to be tight

because of proposition 4.2.3: no two statements generate the same expression.

An expression e of the form x op y is available at program point p if all paths
from some evaluation of e to p is free of redefinitions of z and y. (Of course, we also
allow unary and tertiary operators.) The analysis is forward; the merge operator is

N for sequential merges.

For this analysis, we define the sets at program point s:

gen(s) = expressions evaluated in s

kill(s) = expressions containing variables defined in s

To meet the technical condition that, for all s, kill(s) N gen(s) = @, at s we do not

kill expressions that are evaluated in a statement s.

Because |, kill(¢) is well-defined, the lifting is particularly simple; all bitvector
analyses share this property. A straightforward application of the naive lifting gives

the following rules.

IN(s) = [ OUT@E)U()OUT@)\ k()

i€preds(s) i—»8 D18

OUT(s) = IN(s) \ kill(s) U gen(s)

We close the example by working through a number of simple flow graphs. First,
we illustrate available expressions for a sequential program in Figure 5.1; it is fairly
simple but illustrates how information is flowed around a sequential CFG. In these

figures, the sets illustrated are always OU'T sets.

We also illustrate the analysis on the concurrent program in figure 5.1. Assume
that we have matched the notify () /wait () pair; this allows us to calculate the arrow
relations. We point out that d = 2 prevents ¢ + d from becoming available in the

concurrent thread. On the other hand, synchronization ensures that x + 3 becomes
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Figure 5.1: Available expressions on a sequential graph

{y+5}

a
v {y+5, a+b}

{y+5, x+3}
d=2 =c+d
{y+5, x+3} Vv o (Y*5, atb}
{a+b, b+5}
u=a+d
(x+3, ard) {a+b, b+5,

x+3}

{a+b, b+5, d+3.
x+3}

{x+3, a+d, at+b, b+5, d+3}

Figure 5.2: Available expressions on a concurrent graph
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available on the other thread, because it is true that the computation has certainly
executed before anything after the wait (). Finally, after the concurrent join, the sets

on both paths are combined using set union.

5.2 Live variables analysis

Our next example will treat the live variables problem. A variable is live at program
point s if its value can be used in the future on some execution. There are obvious
applications to register allocation; this analysis is also useful in loop optimizations,

for instance to remove loop invariants.

The live variables analysis operates on the universe of variables in a program.
Once again, this is a bitvector analysis, so we have the more precise results from

Chapter 4 at our disposal.

At a program point s, a variable v is live if its value has a use in some path from
s to the exit node. This is a backwards some-paths analysis; its merge operator is U.

We define the gen and kill sets.

gen(s) = variables which are used in s

kill(s) = wvariables which are defined in s

Note that there may well be gens or kills which occur at more than one statement,

so we must apply the refined lifting.

Given this data, we are able to apply our lifting to obtain a concurrent analysis.
This requires no additional effort: in the sequel, we simply restate flow equations
from Chapter 4. They are minimally altered because live variables is a backwards

analysis.

Now, our lifting relies on collecting HAS-GEN sets. As we have a backwards
analysis, these sets are collected for each node s with multiple — successors (for

instance, fork and notify nodes). We collect sets of I statements for each concurrent
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successor 75 of s. This allows us to set
HAS-GEN(i;) = | J gen(d)
i€ I,

Next, we compute local sets for all nodes in 1.

OUT-LOCAL(s) = J IN-LOCAL(s) U () IN-LOCAL(:)
i€preds(s) —>$
U U gen(i)) N OUT*(s)
s, i1

IN-LOCAL(s) = f,(OUT-LOCAL(s))

From the IN-LOCAL sets, we construct the OUT™ sets for statements s with sets
of multiple — successors S as follows:

ouUT*(s) = | J (ﬂ HAS-GEN(i) N () HAS-GEN(i)) N[ )IN-LOCAL(i)

1CS \ierl il iel

In all, we have the rules

OUT(s) = U ING)u () OUT() Ul Jeen(i) | nOUT*(s)
i€succs(s) i—»s i<s

IN(s) = (OUT(s) \ kill(s)) U gen(s)

We conclude the discussion of live variables analysis with two examples of the

analysis on concurrent programs.

The first example, in figure 5.2, demonstrates the use of the OUT™ sets for the
variable y. Also note that z is killed only on the left thread; since there is no gen on

the right thread, z does not survive past the fork node.

In the second example, shown in figure 5.2, we nest concurrency constructs, and
include a wait/notify construct inside the inner set of threads. Space does not permit
the inclusion of the LOCAL sets; we do illustrate the OUT™ sets, though. Notice
in particular that the z on the internal set of threads gets killed by the definition
x = 3. Also, note that the gen of  on the left-hand thread must be included on the

rightmost thread, even if it is eventually killed at concurrent merge points.
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Figure 5.3: Live variables analysis on a simple concurrent graph
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Figure 5.4: Live variables analysis on a complicated concurrent graph
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5.3 Generalized constant propagation

Some analyses use more interesting abstractions than the ones used in available ex-
pressions and live variables. For instance, generalized constant propagation propagates

ranges of values for variables. We discuss its lifting to a concurrent analysis.

As presented in [VCH96|, generalized constant propagation is applicable to C
programs; it was implemented in the McCAT C compiler framework. As such, it
assumes that the program under consideration is structured: that is, it assumes
that the program is presented in Abstract Syntax Tree form. However, it is fairly

straightforward to convert this analysis to one that operates on a control-flow graph.

The underlying abstraction domain is that of closed scalar intervals: we con-
sider ranges [a,b] with L= [] and T = [—00, 0], where oo is the largest machine
representable scalar. We can define an ordering and a meet operator on this do-
main. The relation [a,b] C [¢,d] holds if a > ¢ and b < d. We define the meet by
[a,b] V [c,d] = [min(a, c), max(b, ¢)].

One special feature of generalized constant propagation is that it is a branched
analysis. At a conditional statement (e.g. if (x < 0) then goto y), we can prop-
agate additional information to y: namely, that £ < 0 holds. This means that we

actually have several distinct OUT sets from a statement.

To describe the actual analysis, we now present a number of the sequential flow
functions for a number of different statement types. Working out the other flow

functions is a fairly simple exercise.

In this all-paths analysis, the ks function loosens the estimate and the g; function
tightens it. As ranges, £ C ky(¢) and g5(¢) T ¢; this is required to satisfy our

assumption that ky; and g, are kernel and closure operators.

We briefly discuss the technical proviso guaranteeing ¢ 1 ky(gs(¢)) = ks(€). In
our case, k; will always widen the range of ¢, computing the meet of £ and what s
requires; gs; then narrows the information. If ks always combines ¢ with some range,

while g, returns the range itself (it is a constant function: the output of any given g
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function does not depend on £), we can see that £ g,(ks(£)) = ks(£). For any £, the
intersection £ M gs(4p) is exactly ky: we always require that k; computes the meet of

¢ and the range generated by g;,.

The simplest example is the statement

for some constant c¢. The associated functions are ks(¢) = ({V ¢ : [c,c]): we ensure

that ¢ contains ¢; and gs(¢) =t : [c, ¢], strictly improving the estimate.

For a statement s of the form
s:xr =y

the kill function must ensure that x’s range is widened to contain the range for y in
the IN set for s: ks(¢) = = : RangeOf (z,IN(s)) V ¢, while the gen function narrows z’s
range to be exactly the range given by y: ¢s(¢) = = : Range0f(z,IN(s)). Again, the

gen function strictly improves the estimate.

The original paper also presented rules for use with C-style pointer operations.
Even though we do not consider models of languages with C-style pointers in our
discussion of real languages, it is still meaningful to discuss the liftings of these rules.
These rules require points-to analysis. Points-to analysis is a more complicated anal-
ysis for sequential programs; we will not discuss it in this work, although there are

no conceptual barriers to lifting it.

In the case of a statement
S:x =%y

we want to merge the ranges for every possible value that y might point to (that is,

Dereference(y)); this is the new range for z. This forces

ks(¢) = ¢V z: MergeRanges(RangesOf(Dereference(y)))

9s(¢) = x:MergeRanges(RangesOf(Dereference(y)))
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narrowing the estimate removing the influence of the original /.

We also must consider statements of the form
S:ikx =1y

In that case, we may have definite or possible points-to information about x. If we
know that x definitely points to some location z, we can treat the statement exactly

as if it read z = y.

On the other hand, we may only have possible information about z: it may point
to either d, e or f. In that case, there is uncertainty about the actual effect of this
statement; its effect must be estimated. This uncertainty is actually quite similar
to the uncertainty encountered when we have proximal statements in the execution.
For each z possibly-pointed to by x, we set ks(¢) = £V z : RangeOf(y), merging the
old value for z (from ¢) with the known range for y. We cannot further tighten the

estimate, so g(¢) = /.

A statement can involve an add expression, like
S:r=Yy—+=z

We need to estimate its effect on the flow sets. Given two incoming ranges y : [a, b] and
z : [c,d], we abstractly add them as follows: the lower bound e is —o0 if a 4 ¢ < —o0;
otherwise it is a + c¢. Similarly, the upper bound f is oo if b+ d > oo; otherwise it is
b+d. The kill function merges the information: k4(¢) = £V [e, f] and the gen function

removes the old information: gs(¢) = [e, f].

Conditionals and looping The original paper discussed the effect of conditionals
and looping; a structured analysis has explicit conditional and loop instructions to

consider. Our analysis must take a different approach.

We discuss in further detail the branched OUT sets at conditional branches. We
earlier alluded to the existence of multiple OUT sets for a conditional branch node.
More precisely, we associate to each outgoing control-flow edge an OUT set. One

edge is taken if the test condition is true; the other edge is taken if it is false.
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The condition allows us to split the IN set into two parts: one consistent with the
condition, and one inconsistent with it. For instance, x > 0 would split the range
x : [5,5] into the consistent range x : [0,5] and the inconsistent range = : [—5, 0].
Clearly, we propagate the consistent ranges on the taken edge, and the inconsistent

ranges on the edge not taken.

Loops are handled by the fixed point computation. However, a notable feature of
the paper is artificial stepping-up of ranges, in order to guarantee reasonable conver-
gence times. An intelligent conversion of the stepping-up from a structured analysis
to one for CFGs is beyond the scope of this work. A simplified stepping-up would
count the number of times a CFG node is iterated; if this number exceeds a certain
arbitrary limit, the ranges would be increased, say by widening to [—o0, oc]. This is

sound but far from tight.

Lifting generalized constant propagation As this analysis does not operate on

a powerset, our naive lifting is not guaranteed to be tight. However, it will be sound.

Applying our rules to this analysis, we see that concurrent kills must be applied:

IN(s) = (ki 0o ki)ipas | \/ OUT()) v A\ OUT(5)
i€preds(s) 18
We proceed to illustrate two examples of generalized constant propagation on

concurrent programs.

The first example, in figure 5.3, demonstrates generalized constant propagation
on a simple example. We omit variables with ranges [—o00,00]. Note that the if
statement in the left thread can generate additional constraints, while the one on the
right cannot; concurrent gens interfere. Also, we point out the use of A to merge the

sets at the concurrent join node.

In our second example, shown in figure 5.3, we illustrate how our simple lifting
is not tight. The lifted analysis works well for the at the first join node; intuitively,

we see that there is only one gen per thread for x. However, the context insensitivity
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x:[3,5], t:17
x:[3,5], t:[3,17]
i3, . x:[4,5],
2, I NF] ol ) 13 17] t:[3,17]
=2|><:[3,5],t:[:<},17]
x:[3,5],t:[3,17],z: 2

x:[3,5],t:[3,17],z:5

Figure 5.5: Generalized constant propagation on a simple concurrent graph

of our lifting prevents us from getting exact information about the second pair of
threads. In particular, from looking at the program we see that an exact analysis

would say that z must be in the range [17, 23] after the second concurrent join.
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Figure 5.6: Lifting of generalized constant propagation is not tight



Chapter 6

Detecting Concurrency Relations

in Real Languages

Our concurrency model abstracts away from concurrency features in actual languages,
replacing them with — and < relations. We will now convert constructs which appear
in real languages into the above-mentioned relations. In this work, we have chosen to
handle Java, Ada and CML, representing three different concurrency models; adding

support for other concurrency models would be fairly straightforward.

6.1 Java

For many reasons, the Java programming language has recently become a popu-
lar language for programming languages researchers to study. Optimizing compiler
frameworks exist for Java; one of them is the Soot framework [VR00]. Furthermore,
Java has support for concurrency built into the language specification [GJS00] itself.
Hence, we discuss the mapping from Java concurrency primitives to our concurrency

model.

The description of the Java memory model is vague and incomplete [Pug99]. In
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this work, we assume that updates to values shared between threads take place in-

stantly.

Java is an object-oriented language. Its concurrency primitives rely on runtime
system objects for inter-thread signalling. Hence, the situation in real Java programs
is somewhat complicated. In particular, any reasonably accurate Java analysis will
require alias analysis. We are not aware of any alias analysis work specifically for

Java, but there is work on alias analysis in general, as well as pointer analysis for

Java [WR99, LR91, EGH94|.

6.1.1 The Java concurrency model

The basic Java concurrency primitives are fork, join, mutual exclusion (confusingly

named synchronization in Java) and wait/notify communication between threads.

In Java, a new thread is spawned by calling the Thread.start() method with an
object 0o implementing the Runnable interface, or the start () method on an object o
extending the Thread superclass. This causes a new thread to be spawned. It starts

its execution in the run() method on o.

This model of thread spawning guarantees that intraprocedural analyses need
not consider the effects of concurrency on local variables. Any globally-accessible
data, of course, can be modified by concurrent threads, necessitating conservative

assumptions.

Recall that joining a concurrent thread involves waiting for the concurrent thread
to complete its execution before proceeding. In order to join in Java, we call the
join() method on Thread (passing it the Runnable object) or on object o extending
Thread, as appropriate. To do this statically, we must match up the object involved

in the start() call with the one involved in the join() call.

Mutual exclusion in Java is accomplished by obtaining locks. Every Java object
has an associated lock. At any point, a thread may request the lock on an object o

by putting some statements in a synchronized (o) block; once the block finishes, the
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lock is released. This ensures that the code inside the synchronized block is guarded
by the lock o; no other thread may obtain that lock. In order to distinguish different

locks, a precise alias analysis is required.

Java provides inter-thread signalling with notify() and wait() functions. Sig-
nalling is done through lock objects. Each lock object has an associated wait queue;
when a thread waits on an object, it blocks until a notify() is called on the same
object. Before either waiting for or sending a signal, a thread must possess the cor-

responding lock.

There are actually two methods which send a signal: notify () and notifyAl1().
The former method arbitrarily picks one thread to continue, while the latter method
unblocks all threads waiting on the lock. Even when a thread ¢ is unblocked, it will
still need to hold the associated lock to continue: it may no longer be waiting for
a notify, but another simultaneously-unblocked thread ¢’ might get the lock. In
that case, ¢ must wait until ¢’ releases the lock. Usually, notification is used for
informing another thread of a change of state; thus, programs should almost always
use notifyAll() instead of notify (), as more than one thread might be waiting on

a lock, and all threads should know about the change of state.

Receiving a signal is a multistage process. We divide a wait() into three con-
ceptual steps. These steps can be separated into three distinct control-flow graph
nodes. The first step, represented by the wait node, is to release the lock, so that
a notify has a chance to run. Then, the thread sleeps in a waiting node, waiting
for a notify to trigger it. Finally, the thread wakes up in a notified-entry node
and requests the lock. This allows us to put the — edge from the notify() to the
notified-entry node. Furthermore, we replace the other sequential edge following
the notify () with a — edge. We also do this for the edge from the waiting node to
the notified-entry node. Note that — can only occur if the notify and waiting

nodes are related by p<; otherwise, notification will never occur.
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~N
N
C \ =
notified-entry
F

Figure 6.1: A simple Java wait/notify pair

Timeouts In Java, wait() can take a parameter indicating how long it is to wait
before timing out. Once the specified interval runs out, the thread continues its
execution, without notification. We are not able to distinguish between a timeout
and a notification. As it is possible that the notification did not occur, we cannot
guarantee that — relations hold. In this case, we can neither propagate information,

nor can we remove any interleaving operators.

A simple wait/notify pair We discuss the mapping between wait/notify and
—. Consider the wait/notify pair in Figure 6.1. We assume that we can statically
determine that the illustrated notify and wait instructions are matched, and that no

other program points act on the same lock.

For our example, it is in fact not true that B — E’. Communication is asyn-
chronous, so B might well finish executing before E’ has started to wait; in that case,
that thread would wait forever once it reaches E’. However, B — E” does hold.
When E" executes, B has certainly already executed. Furthermore, there exists an
actual interleaving where B executes, then E”. This matches the semantics of — and

we are thus able to assert that B — E".

Note that we need not guarantee that F' execute. The —» relation states that
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should F' execute, it will follow B.

In this situation, we have the following < relations. We can assert that A px
D, A< E,Bx D, B E' C < D and C < F. We draw attention to C' b1 D. The
communication is asynchronous, so B and C' may both finish before anything in the

DEF thread runs.

Multiple locking It may well happen that several different program points are
waiting for a signal, or that multiple points are sending signals. This is because any
object which has access to the lock object may send a signal on it or receive a signal

from it. We now discuss this situation.

If we have several possible program points wy, . .. , w, waiting for a signal, and a
single notify point, then we can assert — relations from the single notify point to all
of the w’s. This will allow us to remove < relations between successors of the w’s
and predecessors of the notify. Consider that if any of the w’s gets to execute, then
it has certainly been preceded by the notify, possibly immediately. Recall that the
semantics of Java state that notify () arbitrarily chooses one of the waiting threads
to be woken up, while notifyA11() wakes up all of the threads. Any of the formerly-
waiting threads could eventually execute, but certainly not before the notify executes.
As long as there is no notifyAll statement, we do get to assert that the w;’s are free

of > relations, because only one thread gets woken up.

On the other hand, the presence of multiple program points ng, ni,... ,n; sending
signals to one, or several, wait statements does not allow us to assert any —» relations.
Consider two notify statements B, H and one wait statement £, as illustrated in
Figure 6.2. We cannot tell which notify wakes up F. This prevents us from asserting
—» relations between A and F' or between GG and F'. If B synchronizes with F, then G
could be executed immediately after F'; conversely, G could executed before E by the
scheduler. Hence in this case, i< relations must be preserved between the successors

of the waits and predecessors of the notifies.
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Figure 6.2: Two notify() statements act on one wait () statement

6.1.2 Computing relations for Java

In work by Naumovich, Avrunin and Clarke [NAC99]|, an analysis for detecting the
may-happen in parallel (MHP) relation for Java programs is presented. This is pre-
cisely the < relation we use in our liftings. Taylor has shown in [Tay83] that comput-
ing precisely which statements may happen in parallel is NP-hard in the intraproce-
dural context; our algorithm computes an approximation. The analysis presented in
the work by Naumovich et al., is only applicable to programs where each thread has
only one procedure, and where any given thread is only invoked once. It also assumes

exact alias analysis for lock and thread objects.

We will first present the MHP algorithm as described in [NAC99], along with an
example. We will discuss the effects of imprecision about the identity of lock objects
on this algorithm. Finally, we will detail what is needed for the algorithm to deal
with the case of programs with multiple procedures per thread, including the case

where a procedure is executed by several threads.

This algorithm has been proved to compute a conservative approximation to the
ideal MHP information. Its worst-case time complexity is O(|N|?), where |N| is the

number of program statements.
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The MHP algorithm

The proposed algorithm looks similar to a standard forward dataflow analysis, but
has one important step preventing it from being expressed in the standard dataflow
framework. For each statement, the analysis returns a set of statements which may

happen in parallel. We also extend it to report on — relations.

Notation A (obj, entry, t) statement denotes a node belonging to thread ¢ re-
questing the lock for obj, while an exit routine releases the lock. Earlier, we have
alluded to the three-stage wait process in Java. This translates to nodes (obj, wait,

t), (obj, waiting, t) and (obj, notified-entry, t).

Two kinds of sets are tracked for every node. The M sets represent < information:
if z € MHP(y), then = b y. The OUT sets represent information which is to
be propagated to successors; facts in OUT(z) hold immediately after z finishes its

execution.

In our liftings, we require both > and — information. MHP is exactly equivalent

to 1, while — can be computed by a slight extension of the MHP algorithm.

Symmetrization The < relation is symmetric, while results of dataflow analyses
usually are not. An important step in this algorithm is to impose symmetry: if n; €
M (ns), then we add ny to M(ny). This is crucial to the propagation of information
through the graph and prevents it from being expressed in the standard dataflow

analysis framework.

MHP Rules The following rules are taken from the original work on the MHP

algorithm. First we present the rules for M(n). These sets accumulate from the
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OUT sets of the predecessors.

)
(Upestarepreaty OUT() \ N(thread(n) ) it n s begin
( (UpeNotifyPred(n) OUTO’)) )

M(n) = M(n) U< NOUT (WaitingPred(n))
) MnotifyAl](n) if n is notified-entry
\ UpELocalPred(n) OUT(p) otherwise

Every thread begins its execution at a begin node. At such nodes, we propagate the
OUT information from all of the start nodes triggering the execution of the thread,
and subtract N(thread), the nodes in the thread being begun. This ensures that

nodes that were parallel with the start remain parallel with the new thread.

Recall that a wait is decomposed into three stages. The notified-entry node is
the final stage, executing only after some other thread has executed a notify on the
same lock. At a notified-entry node, we add the set of statements concurrent after
the predecessors of any matching notify (written as notifyPred(n)), as long as these
statements were already in the OUT set of the waiting node immediately preceding

the notified-entry node (expressed as WaitingPred(n)).

This clause takes effect only when multiple threads could potentially notify to
the wait in question; otherwise, this intersection is empty, as OUT(WaitingPred(n))
would only contain statements from the notifying thread, while the OUT sets of the
notifyPred statements only contain statements from the waiting thread. When the
intersection is nonempty, we add to M (n) statements from our predecessor which are
also concurrent with the matching notify statements. This has the effect of forcing
successors of the wait to be parallel with the predecessors of the various notify

statements.

If n is not a notified-entry statement, then we set Myoryan(n) = 0. Otherwise,
if n is a notified-entry statement on object obj, we have:
Motisgan(n) = {m | m € (obj,notified-entry,*) A
WaitingPred(n) € M (WaitingPred(m)) A
(3r € N : r € (obj, notify All, *)) A

r € M (WaitingPred(m)) N M (WaitingPred(n))
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That is, all notified-entry statements m on the same lock become concurrent with
n, as long as they were already concurrent with n’s waiting predecessor, and there

exists a notifyAll statement on lock obj which acts on both m and n.

Given the M sets, we can compute the OUT sets for each node. These corre-
spond to statements which are parallel after the execution of n has completed. Each

statement has gens and kills:

OUT(n) = (M(n) UGEN(n)) \ KILL(n)

The GEN rule is fairly straightforward, handling start nodes and notify nodes.

(,begin, t), if nis the start node for ¢
GEN(n) = { NotifySucc(n), if 3 obj: n € notifyNodes(obj)

0, otherwise

The first rule ensures that, after a start node, we add the begin node for the
thread being started. This goes in the GEN rule because we consider that the other

thread only starts after the start has completed its execution.
If a statement n is a notify or notifyAll statement on obj, we add all of the
notified-entry successors m, as long as m’s waiting predecessor is in M (n):

NotifySucc(n) = {m | m € (obj,notified-entry, *) A WaitingPred(m) € M(n)}

This ensures that (only) the successors of a notify are concurrent with the successors
of await. The predecessors of the notify avoid being concurrent with the successors
of the wait because the M (n) rule for notified-entry prevents any such predecessor

from passing through the notified-entry node on the waiting thread.

In some cases, we can state that after a statement completes, certain other points

are no longer concurrent. We present the KILL rule, describing when this can be
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done.

r N(t), if nisa joinon ¢
Monitorepj, if n € (obj, entry, *)U
(obj,notified-entry, *)
KILL(n) = { waitingNodes(obj), if (n € (obj,notify, *)
AlwaitingNodes(obj)| = 1)
V(n € (obj,notifyAll, x))

\ 0, otherwise

If n is a join statement, we can safely state that successors of n are no longer
concurrent with any nodes from the thread being joined, as join guarantees that the

joined thread will terminate before execution proceeds.

The KILL rule also handles mutual exclusion. When an entry or notified-entry
statement is executed, then we may assert that no other statements protected by the
same lock may execute in parallel. Note that no special treatment is necessary for
exit nodes; simply not being under mutual exclusion will add the necessary parallel

statements to M.

Finally, if n is either a notify statement with exactly one successor or anotifyAll
statement, we kill all matched waiting nodes. In either case, we can be certain that
the waiting statements are going to be woken up; this does not hold for a notify
with multiple waiting successors. Given this information, we know that the waiting

nodes will complete; they will be followed by the notified-entry nodes.

Computing happens-before relations The results of our lifted analyses are
tightened when we have — information. Examining the MHP rules allows us to
discover places where — can be asserted. At a join node, we can assert that the end
node for the concurrent thread is — related to the join node’s successor. Also, at a
notified-entry node n, we have — if n’s waiting predecessor is concurrent with n,
and there is exactly one notify or notifyAll predecessor. In this situation, we also

assert that — holds from the notify node to the notified-entry node.
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Figure 6.3: MHP analysis on a simple Java wait/notify pair
Example of MHP Computation

Having presented dataflow rules for MHP computation, we illustrate the result of this
analysis with a simple example. Figure 6.3 is a simple wait/notify pair, adding some
wrapper code to figure 6.1; it also serves to illustrate the tricky propagation of MHP

information.

We observe that the start node B gets J in its OUT set, reflecting the fact
that the corresponding begin node occurs in parallel with the successors of B. The J
propagates to the IN node of C, and continues down to the notified-entry node. At

anotified-entry node, parallel nodes must also be parallel with some corresponding
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notify statement, so J is stopped there. The symmetrization step ensures that J gets
C, D, E, and F in its M set, and all of these are propagated to K. At K, we exclude
E because of mutual exclusion. At the notify node L, we remove the waiting node
per the rule for M, and add the notified-entry node by the GEN rule. This
propagates to node M. Finally, we hit node N, which is parallel with C. Since it is not
under any monitor, N propagates straight through on the main thread, from C to I;

symmetrization puts all of the main nodes in N’s M set.

MHP in the presence of imprecise alias analysis

The MHP algorithm presented above assumes that there is an exact alias analysis,
resolving all of the lock and thread objects. It may happen that the available alias
analysis is not good enough to resolve all of the lock objects exactly. The original

work did not deal with this situation; we discuss what has to be done.

Inexact thread object information In Java, threads are represented as objects.
This may result in imprecision about the identity of the thread which gets started.
When starting a new thread, we must add to OUT(s) all begin nodes for objects
possibly aliased to the started thread, as this corresponds to possible flow of control.
At a join node, on the other hand, we kill all nodes of the joined thread from the
OUT set. We can only carry out this kill given exact thread object information;

otherwise, there is no guarantee of non-concurrency.

Note that under the assumption that exact alias information is known, it is im-
possible to express a program with a statically unbounded number of threads: we
would have to account for each of the possibly-created threads. We return to this

problem in section 6.1.3.

Inexact lock object information Lock objects are used for mutual exclusion and

inter-thread communication.
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Mutual exclusion is accomplished by requesting the monitor for some object. In-
side the protected block, we can assert that no statements under the same monitor
may execute in parallel. This can only be asserted for statements which must be

under the same monitor; it is not sufficient to have may-aliased information.

For locking, we do require precise alias analysis to assert —»; otherwise, our de-

ductions are severely limited.

Lock objects are used for the M (n) rule when n is a notified-entry node:

M(n) = M(n)U U OUT(p) | N OUT(WaitingPred(n))
eNotifyPred(n)
UMy otify AT1(7)

Here, we set NotifyPred(n) to include all statements notifying on an object possibly
aliased to the lock object at n. Similarly, at the notifyAll rule, we take all nodes

possibly invoking notifyAll on the same object as the notified-entry.

For the GEN(n) rule, recall that we apply the NotifySucc rule for all notify
and notifyAll statements. Let n be a notify statement on o. The NotifySucc set
must include all objects m such that m € (o’,notified-entry, *) where o is possibly

aliased to o', and the waiting predecessor of m is parallel to n.

Finally, we consider the KILL(n) rule. For a join node, we can only kill N(t)
if we are certain about t’s identity. Similarly, we can only kill mutually-exclusive
statements if we are sure that they are under the same monitor. We also may kill

waiting nodes only for matching notify objects.

6.1.3 Interprocedural MHP analysis

The original work on MHP for Java programs does not discuss threads with multiple
procedures; instead, they inline so that there is only one procedure to handle. This
is undesirable for analysing real programs; for instance, inlining causes code bloat,
and makes subsequent analyses difficult to perform. We will discuss a strategy for

analysing programs with procedure calls.
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To carry out an interprocedural analysis, we augment the control-flow graph with
nodes representing method invocations and returns. Often, making an analysis inter-
procedural requires some mapping between values in the calling procedure and the
called procedure; this is not required for MHP analysis, as no values are propagated,

only program points.

Recently, context-sensitive synchronization-sensitive analysis has been shown to
be undecidable by Ramalingam [Ram99]; this is caused by the presence of recursion.
A context-sensitive analysis is one which only considers paths through the program
where method invocations are exactly matched with method returns. Our analysis is

not sensitive to calling contexts, thus avoiding this difficulty.

One situation not handled by the original MHP analysis which is especially rele-
vant to interprocedural analysis is the possibility that some statements are executed
by two threads. The only way that would happen in the absence of procedures would
be a thread that gets spawned multiple times. With procedures, two threads simply

need to call the same procedure to produce this behaviour.

No self-parallel statements

We first handle the simpler situation where no statements are self-parallel.

To make our analysis interprocedural, we visit all possibly called procedures (in-
exact information may arise, for instance, from virtual method invocation) at an
method invocation node s, passing the M set from s to the M set for start nodes
of all targets. We then collect all OUT sets from return nodes and put them in the
OUT set for s. When no statements are self-parallel, we can deduce that no method

will be called by multiple threads.

This does not terminate in the presence of recursion. When we visit an invoke site
for a method that is already being visited, we store for the recursive method an IN
(M) set and an OUT set. Every time this method is possibly called at a statement

s, we compare the M set from s with that stored for the start node of the method.
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If the stored set contains the one at s, we set the OUT set for s to be the stored
OUT set for the method. Otherwise, we propagate the M set from s through the

method, merging (with union) the OUT sets from all return statements and storing

the merged OUT sets as s’s OUT set.

This algorithm is always guaranteed to terminate. For non-recursive programs,
the pass through the call graph will be acyclic, so it will make at most one visit
to every method; the presence of recursion does not affect termination, because the

OUT sets strictly increase, but multiple passes may be required.

Handling self-parallel statements

The MHP algorithm described explicitly assumes that no statement may occur in
parallel with any other statement in the same thread. This assumption can be justi-
fied when every thread executes exactly one method; in that case, we might consider
duplicating the thread bodies for different instances of threads. However, we would
like to consider programs where a statically unbounded number of threads can be
spawned, in order to deal with programs which use common Java programming id-

ioms.

First, we consider the case where a thread has multiple active instances. For
instance, a Java server will often start up a thread to handle each request. Any
given instance of a thread may only be started once, but many instances of the
thread may be created and started. The MHP analysis described by Naumovich,
Avrunin and Clarke, cannot understand such a program: their description of MHP
analysis requires that the program being analysed has only at most one instance of

any program statement running at any time.

It turns out that, for MHP analysis, we only need to distinguish the case where
a thread is started once from the one where a thread is started many times. In the
latter situation, we cannot hope to duplicate the thread body once for each possible
running thread. We must declare that the nodes from the thread are parallel to

themselves.
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The rules for M explicitly disallow a thread from executing in parallel with itself,

When n is a begin node, we have:

M(n) = M(n)U U OUT(p)\ N(thread(n))
p€eStartPred(n)
If we did not remove N(thread(n)), we would allow information about self-parallel

statements to flow through the thread. This is what we want.

Within the framework of the original MHP analysis, it was useful to remove nodes
in the same thread; after all, in their model, it is an error to start a thread more than
once. Hence they can trim their MHP sets by removing relations which are guaranteed

not to happen.

The other possibility is a procedure shared between threads. This also leads to
nodes being potentially parallel with themselves. However, in that case, the MHP
algorithm will simply proceed to add (many) self-parallel nodes. We illustrate this
phenomenon in Figure 6.4. Note that the information collected is much degraded in
this situation. This is unavoidable unless we collect distinct M sets for each thread
which invokes the method. Doing so is similar to conceptually cloning the method
for each thread from which the method can be called, although the code need not be
duplicated. Collecting distinct M sets gives rise to the situation illustrated in Figure

6.5. Much tighter information can be collected in that case.

6.2 Ada

We discuss Ada concurrency primitives in this section. Like Java, Ada has built-in
support for concurrency. There has been some work which corresponds closely to

computing our — and X relations for Ada programs; in fact, it predates the work on

MHP for Java.
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Figure 6.4: MHP analysis on an example where a method is invoked by two distinct
methods
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Figure 6.5: MHP analysis on the example of Figure 6.4, distinguishing contexts
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6.2.1 The Ada concurrency model

The Ada concurrency model is rather complicated. We will treat a representative
subset of the Ada model. Our reference is [BW98], although the Ada Reference
Manual [Org95] may also be consulted.

An Ada task is declared with Ada’s task type construct; instantiations of task
types can occur where declarations of other data types can occur. The corresponding
tasks are started when the instantiation appears in scope. Tasks can also be created
dynamically. For our purposes, we will make the simplifying assumption that all tasks

are started simultaneously, when the program starts.

The Ada synchronization primitive is the rendezvous. Ada-style rendezvous is a
construct which ensures that in a pair of threads, neither thread proceeds beyond a

certain point before the other one does. This communication is synchronous.

O W >
7
N | < - x

Figure 6.6: Example of Ada Rendezvous

In figure 6.6, we see an example of an Ada rendezvous. There, we know that
Apxa X and Cix Z, but also that A - Z, X - C,B—» 2 Y - (C, X -» BJA—-Y.

We omit any relation between B and Y.

Because rendezvous is synchronous, we may remove d relations from all successors

of one node and predecessors of the other when there is communication.

Rendezvous is actually declared in Ada code by using an entry (declared with the
task) and an entry call: in the declaration for the task type, the accepted entries are

declared:

task type Server is
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entry respond(ID: in Integer);

end Server
and any client can call the entry:
Server.respond(3) ;

There is also a select mechanism, which accepts a number of entry types and

chooses one of them; we assume that it acts nondeterministically.

6.2.2 Finding relations in Ada programs

The Ada model is also amenable to finding x and — relations. We now present
an algorithm from [NA9S8] for doing so. Like the Java analysis for Must Happen
in Parallel, it is only applicable to programs with one procedure per thread and no
self-parallel units. It is much simpler, because the Ada rendezvous construct is much

simpler than Java’s concurrency support.

The analysis assumes that all threads are represented by separate control-flow
graphs, and that all of the graphs are available statically. There are two types of nodes
in each CFG: local nodes, corresponding to usual Ada statements, and communication
nodes, corresponding to rendezvous. A communication node has two predecessors,
one for each participant in the rendezvous, and two successors. There is also an initial

node for the whole program; it is the predecessor for all of the task begin nodes.

In this analysis, we track IN and M sets for each node. The IN set collects
information from the predecessors of a node, while the M set tracks the current
estimate of nodes which may happen in parallel. An additional bit of information
we track is a Reach bit for every communication node. This bit has an initial value
of false, and is set to true if both rendezvous predecessors are parallel to each other.

Clearly, this is a necessary condition for the rendezvous to proceed.
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The rule for the IN set at a local node merges the information from all predecessors:

N = |J Mp
pEPred(n)

while at a communication node, we require both predecessors to possibly execute:

r-]pEPI"Gd(n) M(p) if Rea‘Ch’(n)

IN(n) =
1] otherwise

To obtain the M set from the IN set, we calculate a GEN set, so that
M (n) = IN(n) U GEN(n)

Defining the GEN set first requires us to set up an P set for each statement n. P
contains the initial node, as long as there is a path from the initial node to n in some
CFG; it also contains all communication nodes with a path to n which currently have
their Reach bit set to true. Intuitively, P represents the set of currently-reachable

nodes. We set

GEN(n) = (U Succ(p)) \ {m | m is in the same task as n}

pEP
Once again, we assume that no statements are self-parallel. We generate all (transi-
tive) successors of the statements in P, as long as they are not in the same thread as

n.

The final step in this algorithm is to symmetrize. If n; € M(ny), then we ensure
that ny € M(n,). Again, this necessary step prevents the algorithm from being stated

as a standard dataflow analysis.

This analysis can be implemented so that it terminates in O(|N|?) time (where | N|
is the number of nodes in the program) and is guaranteed to compute a conservative

approximation of the perfect MHP information.

We have already discussed how to extend the Java MHP analysis to handle pro-
grams with multiple procedures and self-parallel units. The situation for Ada pro-

grams is not very different; we omit discussion of these issues.
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6.3 CML

Another language with concurrency primitives is CML. As it is a higher-order lan-
guage, its analysis is somewhat more complicated than that for languages like Java

and Ada; however, here we are solely discussing its concurrency model.

CML uses synchronous communication. Hence, an analysis similar to the one
we have presented for Ada in section 6.2 would be applicable, once the higher-order

features of CML are tamed.

6.3.1 The CML concurrency model

We present the CML concurrency primitives in figure 6.7. A discussion of CML’s
higher-order concurrency can be found in [Rep92].
Figure 6.7: CML concurrency operations
type thread_id
type ’a chan
type ’a event

val spawn : (unit -> unit) -> thread_id

val channel : unit -> ’a chan

val recv : ’a chan -> ’a
val send : (’a chan * ’a) -> unit
val recvEvt : ’a chan -> ’a event

val sendEvt : (’a chan * ’a) -> unit event

val guard : (unit -> ’a event) -> ’a event

val wrap : (Pa event * (Pa -> ’b)) -> ’b event
val choose : ’a event list -> ’a event

val sync : ’a event -> ’a

val select : ’a event list -> ’a

CML has four standard concurrency primitives: spawn, channel, recv and send.
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The spawn primitive creates a new thread and starts execution of a given function
in that thread. The channel function creates a new channel and returns it. These

channels can be used to send and receive messages.

In CML, send and receive are synchronous operations; of course, receive blocks
until a message is sent, but send also blocks until that message is received. If we
know that a send and receive are on the same channel, and that the receive is the
only one on that channel, then we can assert a — relation between these statements.

When we do so, we also assert — to the successor of the send and receive nodes.

The other CML primitives involve events. CML allows the construction of receive
and send events. These events are data values that can be acted on later by the sync
primitive: synchronizing on a receive event causes a receive to take place. Further-
more, the guard function creates an event out of a function promising to return an
event. The wrap function takes an event e and a function f and returns another
event. When the returned event is synchronized on, the event e gets synchronized on,
and then f is applied to the result of e. The final event operation is choose. It takes a
list of events and, upon synchronization, nondeterministically chooses one event from

the list to be synchronized on.

To act on events, we have the sync function, which takes an event and carries
out the associated action. There is also the select function, which is equivalent to

composing sync and choose.

6.3.2 Detecting causality in CML programs

The highly dynamic nature of ML programs makes their analysis quite difficult. Nev-
ertheless, there has been work on optimizing ML programs [TMC*96]. We will discuss

what a compiler must know to be able to assert —» and  relations.

For our causality analysis, it is imperative to resolve the communication channels
as accurately as possible. Such disambiguation is required in order to impose an or-

dering on statements in different threads: there is no ordering if we cannot determine
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that two program points are acting on the same channel.

A synchronous communication model imposes a symmetry between the receive
and send actions. A send and a receive on the same channel are equivalent in terms
of temporal ordering. However, in the presence of multiple send events or multiple
receive events, we notice that sends and receives are queued separately; a receive

event does not enable another receive event.

It is fairly simple to deal with the usual concurrency primitives spawn, recv and
send, as long as we can reliably differentiate the various channels used for communi-
cation. After a spawn statement, the evaluation of its argument proceeds in parallel,
so we add < relations between the successors of the spawn and the nodes of f. If a
recv statement r and a send statement s are associated with the same channel, and
we can guarantee that these are the only statements acting on this channel, then we
conceptually split r into two parts, 7o and r1, and s into sy and s;. We can establish
that rg — s, and s; — r1. In this situation, no < relations hold between the pre-
decessors of 7y and the successors of s;, nor between the predecessors of sy and the

successors of 7.

There may be multiple sends or multiple receives on one channel. If that may
happen, we no longer have any causality information, because any send may unblock

a receive, and any receive may block a send.

A send or receive with ambiguous channel information must be treated as if it
could act on any of the possible channels. If we can assert that we have only one send

and one receive action on all involved channels, then we can still assert —».

When dealing with events, we require even more information at compile-time. In
order to count the number of send events versus the number of receive events, we
must statically identify which types of events can reach a sync instruction. We still
require that the channel to which the sync refers be known at compile time. Given

this information, we deal with events in the same way as we dealt with the primitives.

In this section, we have presented principles for detecting temporal relations in
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CML programs. An algorithm for computing happens-before information in CML
programs requires completely different tools than those we have presented in the rest

of the work; it is outside the scope of this thesis.
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Chapter 7

Related Work

There have been previous investigations of several of the topics discussed in this thesis.
The determination of causality relations has been studied by many other researchers.
Flow analysis has a sound theoretical background; we provide some references to the
classical works. Various analyses for concurrent programs have been proposed in the

past. We will examine what has been done in the past.

7.1 Ordering of program events

The concepts of independent and proximal statements were discussed in Chapters 2,
3, and 6. The precise computation of this information was shown to be NP-hard by
Taylor [Tay83]. An early treatment of these issues occurs in work by Callahan and
Subhlok [CS88]. It discusses parallel FORTRAN programs and proposes an analysis
for estimating when one block of FORTRAN statements must precede another block.
In their work, blocks in this situation are called “Preserved”; we can see that this is
analogous to the happens-before relation —. Their analogue to proximal instructions
is the notion of “co-executable” blocks. Later, Duesterwald and Soffa proposed an al-
gorithm to order the statements of concurrent Ada programs with procedures [DS91].
There has been work by Ryder and Masticola [MR93] on non-concurrency analysis

of Ada programs; this work identifies statements which are not independent. The
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intraprocedural approximations for o< in Java and Ada programs presented in this
work are due to Naumovich, Avrunin and Clarke [NA98, NAC99]; they are currently
the state of the art, even if they do not deal with procedures or uncertainty in the

synchronization information.

Recently, Ramalingam has shown that interprocedural context-sensitive synchro-
nization-sensitive analysis is undecidable [Ram99]. Our interprocedural analysis to

detect the ordering of program events is not context-sensitive.

7.1.1 Alias analysis

Our may-happen in parallel analysis for Java relies on adequate alias analysis. We are
not aware of sophisticated alias analyses for Java; however, a type-based approach
to alias analysis has been implemented in the Jalapeno dynamic optimizing Java
compiler for use in dependence analysis. It is described in [CPST99]. There are also

descriptions of alias analysis in other contexts [LR91, EGH94].

7.2 Foundations of flow analysis

Dataflow analysis is by now a standard technique used in optimizing compilers to
detect properties of programs. In section 2.3 we described standard dataflow analysis
for sequential programs. A classical work by Kildall [Kil73] shows that if all flow
functions are distributive (in our terminology, multiplicative or additive), then the
standard iterative algorithm computes the maximum fixed-point solution (MFP) and
that this is equal to the meet-over-all-paths (MOP) solution. Furthermore, Kam
and Ullman showed in [KU77| that as long as the flow functions are monotone, the

standard algorithm at least computes the MFP solution.

The authoritative work mapping the results of flow analysis to information about
actual executions is the paper on abstract interpretation of Cousot and Cousot [CC77].

The idea is that the actual computations take place in some universe; we reason about
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some more limited universe, and abstract interpretation provides the bridge between
these two universes. In particular, abstract interpretation allows us to show that
the results in the more limited universe are still consistent with the semantics of a

language.

7.3 Analysis of concurrent programs

We are aware of some analyses specifically for multithreaded programs. Some analy-
ses consider properties specific to concurrent programs; static analyses for deadlock

detection, for instance, have no sequential analogue.

The earliest dataflow analysis of parallel programs of which we are aware was by
Grunwald and Srinivasan [GS93]; this work studied parallel FORTRAN programs and
solving the reaching definitions problem in the context of post/wait synchronization,
which is similar to wait/notify synchronization. However, there were several limita-
tions in that work. For instance, it assumed that threads were data independent;
changes in shared state do not propagate to concurrent threads until synchronization
takes place. There has also been work on developing a Concurrent Static Single As-
signment form by Lee, Midkill and Padua [LMP97]; they apply this CSSA form to
constant propagation. Novillo, Unrau and Schaeffer [NUS98] have extended CSSA to
handle mutual exclusion. More recently, there has been work by Rinard and Rug-

ina [RR99] on pointer analysis for multithreaded programs.

Perhaps the work closest to ours is by Knoop, Steffen and Vollmer [KSV96]. They
have proposed a lifting for sequential analyses. As in our work, they propose a mech-
anism to automatically produce the corresponding analysis for a concurrent program,
given the sequential analysis; it proves that the lifting is efficient and optimal. Their
notion of optimality corresponds to our notion of tightness. This lifting has been ap-
plied to partial redundancy elimination [KS99]. However, there are several limitations
to their work. It is only applicable to bitvector analyses; we provide sound approxima-

tions for non-bitvector analyses, like generalized constant propagation. Their lifting
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only applies to intraprocedural analyses. Furthermore, the model of concurrency
studied in their work is quite simple; they only consider forks and joins. Our work

deals with concurrency primitives which are easily mapped to those in real languages.

There has also been work on interprocedural analysis of concurrent programs by
Seidl and Steffen [SS00]. Their work also deals with some non-bitvector analyses: they
simply require that the abstraction domain have finite height, that it be distributive,
and that flow functions have the form f(x) = (aMz)Ub. However, they only treat the

fork-join model of concurrency; ignoring synchronization leads to a loss of precision.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

In this thesis, we have provided a general framework that overcomes the limitations
to optimizing concurrent programs that are inherent in traditional compiler tech-
nologies. We have constructed this framework so that our techniques can be applied
without requiring a large-scale retooling of current compiler technology; our work
makes standard compiler analyses for sequential programs applicable to concurrent
programs. More precisely, we have provided a general lifting permitting the applica-
tion of standard sequential dataflow analyses to the concurrent setting, taking into

account the synchronization structure of the program under consideration.

The main steps in accomplishing this goal and demonstrating its practical appli-

cations were as follows.

e First, we presented background material about causal ordering and sequential
flow analysis in Chapter 2. We introduced notions central to this work, namely
the happens-before relation and the concept of independent instructions. Se-
quential traces were used to revisit some of the classical results on the flow
analysis of sequential programs — we showed the soundness and tightness of the

usual flow analysis techniques — as a prelude to our treatment of concurrent
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programs.

We next discussed how concurrent traces are obtained from the causal relations
between statements in Chapter 3. We introduced the additional causal relation
> which holds between proximal statements. We described how the causal
relations determine the set of executions. Our relations improve on previous
work, where the effect of synchronization was ignored; in our approach, fewer
statements are unnecessarily declared to be proximal. Finally, we discussed a
set of concurrency features in programming languages and described how they

can be expressed using our concurrency relations.

We then proceeded in Chapter 4 to the main result of this work. We presented
general techniques making it possible to reuse sequential flow analyses in a
concurrent setting. First, we proposed a naive lifting, and proved that under
certain conditions, the naive lifting is tight. However, the naive lifting is not
always tight. For bitvector analyses, we proposed a more sophisticated lifting,

and showed that it was tight.

Our lifting is easy to apply. We demonstrated this in Chapter 5 by lifting several
common flow analyses: namely, available expressions, live variables and gener-
alized constant propagation. The lifted analyses were used on several examples
of concurrent programs, containing nested thread spawning and interthread

synchronization.

Finally, we addressed the problem of detecting causal relations in real programs
written in Java and Ada, and presented the CML concurrency primitives, in
Chapter 6. For Java and Ada, we recapitulated past work which identified
statements which May Happen in Parallel. We extended the MHP analysis for
Java to make it more applicable to real programs. In particular, we described an
approach for handling programs with procedures. We also analyse the situation

where concurrency relations are not exactly known.
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8.2 Future work

Having provided a framework for the analysis of concurrent programs, many interest-

ing problems are raised.

Implementation We have proposed a number of algorithms in this thesis. They

should be implemented.

In particular, the intraprocedural May Happen in Parallel analysis has been im-
plemented by Naumovich, Avrunin and Clarke. We proposed an extension to this
analysis, allowing it to handle programs with procedures. The practical behaviour of
this interprocedural analysis should certainly be examined, and the results compared
with ideal results; those can be obtained with an exponential-time algorithm, if the

program is sufficiently small.

Once the MHP algorithm is implemented, we are ready to implement lifted analy-
ses and optimizations based on them. The Soot framework is suitable for performing

such experiments on Java code, after a suitable benchmark set is assembled.

Interprocedural analysis In this work, we have presented a lifting for intrapro-
cedural flow analyses. To get more precise information, we must analyse the effects
of procedures. We are currently extending our lifting to deal with various types of

interprocedural analyses.
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