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The Hob System for Verifying Software Design PropertiesbyPatri
k LamSubmitted to the Department of Ele
tri
al Engineering and Computer S
ien
eon February 1, 2007, in partial ful�llment of therequirements for the degree ofDo
tor of PhilosophyAbstra
tThis dissertation introdu
es novel te
hniques for verifying that programs 
onform totheir designs. My Hob system, as des
ribed in this dissertation, allows developers tostati
ally ensure that implementations preserve 
ertain spe
i�ed properties. Hob ver-i�es heap-based properties that 
an express important aspe
ts of a program's design.The key insight behind my approa
h is that Hob 
an establish detailed software designproperties�properties that lie beyond the rea
h of extant stati
 analysis te
hniquesdue to s
alability or pre
ision issues�by fo
ussing the veri�
ation task. In parti
u-lar, the Hob approa
h applies s
alable stati
 analysis te
hniques to the majority ofthe modules of a program and very pre
ise, uns
alable, stati
 analysis or automatedtheorem proving te
hniques to 
ertain spe
i�
 modules of that program: those thatrequire the pre
ision that su
h analyses 
an deliver. The use of assume/guaranteereasoning allows the analysis engine to harness the strengths of both s
alable andpre
ise stati
 analysis te
hniques to analyze large programs (whi
h would otherwiserequire s
alable, impre
ise analyses) with su�
ient pre
ision to establish detaileddata stru
ture 
onsisten
y properties, e.g. heap shape properties. A set-based spe
-i�
ation language enables the di�erent analysis te
hniques to 
ooperate in verifyingthe spe
i�ed design properties. My preliminary results show that it is possible tosu

essfully verify detailed design-level properties of ben
hmark appli
ations: I haveused the Hob system to verify user-relevant properties of a water mole
ule simulator,a web server, and a minesweeper game. These properties 
onstrain the behaviourof the program by stating that sele
ted sets of obje
ts are always equal or disjointthroughout the program's exe
ution.Thesis Supervisor: Martin RinardTitle: Professor
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Chapter 1Introdu
tionDesign information 
an greatly 
ontribute to understanding the stru
ture of a softwareartifa
t and the underlying assumptions behind that artifa
t. During the initial de-velopment phase of a software system, design information enables developers to 
om-muni
ate produ
tively while 
ollaboratively implementing software systems, guidesthem through the implementation pro
ess, and helps them pinpoint the 
auses ofsoftware defe
ts. In subsequent phases of software development and maintenan
e,design information 
an help developers to avoid introdu
ing perni
ious errors basedon misunderstandings of a system's design and understand how to most e�e
tivelyadd new features to software. Today, however, design information is typi
ally 
odi�edat an early stage of a program's development and rarely kept up-to-date: be
ause notool 
an 
urrently automati
ally verify design properties, it is di�
ult to keep designinformation 
urrent as designs and implementations evolve. It is therefore di�
ultfor developers to take advantage of the bene�ts o�ered by up-to-date, valid designinformation as systems progress through their entire life
y
les.This dissertation presents a suite of te
hniques that allow developers to spe
ifyimportant design properties of software systems and to automati
ally verify thattheir implementations satisfy the spe
i�ed design properties. These te
hniques fo
uson properties that pertain to data stru
tures. Sin
e a data stru
ture's state 
anoften be produ
tively summarized, in abstra
t terms, by the set of heap obje
ts thatthe data stru
ture 
ontains, this dissertation fo
usses on data stru
ture propertiesthat 
an be expressed in terms of the boolean algebra of sets. (In this dissertation,the term �abstra
t set� denotes a named set of heap-allo
ated obje
ts, abstra
tingaway from the question of how the set is de�ned.) Abstra
t sets therefore enabledevelopers to des
ribe the state of a software system in abstra
t terms�developersmay instead reason about the 
ontents of di�erent data stru
tures without requiringthem to reason about the implementation details behind ea
h data stru
ture.Relationships between abstra
t sets 
onstitute a key type of design information,and being aware of su
h relationships 
an help developers better understand the stru
-ture of their systems. This dissertation therefore proposes a set spe
i�
ation language,
ontaining the boolean algebra of sets, for expressing relationships between sets. Su
ha spe
i�
ation language enables developers to state equality, 
ontainment, or disjoint-ness relationships between sets and obje
ts, and to verify that these properties hold17



in the implementations of their systems. Be
ause design properties often relate the
ontents of di�erent sets (and therefore data stru
tures), the te
hniques presented inthis dissertation therefore enable developers to state and verify design-level propertiesabout a software system's design and verify that they hold a
ross all exe
utions of asoftware system. Su
h design-level properties may be most appropriately expressedas invariants, whi
h hold throughout a program's exe
ution, or as pre
onditions andpost
onditions, whi
h hold at spe
i�
 points in the exe
ution.Reasoning in terms of abstra
t set spe
i�
ations is only meaningful if data stru
-tures properly implement their set abstra
tions. Implementations of data stru
turestend to be intri
ate and the ne
essary low-level 
on
rete 
onsisten
y properties aretypi
ally di�
ult to verify. While stati
 analysis te
hniques whi
h 
an verify 
ertain
lasses of data stru
ture implementations do exist, two 
hallenges 
urrently limit theappli
ability of existing data stru
ture analysis te
hniques. The �rst 
hallenge is di-versity: there exists a wide range of data stru
tures, and yet ea
h existing analysiste
hnique only applies to a subset of these data stru
tures. The se
ond 
hallenge iss
alability: be
ause data stru
ture 
onsisten
y properties are so 
omplex, analysiste
hniques must build detailed summaries of the implementation's state. Su
h sum-maries are 
omputationally expensive to reason about, so existing analysis te
hniquesdo not s
ale to even moderately-sized programs.A key insight of this dissertation is that it is possible to use a modular analysis ap-proa
h to over
ome both the diversity and s
alability problems: by applying existingsophisti
ated stati
 analyses in 
on
ert and using them to de
ide whether pro
eduressatisfy their set spe
i�
ations, it be
omes possible to handle many di�erent 
lassesof data stru
ture implementations; and by only applying expensive analyses to thoseportions of a program that require them, the overall analysis 
an terminate in areasonable amount of time.In summary, my resear
h enables developers to verify both low-level 
on
rete datastru
ture 
onsisten
y properties, whi
h ensure that data stru
tures satisfy ne
essaryinternal invariants, and abstra
t high-level properties, whi
h relate the 
ontents ofmultiple data stru
tures. These properties therefore help developers maintain veri-�ed, up-to-date design information. I expe
t that su
h design information will im-prove developer produ
tivity by giving developers reliable information about theirprograms, espe
ially when multiple developers parti
ipate in the development of asoftware system and have roles that 
hange over time.1.1 S
alability and DiversityResear
hers have developed a range of stati
 program analyses for verifying pro-grams that manipulate data stru
tures, and in parti
ular for verifying that programspreserve important data stru
ture 
onsisten
y properties in all possible exe
utions.Shape analyses, for instan
e, verify that programs 
orre
tly manipulate linked heapdata stru
tures. Stati
 analysis te
hniques work by 
onstru
ting models of the pro-gram's state and a
tions that overapproximate its semanti
s. Ea
h analysis te
hniqueuses a set of models that is spe
i�
 to the targetted set of programs and properties.18



Analyzing di�erent data stru
tures therefore requires di�erent abstra
t models: an-alyzing linked lists is very di�erent from analyzing arrays, whi
h is in turn quitedi�erent from analyzing data stru
tures en
oded using bit manipulations. It is hardto imagine any single analysis abstra
tion whi
h 
an e�e
tively handle all data stru
-tures of interest. Therefore, any te
hnique whi
h veri�es 
onsisten
y properties that
ut a
ross multiple data stru
tures must somehow 
ombine analysis results from dif-ferent stati
 analyses, ea
h of whi
h uses its private model of the program.An additional 
hallenge to verifying data stru
ture 
onsisten
y properties is theissue of s
alability. The design of any stati
 analysis te
hnique involves a funda-mental tradeo� between pre
ision and s
alability: to verify more detailed programproperties, a stati
 analysis must build more detailed models of the program's stateand more a

urate abstra
tions of how the program manipulates its state. It is, of
ourse, expensive to 
onstru
t and maintain detailed models and abstra
tions. The
omputational 
ost of state-of-the-art shape analyses, suitable for verifying key datastru
ture 
onsisten
y properties, is typi
ally super-exponential in the size of the pro-gram fragment being veri�ed, and the literature therefore does not 
ontain su

essfulreports of appli
ations of shape analysis to more than hundreds of lines of 
ode at atime.Modular veri�
ation, in the form of assume/guarantee reasoning1, is a well-knownte
hnique in the program veri�
ation 
ommunity. However, modular veri�
ation hasalways been di�
ult to apply in pra
ti
e. Firstly, it has been di�
ult to 
hoose anotation for expressing program properties whi
h is suitable for modular veri�
ation.This notation must be su�
iently expressive to enable developers to express inter-esting properties, yet it must be 
on
ise enough so that the spe
i�
ations remaintra
table. Se
ondly, even with a suitable notation, it has been di�
ult to �nd appro-priate te
hniques for automati
ally verifying that implementations a
tually 
onformto their stated properties. The key insights in this dissertation are that the use ofa 
ommon set spe
i�
ation language and the pluggable analysis approa
h enable theprodu
tive use of modular reasoning for the veri�
ation of data stru
ture 
onsisten
yproperties. The set spe
i�
ation language enables the en
apsulation of data stru
turesbehind su�
iently ri
h abstra
tion barriers su
h that on
e an analysis proves that animplementation 
onforms to its set interfa
e, other analyses 
an produ
tively use thisanalysis result to guarantee data stru
ture 
onsisten
y properties. Furthermore, thespe
i�
ation language 
ontains notions that enable developers to 
ontrol the growthof spe
i�
ations throughout the program. My results show that the approa
h pre-sented in this dissertation 
an soundly and pra
ti
ally apply arbitrarily pre
ise�andhen
e arbitrarily uns
alable�analyses to only those portions of an implementationthat need that pre
ision.1Be
ause this dissertation fo
usses on sequential programs, assume/guarantee reasoning is equiv-alent to reasoning based on pre
onditions and post
onditions. The general formulation of as-sume/guarantee reasoning is more general than pre
onditions and post
onditions in that it relatesthe a
tions of the system and its environment. In 
on
urrent programs, the system and its environ-ment may a
t 
on
urrently. 19



1.2 Approa
h Based on Abstra
t Set Spe
i�
ationsThe Hob system presented in this dissertation analyzes programs 
onsisting of a 
olle
-tion of program modules. Ea
h module 
ontains spe
i�
ations and implementations.Set-based spe
i�
ations are a key part of the Hob methodology; they allow developersto state properties of the heap by stating properties of sets of heap obje
ts. Be
ausethe 
ontents of data stru
tures 
an often be 
hara
terized using sets, Hob's set-basedspe
i�
ation language enables developers to express important global data stru
ture
onsisten
y properties relating the 
ontents of di�erent data stru
tures without need-ing to understand the internal design of ea
h data stru
ture. The developer mayinstead assume that ea
h data stru
ture en
odes a set. This enables the developerto reason about the state of a program by reasoning about its sets. Furthermore,set-based spe
i�
ations serve as an analyzable abstra
tion of the program state: theuse of set-based spe
i�
ations as a 
ommon spe
i�
ation notation allows ea
h of thestati
 analyses that 
omprise the Hob system to tra
k the abstra
t state of the heaprelatively e�
iently.Su
h an approa
h to the veri�
ation of global properties, of 
ourse, relies on datastru
tures 
orre
tly implementing their set abstra
tions. The Hob system allows datastru
ture implementors to spe
ify internal data stru
ture properties�relationshipsbetween the abstra
t state, expressed in terms of sets, and the 
on
rete state, ex-pressed in terms of properties of heap obje
ts. Abstra
tion fun
tions and invariantsrelate the abstra
t and 
on
rete states. The Hob system enables developers to usedi�erent stati
 analysis te
hniques to verify ea
h module by supporting analysis plu-gins. Ea
h analysis plugin pro
esses a parti
ular family of abstra
tion fun
tions andde
ides whether or not implementations 
onform to their spe
i�
ations, using theprovided abstra
tion fun
tions.Be
ause di�erent data stru
tures may be analyzed using di�erent analysis te
h-niques, and be
ause Hob's 
ommon set spe
i�
ation language enables developers touniformly express properties about di�erent data stru
tures, the Hob system enablesdevelopers to verify implementations using a variety of analysis te
hniques. For in-stan
e, developers 
an state and verify the property that two data stru
tures shareno elements, even if these data stru
tures are implemented using 
ompletely di�erentdata stru
tures. Data stru
ture 
onsisten
y properties 
an, in general, des
ribe howprogram modules may intera
t.On
e Hob has veri�ed that all modules satisfy their 
ontra
ts, then the program'sdata stru
ture 
onsisten
y properties are guaranteed to hold. Note that Hob's anal-ysis task is stru
tured in terms of assume/guarantee reasoning : developers expressprogram data stru
ture 
onsisten
y properties in terms of the assumptions that pro-
edures may expe
t to hold upon entry, as well as the 
onditions that pro
eduresguarantee upon su

essful 
ompletion. Assume/guarantee reasoning in Hob works attwo levels: �rst, modules assume that their 
lient modules properly implement theirinterfa
es, and se
ond, modules may rely on their pre
onditions holding upon entry.The Hob system dis
harges the relevant guarantees when it en
ounters them duringthe analysis task. 20



1.2.1 Two novel spe
i�
ation-level 
onstru
tsIn the Hob system, modular veri�
ation depends on the availability of program spe
-i�
ations. The size and 
omplexity of program annotations is a 
riti
al parameterdetermining the feasibility of assume/guarantee reasoning, in terms of both annota-tion and analysis e�ort. Having observed that 
ertain 
lauses tended to 
ut a
rossspe
i�
ation statements in di�erent parts of the program, and that these 
lausestended to a

umulate towards the top of the program's 
all graph, I invented andimplemented two spe
i�
ation-level 
onstru
ts that proved useful in redu
ing the sizeand the 
omplexity of annotations. These 
onstru
ts made it easier both to writeannotations and to reason about them; they enable a se
ond kind of s
alability in theHob system. Hob therefore 
ontains s
alability 
onstru
ts for both the analysis taskand the spe
i�
ation task.S
opes are a 
onstru
t for grouping together modules. S
opes 
ontain s
ope in-variants, whi
h are logi
al formulas 
orrelating the state of the 
ontained modules. As
ope invariant might state, for instan
e, that a program has two sets that are alwaysdisjoint. These formulas may be temporarily violated inside the asso
iated s
ope,but are veri�ed at s
ope boundaries, and therefore hold universally throughout theprogram's exe
ution. In parti
ular, s
ope invariants must hold in the program's ini-tial state. S
ope invariants simplify both program annotation and program analysis:they simplify the annotation task by allowing the developer to omit 
lauses from theannotation; furthermore, they simplify the analysis task by relieving the analysis ofthe responsibility for proving the invariant, ex
ept at 
ertain 
ru
ial program points.A simple worst-
ase estimate for a modestly-sized program with a 
all depth of 6shows that the use of s
opes 
an redu
e aggregate spe
i�
ation size from 384 
lausesto 64 
lauses and maximum spe
i�
ation size from 64 to 1.I also observed that some 
lauses hold almost everywhere in the program, butnot everywhere, and are in fa
t false in the program's initial state; these 
lauses aretherefore not appropriate for use as s
ope invariants. Be
ause these 
lauses should notneed to be expli
itly stated throughout a module's spe
i�
ation, I implemented thedefault 
onstru
t, whi
h simpli�es annotations by 
onjoining su
h 
lauses to pro
edurepre
onditions at arbitrary points in the program's spe
i�
ations. I adapted the notionof a point
ut from aspe
t-oriented programming to enable developers to spe
ify wherethese 
lauses should hold.I expe
t that these 
onstru
ts will help developers to annotate programs. This dis-sertation therefore 
ontains an evaluation of how s
opes and defaults help developersspe
ify programs.1.3 Verifying Program PropertiesHob's approa
h de
omposes the analysis of a program into the analysis of its 
om-ponent modules. Some of these modules are reusable generi
 library modules, whileothers 
ontain appli
ation-spe
i�
 
ode. Library modules may be implemented usinga range of te
hniques: some modules might store obje
ts in stru
tures like arrays and21



linked lists, while others 
ould go as far as using bit-level manipulation to e�
ientlystore and retrieve information. The sophisti
ation of data stru
ture 
onsisten
y prop-erties pla
es them beyond the rea
h of s
alable analysis te
hniques, while the diversityof these properties makes it hard to imagine that any single analysis 
ould verify thefull range of data stru
ture 
onsisten
y properties.The problems of s
alability and diversity inspired Hob's analysis plugin approa
h.Instead of attempting to use a single analysis to verify all of a program's interfa
es,the Hob system is made up of a number of analysis plugins, ea
h of whi
h is designedto verify a narrow 
lass of targeted 
onsisten
y properties. Hob's analysis plugins
urrently in
lude a �eld-value based analysis, a shape analysis, and an analysis thatuses intera
tive theorem proving tools. When presented with a module to analyze,the Hob analysis driver uses an analysis for that parti
ular module, as dire
ted by thedeveloper. No matter whi
h analysis plugin is used, though, library modules only needto be veri�ed on
e; as long as the module has been su

essfully veri�ed, developersmay subsequently rely on the module's spe
i�
ation as a 
orre
t summary of thebehaviour of the module. Note that despite the pervasive use of uns
alable analyses,the overall Hob approa
h 
an s
ale, sin
e it veri�es the program one pro
edure ata time, using assume/guarantee te
hniques, and 
ommuni
ates analysis informationbetween pro
edures using the 
ommon set spe
i�
ation language.1.4 RationaleA key 
ontribution of this dissertation is its thesis that set spe
i�
ations allow de-signers and developers to state, 
ommuni
ate, and enfor
e design-level informationabout programs. The Hob approa
h enables developers to abstra
t a program's stateinto a 
olle
tion of sets of heap obje
ts and express design information in terms of1) set membership 
onstraints for obje
ts, and 2) relationships between set 
ontents.The Hob program veri�
ation framework then uses set spe
i�
ations to automati
allyverify design information and ensure that the program satis�es the stated design 
on-straints. A key part of the set spe
i�
ation language is its support for s
alability atthe spe
i�
ation level: the notions of s
opes and defaults enable developers to writemore 
on
ise spe
i�
ations.Set membership 
onstraints allow developers to spe
ify that obje
ts must haveparti
ular states before 
ertain a
tions may o

ur. Su
h 
onstraints therefore enabledevelopers to en
ode ne
essary dependen
ies between program operations on heapobje
ts. In parti
ular, an obje
t's parti
ipation in a module's sets gives insight as tohow the obje
t is parti
ipating in the 
omputations being 
arried out by that module.When di�erent modules work together, obje
ts will often 
arry 
orrelated set mem-berships in the various modules. Conversely, when a program 
onsists of independentand loosely-
oupled submodules, obje
ts may 
arry orthogonal set memberships indi�erent modules.Hob's set spe
i�
ations enable developers to sele
t an appropriate 
ollaborationmodel for the modules in a program and to en
ode that 
ollaboration model in averi�able form. To this end, the Hob approa
h also allows developers to express and22



enfor
e required relationships between sets. Developers may express domain-spe
i�
properties by requiring that sets (or 
ombinations of sets: unions, interse
tions, setdi�eren
es) always be either empty or nonempty. Hob therefore enables developers tosu

in
tly des
ribe anti
ipated global program states and allowable state transitionsin terms of set-based 
onstraints.Set spe
i�
ations therefore enable the Hob framework to automati
ally verify de-sign information. Note that the targetted expressibility of the set spe
i�
ation no-tation allows developers to state relevant properties of the program state, while theanalyzability of the notation enables analysis plugins to verify that implementations
onform to their designs.1.5 ResultsIn an e�ort to evaluate how the Hob approa
h works in pra
ti
e, we have built aprototype implementation of the Hob framework and used this implementation tosu

essfully verify a number of ben
hmark programs. This dissertation des
ribes myexperien
e using the Hob system to implement and spe
ify design information forthree programs: a simulation of water mole
ules; an implementation of an HTTP 1.1server; and an implementation of the popular Minesweeper game. The water simula-tion 
ontains 10 modules, 2000 lines of implementation and 500 lines of spe
i�
ations.The HTTP server 
ontains 14 modules, 1200 lines of implementation, and 300 linesof spe
i�
ations. The minesweeper implementation 
ontains 6 modules, 787 lines ofimplementation and 328 lines of spe
i�
ations. While these appli
ations are relativelymodest in size (due in part to the di�
ulty of translating appli
ations into the Hobimplementation language), they demonstrate that it is possible to su

essfully ap-ply the Hob methodology for program veri�
ation�in my experien
e, it was neverne
essary to verify more than one pro
edure at a time.The sets in the HTTP 1.1 server in
lude sets of request headers, response headers,and sets that 
apture design information related to a server-side 
a
he. The sets inthe Minesweeper game in
lude sets of hidden and exposed 
ells. These sets are imple-mented using linked heap data stru
tures and veri�ed using shape analysis te
hniques.The design of the Hob implementation language permits the shape analysis to inspe
tjust the library modules that manipulate the linked data stru
tures rather than theentire program (whi
h would be infeasible using 
urrent shape analysis te
hnologydue to s
alability issues).I was surprised to dis
over that abstra
t set spe
i�
ations 
ould express outward-looking user-relevant program properties. For instan
e, the web server's set spe
i�
a-tions state that response headers are emptied between requests; that is, no responsewould 
ontain stale headers from the previous response. Also, in the minesweeperappli
ation, set spe
i�
ations state that exposed 
ells are disjoint from mined 
ellsunless the game is over. To my knowledge, Hob is the �rst system that enablesdevelopers to state and verify program properties that are relevant to end users.23



1.6 LimitationsThe resear
h des
ribed in this dissertation and embodied in the Hob analysis tool hassome limitations whi
h arise from design de
isions made early on in the proje
t's life-time. This se
tion dis
usses limitations in the Hob implementation and spe
i�
ationlanguages and the annotation burden involved in spe
ifying program behaviour.I designed the Hob implementation language to be synta
ti
ally similar to Javaat a statement level. I de
ided to use a 
ustom pro
edural implementation languageas a 
onvenient way to explore the automati
 veri�
ation of data stru
ture 
onsis-ten
y properties while avoiding inessential 
omplexities of a full-�edged programminglanguage. In parti
ular, I omitted 
ommon obje
t-oriented features su
h as inheri-tan
e, dynami
 dispat
h, and obje
t-based en
apsulation. In my experien
e, it wasrelatively straightforward (if time-
onsuming) to port Java 
ode to the Hob imple-mentation language. When 
omparing Java and Hob it is important to keep in mindthat Hob has two 
onstru
ts that approximately 
orrespond to Java's 
lasses: 1) for-mats are used to represent memory 
ells, and 2) modules are used to stru
ture aprogram into its main 
onstituent parts. The stati
 module instantiation in Hob isless general than the dynami
 instantiation of 
lasses with methods in Java, but iten
ourages developers to express the stati
 ar
hite
ture of an appli
ation and aidsveri�ability. Java programs built using stylized stati
 instantiation idioms would alsobe easier to analyze than arbitrary Java programs.Hob programs are spe
i�ed using set-based spe
i�
ations. While I believe thatset-based spe
i�
ations are quite appropriate for reasoning about program behaviour,
ertain properties are not expressible in the Hob spe
i�
ation language. For instan
e,developers 
annot state that a map data stru
ture links parti
ular key and valueobje
ts. The use of a more expressive spe
i�
ation language would permit developersto state and verify more detailed program properties. Su
h a spe
i�
ation language,however, would enable developers to write more detailed spe
i�
ations whi
h 
ouldbe more unwieldy and therefore both harder to understand and more expensive toverify 
onforman
e against.While Hob 
an state and verify relationships between the set of keys and the set ofvalues in its interfa
e spe
i�
ation language (for instan
e, no obje
t should be both akey and a value simultaneously), Hob 
annot state that a parti
ular key is related toa parti
ular value. That is, the Hob spe
i�
ation language 
annot express relationsbetween heap obje
ts. Its modelling of maps (e.g. hash maps) 
an therefore onlydis
uss the set of obje
ts whi
h a
t as keys and the set of obje
ts whi
h a
t as values.Nevertheless, our experien
e shows that many interesting data stru
ture properties
an be expressed using just the boolean algebra of sets. Su
h des
riptions may notbe full spe
i�
ations of the behaviour of operations, but they do indi
ate importantpartial 
orre
tness properties, so I believe they make a useful trade-o� between theexpressive power and tra
tability of the analysis. I 
hose to expli
itly omit integerand �oating-point arithmeti
 from the Hob spe
i�
ation language.2 While many2 In [55℄, we des
ribe how to de
ide Boolean Algebra with Presburger Arithmeti
; the Hobsystem's 
ore spe
i�
ation language 
ould be extended to support BAPA.24



data stru
ture 
onsisten
y properties do depend on general integer and �oating-pointarithmeti
, I believe that, in most 
ases, these properties 
an be handled as lo
al
onsisten
y properties, and therefore do not need to be expressed to 
lients. Notethat the set spe
i�
ation language does not support sets of pairs or sets of sets, onlysets of uninterpreted elements. This is why it 
an be 
hara
terized using the Booleanalgebra of sets and de
ided in elementary time [53℄ and in pra
ti
e often belongsto the quanti�er-free fragment that 
an be de
ided in non-deterministi
 polynomialtime.It is important to distinguish between Hob's set-based 
ommon spe
i�
ation lan-guage, whi
h was designed to be less expressive and more tra
table, and the spe
i-�
ation languages inside the abstra
tion modules, whi
h express data stru
ture rep-resentation invariants and abstra
tion fun
tions. Spe
i�
ations that o

ur inside ab-stra
tion modules are not bound by the limitations of Hob's set-based spe
i�
ationlanguage; analysis plugins may use arbitrarily powerful spe
i�
ation languages forexpressing a module's internal properties. For example, the monadi
 se
ond-orderlogi
 used in the Bohne plugin 
an express rea
hability properties that are not evenexpressible in �rst-order logi
. Monadi
 se
ond-order logi
 
an therefore 
ertainlyexpress properties that are not expressible in terms of abstra
t set spe
i�
ations.Hob set spe
i�
ations des
ribe properties of abstra
t sets, whi
h are en
apsulatedwithin program modules. Unfortunately, this modularization is not appropriate for allprograms. For instan
e, sometimes a data stru
ture's en
apsulation will be violatedfor performan
e reasons. Or a program's dominant de
omposition may not 
orrespondto the module boundaries whi
h would be required for the modular analysis of aparti
ular data stru
ture. The s
opes 
onstru
t addresses this issue to some extent,if the relevant 
onsisten
y properties are set-based properties. However, s
opes donot handle lo
al data stru
ture invariants whi
h are 
ollaboratively maintained inmultiple pla
es in a program's implementation.Finally, the need for program spe
i�
ations imposes an annotation burden on thedevelopment pro
ess. In our experien
e, spe
i�
ations may grow to as mu
h of 40%of the implementation size3. I feel that the overhead is not overly onerous be
ause thespe
i�
ations provide additional value to developers. Program spe
i�
ations serve asveri�ed design do
umentation; any property stated in a spe
i�
ation 
an automati-
ally be 
he
ked throughout a program's life
y
le and, as long as developers 
ontinueto run the Hob veri�
ation tool and ensure that it su

eeds, the design informationwill never be
ome outdated.Despite these limitations, I believe that the approa
h embodied in the Hob systemis useful for verifying software design properties. The �rst two issues mentioned here,about limitations of the 
urrent implementation and spe
i�
ation languages, 
ouldbe over
ome in future work. The en
apsulation problem is real, but only appliesto a limited number of data stru
tures; even programs with unen
apsulatable datastru
tures may still 
ontain other data stru
tures whose 
onsisten
y 
an be veri�ed.3To put this statisti
 in 
ontext, I sampled a number of C++ appli
ations, in
luding AbiWord,Rosegarden and Inks
ape, and found that their header �les a

ounted for 19% to 28% to the appli-
ation size, in terms of lines of 
ode. 25



Note that the partiality of the Hob approa
h allows it to still be helpful even if it
annot solve the whole problem. While the annotation burden has traditionally beena problem with spe
i�
ation-based approa
hes, I feel that developers will be quitewilling to write spe
i�
ations if they �nd that these spe
i�
ations are useful.1.7 ContributionsThe primary 
ontributions of this resear
h are 1) the identi�
ation of a spe
i�
a-tion approa
h based on abstra
t sets as a suitable notation for expressing veri�ableprogram design information; and 2) the deployment of a range of existing and novelstati
 analysis te
hniques to enable the s
alable automati
 veri�
ation of arbitrarilypre
ise and sophisti
ated data stru
ture 
onsisten
y properties. This goal has, to thispoint, appeared to be 
ompletely beyond the rea
h of automated program analysiste
hniques�shape analyses, for instan
e, s
ale super-exponentially with the size ofthe program being analyzed, and there are no su

essful reports of shape analysisbeing used on programs in the 1000-line range. This dissertation makes the following
ontributions.� Spe
i�
ation Approa
h: This dissertation proposes a set-based spe
i�
a-tion approa
h whi
h enables developers to express data stru
ture 
onsisten
yproperties and verify that implementations 
onform to these properties. Thespe
i�
ation language allows developers to state program properties in terms ofsets of heap obje
ts.� Spe
i�
ation S
alability: Spe
i�
ations tend to a

umulate upwards in aprogram and often be
ome unmanageable (due to volume) at its top levels; we
all this phenomenon spe
i�
ation aggregation. This dissertation introdu
ess
opes and defaults, two novel 
onstru
ts that mitigate the spe
i�
ation aggre-gation problem and help developers write more 
on
ise spe
i�
ations, whi
h aretherefore less likely to be 
ontain errors. In the absen
e of s
opes, individualspe
i�
ation 
lauses may grow exponentially due to spe
i�
ation aggregation.� Multiple Analysis Plugins: The approa
h des
ribed in this dissertationmakes it possible to apply multiple arbitrarily pre
ise, arbitrarily narrow, andarbitrarily uns
alable analyses in a general, s
alable way to verify sophisti
atedset-based data stru
ture 
onsisten
y properties in sizable programs. To myknowledge, the Hob system is the �rst system to 
ombine results from di�erentstati
 analysis te
hniques to verify detailed data stru
ture 
onsisten
y proper-ties.� Analysis and Veri�
ation System: This dissertation presents our imple-mentation of the Hob program analysis and veri�
ation system, whi
h enablesthe exploration of the ideas des
ribed above. It des
ribes the various Hob anal-ysis plugins and explains how developers 
an use these analyses to verify a rangeof data stru
ture 
onsisten
y properties.26



� Experien
e: Finally, this dissertation presents our experien
e using the Hobsystem to verify software design properties in several 
omplete programs rangingup to 2000 lines. Hob has been able to verify detailed 
onsisten
y propertiesof individual data stru
tures, then use these properties to verify larger softwaredesign properties that involve multiple data stru
tures analyzed by di�erentanalyses.Note that the �rst two 
ontributions enable two orthogonal kinds of s
alability.Hob's spe
i�
ation-based approa
h enables individual analysis plugins to draw valid
on
lusions about a pro
edure without having to investigate the pro
edure's environ-ment. The spe
i�
ation s
alability 
onstru
ts operate at the level of spe
i�
ations.These spe
i�
ations enable the analysis plugins to su

eed; the spe
i�
ation s
alabil-ity 
onstru
ts make it easier for developers to provide these spe
i�
ations.1.8 Stru
tureThe remainder of this dissertation is stru
tured as follows. Chapters 2 through 4explain the Hob system from a user's perspe
tive. Chapter 2 des
ribes the Hobimplementation language. Chapter 3 des
ribes Hob's 
ommon set spe
i�
ation lan-guage, shared by all analysis plugins, as well as the s
opes and defaults spe
i�
ation
onstru
ts, whi
h enable developers to express 
ross
utting parts of spe
i�
ations inone pla
e (rather than s
attered a
ross program spe
i�
ations). Chapter 4 des
ribeshow developers 
an link implementations and spe
i�
ations using Hob abstra
tionse
tions. Chapter 5 starts to peek behind the s
enes and explains the basi
 obligationof Hob analysis plugins: essentially, they must show that an implementation satis�esits spe
i�
ation, where the meaning of the spe
i�
ation is given by the abstra
tionfun
tion stated in the abstra
tion se
tion. This 
hapter also explains how the Hobsystem ensures that all modules in a program are analyzed and how the analysis ofea
h module is given the ne
essary external spe
i�
ations. Chapter 6 des
ribes howone parti
ular Hob analysis plugin, the �ags plugin, works. Chapter 7 presents myexperien
e using the Hob framework to verify data stru
ture 
onsisten
y propertiesfor a number of ben
hmark programs, in
luding an implementation of the popularminesweeper game, a MIDI player, and an HTTP server. Chapter 8 presents relatedwork, and Chapter 9 
on
ludes.
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Chapter 2Hob Implementation LanguageHob modules have three se
tions: an implementation se
tion, a spe
i�
ation se
-tion, and an abstra
tion se
tion. In this 
hapter we present the Hob implementationlanguage, whi
h is a simple module-stru
tured Java-like imperative language withreferen
es and dynami
 obje
t allo
ation. The implementation language is one of theunifying 
omponents of our framework, sin
e all analysis plugins handle programswritten in the implementation language. Notable features of our language in
ludethe stati
 instantiation of modules (whi
h enables the spe
i�
ation language to workwith a �nite number of sets) and the ability to spe
ify di�erent �elds of obje
ts indi�erent modules (formats), whi
h ensures that modules' private data remains privateeven di�erent modules share heap obje
ts.2.1 Example: Doubly-Linked List ImplementationFigures 2-1, 2-2, and 2-3 present a pair of module de
larations and a pair of moduleinstantiations in our implementation language. The �rst module, DLL, implements aset abstra
t data type using a doubly-linked list. The se
ond module, KeyedObject,adds an integer key �eld to the Node type and implements a 
omparator, based onkey values, for Node obje
ts. The example also instantiates CellList as a stati
 
opyof DLL and KeyedObject as a stati
 
opy of KeyedCell.2.1.1 Expli
it module de�nitionsDevelopers may de�ne Hob modules either expli
itly or by stati
 instantiation. Line 1starts the expli
it de
laration of the DLL module with the line impl module DLL. Ourexample also 
ontains (starting on line 85) an expli
it de
laration of the KeyedObjectmodule. Implementation modules 
ontain type and variable de
larations as well asimperative 
ode, organized into a set of pro
edures.2.1.2 Stati
 module instantiationThe other me
hanism for 
reating a module is to instantiate it, at 
ompile time, fromanother module. Stati
 instantiation 
reates a fresh 
opy of a pre-existing module;29



the new module shares no state with the old module. Lines 84 and 97 de
lare stati
instantiations of the DLL and KeyedObject modules. On line 84, the developer statesthat the program 
ontains a CellList module whi
h is an identi
al 
opy of the DLLmodule, ex
ept that instan
es of the Node type are to be repla
ed by instan
es of the
Cell type. The CellList is therefore a doubly-linked list of Cell obje
ts. Similarly,line 97 de
lares that the program 
ontains a KeyedCell module.In general, a stati
 module instantiation, e.g. impl module m = M with t <­

T, de
lares that module m instantiates module M, substituting instan
es of modulesor formats T for modules or formats t from the original de
laration. Hob pro
essesstati
 instantiations by 
reating a separate internal 
opy of the instantiated modulewith the de
lared substitutions; this treatment is essentially ma
ro expansion.2.1.3 Type and variable de
larationsOur example de
lares the Node datatype in two parts using Hob's format 
onstru
t.Formats allow di�erent modules to ea
h�independently�
ontribute �elds to a data-type. The DLL module 
ontributes (on line 2) the next and prev navigation �eldsto the Node datatype, whi
h are used to form the tree stru
ture. The KeyedObjectmodule then 
ontributes the key data �eld. Ea
h of these modules a
ts independentlyof other modules in adding �elds. Within the 
ode of the DLL module, only the nextand prev �elds are in s
ope. The key �eld is out of s
ope for 
ode belonging to the
DLL module and may not be a

essed from that module.The format me
hanism identi�es a �eld by its name and the name of the 
on-tributing module. This enables di�erent modules to use the same name for a �eldwithout 
on�i
ts, whi
h is espe
ially useful in the presen
e of stati
 instantiation.Ea
h of the di�erent instantiations of a module will have its own 
opy of the �eldsthat it is 
ontributing.Note that the use of formats to en
apsulate �elds, not obje
ts, enables our analysisplugins to go beyond the ability of standard en
apsulation systems to reason modu-larly about the heap: multiple modules 
an have pointers to the same obje
t (unlikein most other en
apsulation systems) and yet still know that the �elds that they have
ontributed to that obje
t are unmodi�ed by the other modules in the program. Theruntime system 
ompiles an obje
t's 
omplete type des
ription by aggregating all ofthe distributed type de
larations; this aggregated des
ription is irrelevant to Hob'sstati
 analysis and invisible to the developer.Line 3 de
lares a root module variable for our doubly-linked list, whi
h enablesthe pro
edures in the module to a

ess the heap obje
ts representing the list. TheHob runtime system initializes this variable to null upon program start, and thevariable exists for the lifetime of the program. However, only pro
edures belongingto the DLL module may a

ess this variable. The CellList instantiation 
reates adistin
t root referen
e, whi
h points to a Cell obje
t after substitution. Contrastglobal variables with lo
al variables, as de
lared for instan
e on line 52; lo
al variablesare allo
ated upon entry to their de
laring pro
edure and exist only during thatpro
edure's lifetime. 30



2.1.4 Pro
eduresThe DLL module 
ontains pro
edures to remove and add an element from the doubly-linked list, a pro
edure to test an obje
t's membership, a pro
edure that returns the�rst element of the list and one that removes the �rst element of the list, a pro
edurethat tests list emptiness, and �nally a pro
edure to 
lear all elements from the list.This subse
tion brie�y des
ribe ea
h pro
edure in the DLL module.Embedding information for analysis pluginsThe Hob system analyzes ea
h pro
edure in the program using an analysis plugin.Two of the analysis plugins in our system are the �ags plugin, whi
h we designed asa lightweight analysis for 
lient 
ode�
ode that a

omplishes tasks by invoking pro-
edures in other modules�and the Bohne plugin, whi
h uses �eld 
onstraint analysisto verify 
ode that manipulates linked heap data stru
tures.Stati
 analysis te
hniques 
an often bene�t from additional developer-providedannotations. The Hob implementation language 
ontains three ways for developersto embed information for an analysis plugin dire
tly in the program 
ode. We supportthe use of loop invariants, assert statements and assume statements. These me
h-anisms have no run-time e�e
t. Instead, when it en
ounters an invariant, assert or
assume statement, the Hob analysis engine transmits the annotation to an analysisplugin.Be
ause loops potentially exe
ute an unbounded number of times and stati
 anal-yses are expe
ted to terminate in �nite time, the stati
 analysis of loops is always
hallenging. Hob allows developers to provide loop invariants, whi
h help pluginse�
iently reason about the behaviour of loops. Of 
ourse, many analyses are able toautomati
ally synthesize loop invariants from the pro
edure spe
i�
ations and imple-mentations. Note that when loop invariant inferen
e te
hniques do fail, it is generallyan open problem to e�e
tively 
ommuni
ate to the developer the reasons whi
h 
ausedthe inferen
e to fail.An assert statement 
ontains a fa
t whi
h the analysis engine must stati
allyverify. This di�ers from the usual meaning of assert, whi
h asks the runtime envi-ronment to dynami
ally 
he
k the validity of the assertion. We found that assertionswere a useful form of 
ommuni
ation between the developer and the analysis. Inparti
ular, assertions allowed the developer to query the analysis plugin and dis
overits abilities and limitations.An assume statement is another me
hanism for developers to pass information toanalysis plugins. Unlike assert statements, whi
h ask a plugin to verify that a state-ment is true, assume statements tell an analysis plugin that a given fa
t holds (withoutveri�
ation). Often, developers understand more about how a program works thana parti
ular analysis plugin 
an dedu
e; for instan
e, the developer may have somespe
i�
 domain knowledge about the problem domain. The ability to transmit thisdomain knowledge to an analysis plugin 
an then be leveraged by the analysis forit to guarantee a desired data stru
ture 
onsisten
y property. Ea
h analysis pluginmay a

ept a di�erent syntax for assumes, asserts, and loop invariants. Our example31



presents both the �ags (line 15) and the Bohne syntax (line 71) for these 
onstru
ts.
remove pro
edureThe remove pro
edure (lines 5-10) uses the prev and next pointers to remove thegiven obje
t from the linked list. First, remove handles the spe
ial 
ase of removingthe root of the list by setting root to root.next if the element to be removed isat the root of the list. Next, if the given obje
t e has a non-null prev �eld, the
remove pro
edure sets e's prede
essor's next �eld to e's su

essor, and similarly with
e's su

essor. Finally, the remove pro
edure ensures that the following invariant on
Node obje
ts 
ontinues to hold: an obje
t is in the list if and only if its next and prev�elds are both non-null. Chapter 5 des
ribes this invariant, and other list invariants,in greater depth.
removeFirst pro
edureThe removeFirst pro
edure removes the �rst element (whi
h is pointed to by root)from the linked list and returns it to the 
aller. The simplest way to remove a givenelement from a list is to use the remove pro
edure, as we do on line 16. Note the useof the assume statement on line 15.
addLast pro
edureThe addLast pro
edure navigates to the end of the linked list and adds the givenobje
t p to the end of the list. The addLast pro
edure �rst handles the spe
ial 
aseof an empty list on lines 21�24. Next, addLast de
lares a lo
al variable r whi
h ituses to navigate to the end of the list. The analysis of this module uses the Bohneplugin in a mode that requires the developer to provide loop invariants, so lines 29�37
ontain a loop invariant whi
h is transmitted verbatim to the analysis plugin. Notethat the while loop in the clear pro
edure did not require a loop invariant; the�ags plugin used for that pro
edure 
an automati
ally infer loop invariants. Finally,on
e the variable r points to the end of the linked list, addLast sets the next �eldof r to the given obje
t p, the prev �eld of p to r and the next �eld of p to null,preserving the list invariant on null-ness of �elds whi
h we've previously mentionedin the des
ription of the remove pro
edure.
clear pro
edureThe clear pro
edure iterates through the elements of the list and removes them oneby one. The removeFirst and clear pro
edures both make 
alls to other pro
eduresin this module. Note that the target of these 
alls is known at 
ompile-time, as theHob implementation language does not in
lude inheritan
e or dynami
 dispat
h.32



Other pro
eduresThe contains pro
edure iterates through the list looking for the given element. Notethat contains uses assert statements. The getFirst pro
edure simply returns theroot of the linked list, whi
h is the �rst element of the list. Similarly, the isEmptypro
edure tests root against null; equality indi
ates that the list is 
urrently empty.2.1.5 Exe
uting Hob programsOn
e a developer has produ
ed a Hob program, he or she may want to exe
utethis program. We have implemented two ways for developers to test and exe
uteHob programs: an interpreter and a sour
e-to-sour
e translator into Java. Both ofthese tools use the Hob infrastru
ture to 
reate an abstra
t syntax tree from thesour
e 
ode. The interpreter dire
tly exe
utes the abstra
t syntax tree, whereas the
ompiler performs a simple translation of the abstra
t syntax tree into Java sour
e
ode. The primary tasks of the Hob-to-Java 
ompiler are to 
olle
t the distributedtype de
larations into traditional Java-style 
lass de
larations and to provide Javastubs for Hob library 
alls.2.2 Implementation Language GrammarFigure 2-4 presents the grammar for our 
ore implementation language. An imple-mentation module 
ontains format de
larations, module variables, and pro
edures.A format (format) des
ribes a module's 
ontribution to a 
on
rete type. A modulevariable (var) 
ontains a pointer to a heap obje
t; module variables serve as persis-tent roots of data stru
tures. A pro
edure (pro
) 
ontains a sequen
e of standardimperative statements.The Hob implementation language's grammar has a built-in extension point: the
A produ
tion allows developers to spe
ify assertions, whi
h are to be stati
ally 
he
kedby analysis plugins, assumes, whi
h are to be assumed by analysis plugins, and loopinvariants. The exe
utable 
ode generator always ignores assertions, but ea
h analysisplugin must 
he
k that all assertions 
an be guaranteed to hold at 
ompile-time.2.3 Operational Semanti
sFigure 2-5 presents operational semanti
s for a simpli�ed version of the Hob imple-mentation language. For the purposes of the operational semanti
s, we assume thatstru
tured 
ode has been 
onverted to a 
ontrol-�ow graph by 
ompilation and thatexpressions have been normalized into three-address 
ode. These semanti
s enable usto pre
isely des
ribe the task of an analysis plugin. The state of the heap is a pair
〈s, H〉, where s is a 
all sta
k of pairs [p, r] and H is the garbage-
olle
ted heap. The
all sta
k s 
onsists of program 
ounters p and a
tivation re
ords r. Note that theprogram 
ounter 
ontains stati
 information about the program point: p
(p) points33



1 impl module DLL {2 format Node { next : Node; prev : Node; }3 var root : Node;45 proc remove(e : Node) {6 if (e==root) root = root.next;7 if (e.prev!=null) e.prev.next = e.next;8 if (e.next!=null) e.next.prev = e.prev;9 e.next = null; e.prev = null;10 }1112 proc removeFirst() returns n : Node {13 Node nn = root;14 // assume statement is given directly to static analysis15 assume "(nn’ in Content) & card(nn’) = 1";16 DLL.remove (nn);17 return nn;18 }1920 proc addLast(p : Node) {21 if (root==null) {22 root = p; p.next = null; p.prev = null;23 return;24 }2526 Node r = root;27 // first three lines are relevant to loop;28 // remaining lines are general list invariants that we preserve29 while "p ~= null & r ~= null & p = ’p & ~(p : ’Content) &30 next p = null &31 (rtrancl (lambda v1 v2. next v1 = v2) root r) &32 (ALL v. ~(next v = p) & ~(next v = root)) &33 (ALL v. (v : ’Content) <=>34 rtrancl (lambda v1 v2. next v1 = v2) root v) &35 (ALL x. x ~= null &36 ~(rtrancl (lambda v1 v2. next v1 = v2) root x) ­­>37 ~(EX e. e ~= null & next e = x) & (next x = null))"38 (r.next != null) {39 r = r.next;40 }41 r.next = p; p.prev = r; p.next = null;42 } Figure 2-1: Doubly-linked list implementation, part 134



43 proc clear() {44 bool e = DLL.isEmpty();45 while (!e) {46 Node q = DLL.removeFirst();47 e = DLL.isEmpty();48 }49 }5051 proc contains(e : Node) returns b : bool {52 Node n = root;53 while "e ~= null &54 (rtrancl (% x y. next x = y) root n) &55 (ALL x. (x : ’Content) <=>56 rtrancl (% v1 v2. next v1 = v2) root x) &57 (ALL x. next x = root ­­> root = null) &58 ~((rtrancl (% x y. next x = y) root e) &59 (rtrancl (% x y. next x = y) (next e) n)) &60 (ALL x. x ~= null &61 ~(rtrancl (lambda v1 v2. next v1 = v2) root x) ­­>62 ~(EX e. e ~= null & next e = x) & (next x = null))"63 (n != null) {64 if (n == e) {65 assert "rtrancl (% v1 v2. next v1 = v2) root e";66 return true;67 } else {68 n = n.next;69 }70 }71 assert "~(rtrancl (% v1 v2. next v1 = v2) root e)";72 return false;73 }7475 proc getFirst() returns e : Node {76 return root;77 }7879 proc isEmpty() returns rv:bool {80 return root == null;81 }82 }8384 impl module CellList = DLL with Node <­ Cell;Figure 2-2: Doubly-linked list implementation, part 235



85 impl module KeyedObject {86 format Node { key:int; }8788 proc equals(a : Node; b : Node) returns rv:bool {89 return a.key == b.key;90 }9192 proc lessthan(a : Node; b : Node) returns rv:bool {93 return a.key < b.key;94 }95 }9697 impl module KeyedCell = KeyedObject with Node <­ Cell;Figure 2-3: Formats example
Prog ::= M∗

M ::= impl module m {F ∗V ∗P ∗} | impl module m = M with T <­T [,T <­T]∗

F ::= format tid {Fd∗}Fd ::= f : T;
V ::= var v : T;
P ::= [private] pn(fn : T[; fn : T]∗)[returns r : T] { Ld∗ St∗ }

Ld ::= T l;
St ::= {St} | El=E; | [m.] pn(E) | return [E] |if (B) then St1 else St2 | while [A] (B) St |assert A | assume A

El ::= l | l.f | v

E ::= El | new t | null | [m.]pn(E[, E]∗)
T ::= int | bool | �oat | string | 
har | byte | tid
A − analysis plugin-spe
i�
 syntax for asserts, assumes and loop invariantsFigure 2-4: Grammar for Hob implementation language
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Statement Transition Constraintsp: x = null; 〈[p, r] ◦ s, H ⊎ {〈r, x,_〉}〉 →
〈[p′, r] ◦ s,H ⊎ {〈r, x, null〉}〉p: x = y; 〈[p, r] ◦ s, H ⊎ {〈r, x,_〉, 〈r, y, o〉}〉 → type(p, x) = type(p, y)
〈[p′, r] ◦ s,H ⊎ {〈r, x, o〉, 〈r, y, o〉}〉p: x = new t; 〈[p, r] ◦ s, H ⊎ {〈r, x,_〉}〉 → o fresh
〈[p′, r] ◦ s,H ⊎ {〈r, x, o〉}〉 type(p, x) = tp: x = y.f; 〈[p, r] ◦ s, H ⊎ {〈r, x,_〉, 〈r, y, id〉, 〈mod(p), id, f, o〉}〉 → t = type(p, y) ∧ hasField(mod(p), t, f) ∧
〈[p′, r] ◦ s,H ⊎ {〈r, x, o〉, 〈r, y, id〉, 〈mod(p), id, f, o〉}〉 type(p, x) = fieldType(mod(p), t, f)p: x.f = y; 〈[p, r] ◦ s, H ⊎ {〈r, x, id〉, 〈mod(p), id, f,_〉, 〈r, y, o〉}〉 → t = type(p, x) ∧ hasField(mod(p), t, f) ∧
〈[p′, r] ◦ s,H ⊎ {〈r, x, id〉, 〈mod(p), id, f, o〉, 〈r, y, o〉}〉 fieldType(mod(p), t, f) = type(p, y)p: x = v; 〈[p, r] ◦ s, H ⊎ {〈r, x,_〉, 〈mod(p), v, o〉}〉 → type(p, x) = varType(mod(p), v)
〈[p′, r] ◦ s,H ⊎ {〈r, x, o〉, 〈mod(p), v, o〉}〉p: v = x; 〈[p, r] ◦ s, H ⊎ {〈r, x, o〉, 〈mod(p), v,_〉}〉 → varType(mod(p), v) = type(p, x)
〈[p′, r] ◦ s,H ⊎ {〈r, x, o〉, 〈mod(p), v, o〉}〉p: goto p1; 〈[p, r] ◦ s, H〉 → 〈[p1, r, m], H〉p: if (B) goto p1; 〈[p, r] ◦ s, H〉 → 〈[p1, r, m], H〉 eval(H, B) = truep: if (B) goto p1; 〈[p, r] ◦ s, H〉 → 〈[p′, r] ◦ s, H〉 eval(H, B) = falsep: x = m2.proc(a); 〈[p, r] ◦ s, H ⊎ {〈r, a, id〉}〉 p′′ entry point for m2.proc

→ 〈[p′′, r′] ◦ [p′, r] ◦ s, r′ fresh
H ⊎ {〈r, a, id〉 ⊎ hPro
Setup(r′, m2.proc, id)} argType(m2.proc) = type(r, a)p: return x; 〈[p, r′] ◦ [p′, r] ◦ s, H ⊎ {〈r′, x, idx〉,

〈r′, retval, X〉}〉
→ 〈[p′, r] ◦ s, H ⊎ {〈r, X, idx〉} \ {〈r′,_,_〉}〉where p′ satis�es mod(()p′) = mod(p) ∧ p
(()p′) = su

(p
(()p)) in the 
ontrol-�ow graph,and:

type(p, x) = de
lared format of lo
al variable x in p's 
ontext
varType(mod(p), v) = de
lared format of variable v of module mod(p)

hasField(mod(p), t, f) = true i� format t in module mod(p) de
lares �eld f

fieldType(mod(p), t, f) = de
lared format of �eld f in format t of module mod(p)

hProcSetup(r′, m2.proc, id) = {〈r′, retval, x〉, 〈r′, fn, id〉, 〈r′, ℓ1, null〉, . . . , 〈r′, ℓn, null〉}

argType(m2.proc) = de
lared type of formal of m2.procFigure 2-5: Operational semanti
s for implementation languageto the 
ontrol-�ow graph node to be exe
uted, while mod(p) indi
ates the module towhi
h p
(p) belongs.The heap 
ontains three types of tuples. These tuples tra
k module variable
ontents, �eld 
ontents, and lo
al variable 
ontents. We write that H 
ontains triples
〈m, v, o〉 to indi
ate that module variable v in module m points to heap obje
t o.The tuple 〈m, o1, f, o2〉 ∈ H means that the �eld o1.f, en
apsulated in module m,points to obje
t o2. Finally, the triple 〈r, ℓ, o〉 ∈ H means that the a
tivation re
ord
r 
ontains a lo
al variable ℓ pointing to heap obje
t o.In the Hob implementation language, module variables are always initialized to adefault value appropriate to their type. Numeri
 variables are initialized to 0, boolvariables to false, string variables to the empty string, and referen
e variables to
null. Chapter 4 will des
ribe how Hob's stati
 analyses enfor
e the Hob stationarity
ondition by using these known initial values for 
on
rete variables to prevent aprogram from 
arrying out unintended modi�
ations to its abstra
t state. This setstationarity 
ondition is 
entral to Hob's ability to 
arry out modular veri�
ation.37



2.4 Dis
ussionWe 
hose to design our own implementation language to enable the best possible �tbetween our spe
i�
ations and implementations. Our use of a 
ustom implementationlanguage enabled us to experiment with language design issues.Our 
ustom implementation language allowed us to experiment with the format
onstru
t for distributed type de
larations. We found that formats aided the veri�
a-tion of our ben
hmark programs by enabling the modular analysis of programs evenwhen these programs share obje
ts between di�erent modules.The Hob implementation language requires modules to be stati
ally instantiated.Be
ause of stati
 instantiation, Hob programs 
ontain a �nite number of modules. Thedesign of Hob's spe
i�
ation language then ensures that ea
h module 
ontains a �nitenumber of spe
i�
ation-level sets. This implementation language feature simpli�edthe spe
i�
ation language, sin
e it implies that the spe
i�
ation language only needsto work with a �nite number of sets.The tradeo� involved in using our own implementation language was that we hadto port ben
hmark programs to our Hob language. We felt that this pri
e was notoverly onerous, espe
ially given that we also had to provide program spe
i�
ations.One design de
ision that was quite useful in the porting pro
ess was the 
hoi
e ofa subset of the Java statement syntax for Hob implementation-language statements.This de
ision also simpli�ed the 
ompilation of Hob ben
hmarks to Java sour
e 
odefor exe
ution. While our implementation language is a Java subset at the statementlevel, the Hob approa
h provides developers with a di�erent high-level stru
turingme
hanism than Java does. In parti
ular, the Hob implementation language expe
tsprograms to be stru
tured as a 
olle
tion of modules (and, for spe
i�
ation purposes,s
opes, as des
ribed in Chapter 3.4.2). Although te
hniques for writing spe
i�
ationsfor Java programs do exist [18℄, we felt that it was appropriate for the Hob system touse a simpler and more dire
t spe
i�
ation approa
h whi
h avoids the issues involvedin reasoning about spe
i�
ations in the presen
e of ex
eptions and inheritan
e.2.4.1 Impli
ations of en
apsulating �eldsEn
apsulation is 
riti
al to any modular veri�
ation e�ort, sin
e it 
onverts soundreasoning about a part of the program into sound reasoning about the whole programby showing that the rest of the program does not a�e
t the property of interest. Un-like many standard en
apsulation me
hanisms [15, 11℄, our format me
hanism worksby en
apsulating �elds, not obje
ts. Be
ause only the de
laring module may a

essthe �elds that it has 
ontributed to an obje
t, formats enable analysis plugins toreason about the 
ontents of a �eld by analyzing only the module that de�nes the�eld. In parti
ular, analyses need not analyze any other modules that may a

essthe same obje
ts, even though the modules may mutate shared obje
ts. Our typesystem guarantees that a

esses to shared obje
ts operate on disjoint parts of theseobje
ts, so that there is no interferen
e between modules. Formats therefore enablemodules to share obje
ts and yet do not prevent the modular analysis of the modulesthat do share obje
ts. Distributed type de
larations were �rst introdu
ed in [14℄,38



and Aspe
tJ's intertype de
larations allow developers to write distributed type de
-larations today. Distributed type de
larations are 
learly useful in the 
ontext ofaspe
t-oriented programming, sin
e they enable developers to asso
iate data withthe program 
ode, whi
h 
an be s
attered around arbitrarily for aspe
t-oriented pro-grams. To our knowledge, formats are a novel appli
ation of the idea of distributedtype de
larations to the modular veri�
ation problem.2.4.2 Impli
ations of stati
 instantiationTypi
ally, one of the most di�
ult issues involved in reasoning about programs isin reasoning about how they a

ess, and modify, a stati
ally unbounded heap; some�nitization of the program state is required. We felt that the Hob system had tosupport reasoning about unbounded heaps, sin
e data stru
ture implementations aretypi
ally engineered to work with unbounded numbers of obje
ts. Hob therefore al-lows developers to use an unbounded number of data obje
ts in programs. The stati
instantiation me
hanism, however, en
ourages developers to stru
ture their programsso that a �nite number of named sets su�
es to reason about the program, therebysimplifying the task of stating and verifying data stru
ture 
onsisten
y properties.In parti
ular, the stati
 instantiation me
hanism enables developers to de�ne datastru
tures on
e and to use these data stru
tures as needed, without for
ing imple-mentations that require the spe
i�
ation language to handle an unbounded numberof sets.In the Hob system, program modules must be either expli
itly de
lared or stati-
ally instantiated. Ea
h stati
 instantiation 
reates exa
tly one additional programmodule. The total number of program modules in a Hob program is therefore �-nite and known at 
ompile-time. Furthermore, ea
h module's spe
i�
ation may onlyde
lare a �nite number of sets. Hob programs therefore have a �nite number ofspe
i�
ation-level sets, and ea
h set in the program has a stati
ally determined name,whi
h is assigned by the developer. The set spe
i�
ation language enables analysisplugins to verify that developer-provided 
onstraints on named sets 
ontinue to holdthroughout the program's exe
ution and that pro
edures 
arry out 
hanges to setmemberships as stated in their spe
i�
ations.While the Hob system bounds the number of sets, it does not bound the numberof obje
ts in ea
h set. Modules may 
reate arbitrary data stru
tures on the heap.But they may only spe
ify design-level properties for a �nite number of sets, wherethese sets are somehow related to the data stru
tures on the heap.As an example, 
onsider a program whi
h pro
esses a sequen
e of requests andasso
iates a response�in the form of a set of obje
ts�to ea
h request. This program
ould be implemented in the Hob implementation language, but the spe
i�
ationwould not be able to dire
tly represent the set of response sets. One workaround isto fo
us attention on only one response set at a time.Spe
i�
ation-level sets may have a stati
ally unbounded number of members, andthe Hob framework gives analysis plugins 
omplete latitude in assigning obje
ts tosets. Our Hob modular veri�
ation approa
h su

eeds in part be
ause analysis plu-gins never need to know about how other analysis plugins assign membership for39



their sets. In the Hob system, ea
h plugin is only responsible for reading set spe
-i�
ations for external modules, and does not need to inspe
t the external modules'implementations.

40



Chapter 3Hob Spe
i�
ation LanguageIn this 
hapter we explain how developers 
an spe
ify data stru
ture 
onsisten
yproperties for the Hob system to verify. Hob supports several di�erent types ofspe
i�
ations, des
ribed below.Pro
edural (lo
al) spe
i�
ations. At the most basi
 level, developers mayprovide interfa
es for pro
edures in terms of pre
onditions and post
onditions.The Hob system allows developers to provide this information in an abstra
t setspe
i�
ation language. Developer-provided abstra
tion se
tions 
onne
t theseabstra
t set spe
i�
ations with the 
on
rete implementations we des
ribed inChapter 2.Spe
i�
ations of global properties. Hob is also able to verify global datastru
ture 
onsisten
y properties. Global data stru
ture 
onsisten
y propertiesrelate states of di�erent program modules. For instan
e, modules A and Bmay maintain sets that are always disjoint (ex
ept possibly while A and B areexe
uting). Global properties therefore enable developers to state and verifyrelationships between parts of a program analyzed using very di�erent te
h-niques. It is theoreti
ally possible to manually embed these properties intopro
edure spe
i�
ations. However, su
h a manual embedding would impose aheavy burden on the developer and greatly a�e
t the maintainability of programspe
i�
ations. The Hob system therefore also supports two higher-level me
ha-nisms that help developers state and verify these global 
onsisten
y properties:s
opes and defaults. These me
hanisms do not impose any additional require-ments on the spe
i�
 analyses used by the Hob system; instead, Hob desugarsthese me
hanisms into lo
al spe
i�
ations.Other types of spe
i�
ations. The Hob system relates the abstra
t set spe
i-�
ations with 
on
rete program states using abstra
tion fun
tions and represen-tation invariants. For instan
e, a linked list module may export a set Contentrepresenting the obje
ts in the linked list, that is, the obje
ts rea
hable fromthe root of the linked list through next �elds. These abstra
tion fun
tions andrepresentation invariants are an additional form of spe
i�
ations whi
h are visi-41



ble ex
lusively within their de�ning modules. Chapter 5 des
ribes these internalinvariants in more detail.This 
hapter will dis
uss the spe
i�
ation language for lo
al and global properties.Both of these properties use formulas in the boolean algebra of sets to des
ribe desiredproperties of the abstra
t program state.3.1 Example: Doubly-Linked List Spe
i�
ationFigure 3-1 
ontains a 
omplete example of a spe
i�
ation for the doubly-linked list
DLL, whi
h we presented earlier in Figures 2-1, 2-2, and 2-3. Figure 3-1 also presentsa stati
 instantiation of the DLL list spe
i�
ation module into a spe
i�
ation for the
CellList module.In general, modules 
ontain de
larations for 1) program 
ode and 2) programdata. Chapter 2 des
ribed how implementation modules 
ontain pro
edure imple-mentations (written in the Hob imperative language) and 
on
rete global variables.Spe
i�
ation se
tions 
ontain analogous de
larations for pro
edure spe
i�
ations andabstra
t spe
i�
ation variables.3.1.1 Spe
i�
ation module de�nitions and instantiationsSpe
i�
ation se
tions of Hob modules, like implementation se
tions, 
an 
ontain eitherexpli
it module de�nitions or stati
 module instantiations. Line 1 de
lares that thespe
i�
ation of module DLL follows, and line 37 de
lares that module CellList is astati
 instantiation of the DLL module whi
h 
ontains Cell obje
ts rather than Nodeobje
ts.3.1.2 Spe
i�
ation variable de�nitionsHob spe
i�
ation se
tions des
ribe the abstra
t state of the module using spe
i�
ationvariables. These spe
i�
ation variables 
an be either sets or boolean variables. Hob'sset-typed spe
i�
ation variables do not exist at runtime. Instead, they are used ex
lu-sively in module spe
i�
ations to abstra
tly des
ribe the 
ontents of data stru
tures(as sets of obje
ts) and hide implementation-level issues of data representation. Line3 de
lares the Content spe
i�
ation variable, whi
h 
ontains a set of Node obje
ts.(Line 2 informs the spe
i�
ation parser that the Node type will be used in this mod-ule's spe
i�
ations; implementations of DLL will use the format 
onstru
t to de�nethe Node type.) Other modules may referen
e this Content set as DLL.Content, andthe stati
 instantiation on line 37 
reates set named CellList.Content. For mostmodules, abstra
t boolean variables are linked to 
on
rete boolean variables via theidentity map.The spe
i�
ation se
tion does not in
lude any information on the 
on
rete meaningof the abstra
t sets that it uses. It is the sole responsibility of the abstra
tion se
tionto provide a de�nition for a module's abstra
t sets (by relating 
on
rete program42



states to abstra
t sets). Our Content set, for instan
e, is de�ned in its abstra
tionse
tion to be the set of obje
ts rea
hable from the root module variable through next�elds. Sin
e this de�nition is 
ompletely irrelevant to any 
lients of the DLL module,the Hob system hides a module's set de�nitions outside that module.3.1.3 Pro
edure de�nitionsThe DLL spe
i�
ation module primarily 
ontains pro
edure spe
i�
ations for the
remove, removeFirst, addLast, clear, contains, getFirst, and isEmpty pro-
edures. Analysis plugins are responsible for verifying that ea
h pro
edure's imple-mentation 
onform to its spe
i�
ation. Pro
edure spe
i�
ations 
ontain a requires
lause 
onstraining the states in whi
h it is legal to 
all a pro
edure, a modifies
lause giving the sets whi
h are potentially modi�ed in the pro
edure and its transi-tive 
allees1, and an ensures 
lause guaranteeing 
ertain 
onstraints on the programstate upon return from the pro
edure. We des
ribe ea
h pro
edure spe
i�
ation inturn.
remove pro
edureThe remove pro
edure removes a given obje
t from the set maintained by this module.It requires that the obje
t already belong to the set and guarantees that the obje
tis no longer in the set upon return. More pre
isely, any su

essful 
all to remove willrequire that, prior to the 
all, e must be non-null and must belong to the Contentset. The pro
edure spe
i�
ation also states that remove modi�es the Content set andthat the set Content’, whi
h denotes Content upon return from remove, 
ontainsthe obje
ts in Content minus the e parameter.Our spe
i�
ation language treats pro
edure parameters as sets. If a parameter
ontains null, then we represent it with the empty set, and if it points to a heapobje
t, then we represent it by a set with 
ardinality 1. Therefore, the 
onstraint
card(e)=1 in the requires 
lause ensures that e is non-null.
removeFirst pro
edureFrom the set spe
i�
ation point of view, the removeFirst pro
edure pi
ks an arbi-trary element from the nonempty Content set, removes it, and returns it to the 
aller.More pre
isely, the pre
ondition card(Content) >= 1 states that Content must benonempty; the post
ondition card(n’)=1 ensures that the return value is not null;and Content’ = Content ­ n’ states that the Content set upon return is the sameas the Content set upon entry minus the removed obje
t n, and that the obje
t nbelonged to Content prior to the 
all to removeFirst. Note that the set spe
i�
ationfor the removeFirst pro
edure does not spe
ify that the return value n was the �rstelement of the list. Our set spe
i�
ation abstra
ts away from su
h details.1While the Hob analysis tool requires pro
edures to de
lare sets modi�ed in transitive 
allees in
modifies 
lauses, a simple prepro
essor 
an 
olle
t sets modi�ed in transitive 
allees and add themto modifies 
lauses. 43



addLast pro
edureThis pro
edure adds the parameter p to the Content set. The spe
i�
ation states thatprior to a legal 
all to add, the parameter n must be non-null (card(n)=1), and that
n must not belong to Content. The spe
i�
ation also de
lares that this pro
eduremodi�es only the Content set. Finally, the spe
i�
ation de
lares that, upon returnfrom add, the set Content’, whi
h denotes the state of Content after returning from
add, 
ontains the obje
ts initially in Content plus the given obje
t n. On
e again,note that the order of elements of the linked list is abstra
ted at the level of the setspe
i�
ation.
clear pro
edureThe clear pro
edure modi�es the Content set by removing all elements from thisset. In parti
ular, the post
ondition states that Content is empty upon return:
card(Content’) = 0.Other pro
eduresThe contains pro
edure presents the use of boolean return values in spe
i�
ations.Given a non-null e parameter, contains returns true if and only if e is in the Contentset. Note that this pro
edure does not modify any abstra
t state. The getFirstpro
edure returns an element belonging to the Content set. The isEmpty pro
edureis useful for guarding 
alls to pro
edures that require Content to be nonempty.3.2 Example: Global Properties (S
opes)Se
tion 3.1 explained how the Hob system allows developers to state spe
i�
ations forprogram modules. These spe
i�
ations enable developers to state requires, modi�esand ensures 
lauses for a single pro
edure at a time.3.2.1 A global invariantSome program properties involve sets belonging to multiple modules. Consider threemodules, Worker, Inbox and Outbox. The Worker module maintains a set of jobs
Worker.Jobs, while the Inboxmodule maintains a set of input jobs Inbox.Input andthe Outbox module maintains a set of output jobs Outbox.Output. These modulesneed to work together to preserve the following invariant I:

I: Worker.Jobs = Inbox.Input + Outbox.OutputThe Worker module guarantees that the invariant is preserved by properly 
oordi-nating updates to the Jobs set with 
alls to the Inbox and Outbox modules. The�rst responsibility of the analysis, in terms of verifying the invariant, is therefore toverify that the pro
edures in the Worker module preserve the invariant (and that theinvariant holds in the program's initial state). Note that Worker may temporarily44



1 spec module DLL {2 format Node;3 specvar Content : Node set;45 proc remove(e : Node)6 requires card(e)=1 & (e in Content)7 modifies Content8 ensures (Content’ = Content ­ e);910 proc removeFirst() returns n:Node11 requires card(Content)>=112 modifies Content13 ensures card(n’)=1 & (Content’ = Content ­ n’) & (n’ in Content);1415 proc addLast(p : Node)16 requires card(p)=1 & not (p in Content)17 modifies Content18 ensures Content’ = Content + p;1920 proc clear()21 modifies Content22 ensures card(Content’) = 0;2324 proc contains(e : Node) returns b:bool25 requires card(e) = 126 ensures (b’ <=> (e’ in Content));2728 proc getFirst() returns e:Node29 requires card(Content)>=130 ensures card(e’)=1 & (e’ in Content);3132 proc isEmpty() returns rv:bool33 ensures rv’ <=> (card(Content) = 0);34 }3536 spec module CellList = DLL with Node <­ Cell;Figure 3-1: Doubly-linked list spe
i�
ation
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violate the invariant; our analysis simply needs to verify that the invariant is restoredupon exit from Worker.Be
ause the design of the Worker, Inbox and Outboxmodules relies on the Workermodule to properly 
oordinate a

esses to the Inbox and Outbox modules, any di-re
t 
alls to Inbox and Outbox may 
ause the invariant to be permanently violated.Be
ause only the modules Worker, Inbox and Outbox may dire
tly modify the setsinvolved in I, external modules 
an violate the invariant only by 
alling Worker,
Inbox or Outbox. The se
ond responsibility of the analysis is therefore to prohibitdire
t 
alls to Inbox and Outbox; all 
alls to Inbox and Outbox must go through
Worker.In summary, to prove that invariant I holds, the Hob system needs to verify thatthe invariant holds initially, that the Worker module preserves the invariant, andthat 
alls to Inbox and Outbox all originate from the Worker module. Together,these 
onditions enable an indu
tion on program tra
es whi
h permits the analysisto safely 
on
lude that I holds upon ea
h entry to pro
edures in the Worker module.
3.2.2 Spe
ifying global invariantsMore generally, the Hob system needs the following (developer-supplied) informationto attempt to verify any invariant I: a set of modules where I may temporarilybe violated; the set of exported modules whi
h are responsible for ensuring thatthe invariant holds upon exit; and (of 
ourse) the invariant I itself. The developerexpresses this information by spe
ifying a s
ope.Figure 3-2 presents the de�nition of our example s
ope. Line 1 states that thes
ope is named W. Line 2 of the s
ope de�nition states that Worker, Inbox and
Outbox are the modules of s
ope W; the invariant may be temporarily violated insidethese modules. Line 3 de
lares that the s
ope W exports the Worker module. Thisde
laration instru
ts the Hob system to assume that the s
ope invariant holds uponentry to Worker and to show that the invariant is always ensured upon exit from
Worker. Only modules that belong to the s
ope may invoke pro
edures in the non-exported Inbox and Outbox modules of the s
ope. Line 4 states the invariant itselfusing the invariant keyword.Figure 3-3 illustrates the s
ope W and a module whi
h 
alls W. In our example, theinvariant I may be temporarily violated in the Inbox, Outbox and Worker modules.In other words, the s
ope W en
apsulates these modules; we say that these modulesbelong to the s
ope. The Worker module ensures that the invariant holds upon exitfrom its pro
edures, so the s
ope W exports Worker. The s
ope invariant states thatthe set of jobs Worker.Jobs is equal to the union of the sets Inbox.Input and
Outbox.Output. Note that Figure 3-3 also presents an extra module, Server, whi
hinvokes a pro
edure inside s
ope W from outside the s
ope. The Server module mayonly 
all the exported Worker module and not the Inbox or Outbox modules.46



1 scope W {2 modules Worker, Inbox, Outbox;3 exports Worker;4 invariant Worker.Jobs = Inbox.Input + Outbox.Output;5 } Figure 3-2: S
ope invariant example

Figure 3-3: Illustration of s
opes example
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3.2.3 Verifying global invariantsWe next dis
uss how the Hob system establishes whether or not a s
ope invariantholds. The Hob system 
he
ks that I holds in the initial state of the program.When verifying the s
ope's exported pro
edures, the Hob system appends the s
opeinvariant to the pre
onditions and post
onditions of those pro
edures. By 
onjoiningthe invariant to post
onditions of exported pro
edures, Hob ensures that exportedmodules meet their responsibility of ensuring that s
ope invariants hold when exitinga s
ope. When a 
aller outside the s
ope invokes an exported pro
edure, the 
aller isresponsible for ensuring that the exported pro
edure's pre
ondition holds. However,the Hob system does not require that external 
allers show that the invariant holds.Be
ause Hob 
he
ks s
ope invariants upon exit from a s
ope and be
ause Hob 
he
ksthat I holds in the program's initial state, programs may safely assume that theinvariant holds whenever entering the s
ope.Note that s
ope invariants are not a
tually appended to pre
onditions and post-
onditions; in parti
ular, the Hob system 
an hide s
ope invariants from 
alling pro-
edures. Neither the analysis system nor the developer need to expli
itly write out as
ope invariant outside the s
ope.3.2.4 Spe
i�
ation aggregationConsider a program whi
h maintains an invariant I. Without the s
ope invariantme
hanism, the developer would have to expli
itly in
lude the invariant I through-out the pre
onditions and post
onditions of the entire program (ex
ept for when itis temporarily violated). We 
all this the spe
i�
ation aggregation problem. Spe
-i�
ation aggregation 
auses a program's top-level modules to a

umulate invariantsfrom all of its worker modules. We expe
t that the number of invariants would growroughly linearly with the size of the program, so the total annotation burden wouldgrow quadrati
ally a
ross the program.In this 
ase, the s
opes me
hanism solves the spe
i�
ation aggregation problem byautomati
ally 
onjoining the invariant I to the appropriate set of exported modules.Be
ause the Hob system automati
ally 
onjoins I at the appropriate points in theprogram, the developer only needs to state I on
e, in the s
ope de
laration, ratherthan throughout the text of the program. This repla
es the quadrati
 number of an-notations woven throughout the program text (namely, the number of invariants timesthe number of pro
edures) by a linear number of annotations (sin
e ea
h invariant isonly stated on
e, the overall annotation burden due to invariants is linear).The defaults me
hanism enables developers to give names to properties; defaults
ould be used to simulate part of the fun
tionality of the s
opes me
hanism andwould somewhat mitigate the spe
i�
ation aggregation problem. However, s
opes,when appli
able, have two advantages over defaults: 1) s
ope invariants do not needto be expli
itly added to pre
onditions and post
onditions outside the s
ope (whi
hredu
es the burden on analysis plugins); and 2) s
opes a
t as a program stru
turingme
hanism, in that they enable developers to forbid 
alls to the interior of a s
ope.The Hob system properly handles reentrant 
alls in the presen
e of s
opes. A48



reentrant 
all o

urs when a module inside a s
ope 
alls outside the s
ope, and the
allee subsequently 
alls ba
k into the s
ope. Hob requires that s
ope invariants holdat reentrant 
all sites, and assumes that they hold upon return.3.3 Example: Global Properties (Defaults)S
ope invariants are program properties that hold in most program states. In ourweb server ben
hmark, the Config module manipulates 
on�guration data for thewebserver and maintains a boolean spe
i�
ation variable ready, whi
h is true assoon as the module has been initialized and throughout most of the program's exe-
ution. Unfortunately, sin
e the variable ready is false until the Config module hasbeen initialized, ready does not hold in the program's initial state. S
ope invari-ants, however, must be true initially, so ready is not a suitable s
ope invariant. Wetherefore invented the default me
hanism for properties that hold in many di�erentprogram states and yet are not suitable for use as s
ope invariants. Defaults ands
opes work well together to enable developers to 
on
isely and a

urately spe
ifyprogram properties.Developers spe
ify defaults by giving three pie
es of information to the Hob sys-tem: a set of pro
edures to whi
h the default is appli
able; a name for the default;and the 
lause to be applied. Hob uses the notion of a point
ut to spe
ify the regionwhere the default is to apply; a point
ut simply names (synta
ti
ally) the pro
e-dures or modules to whi
h the default should apply. Pro
edures may use a default'sname for �ne-tuning of its appli
ability: if a pro
edure does not need a parti
ulardefault, then the pro
edure 
an suspend the default. If a default is appli
able to apro
edure, then Hob 
onjoins the default's 
lause to the pro
edure's pre
ondition orpost
ondition, as spe
i�ed in the point
ut.Figure 3-4 presents a pair of defaults drawn from our web server example. The
StringTokenizer module (not shown) maintains a spe
i�
ation variable S. The de-fault I (for `initialized') states that the ready boolean variable is true at all pre
on-ditions ex
ept for those in init pro
edures (point
ut 
lause not proc *.init())and ex
ept before the pro
edure add in module HostList (point
ut 
lause not proc

HostList.add(). The default S states that the StringTokenizer.S set is emptyat all pre
onditions of pro
edures in the Config module. Note also that the initpro
edure expli
itly suspends the I default. In this parti
ular 
ase, the suspend andthe default point
ut have the same e�e
t, and the developer may freely 
hoose oneme
hanism or the other (or both).3.4 Spe
i�
ation Language GrammarThis se
tion presents the Hob spe
i�
ation language grammar and the s
opes anddefaults extensions to the Hob spe
i�
ation language. The 
ore spe
i�
ation languageuses formulas of the boolean algebra of sets (with 
ardinality 
onstraints) for requiresand ensures 
lauses for pro
edures, whi
h are organized into modules. Hob represents49



1 spec module Config {2 specvar ready:bool;34 default I : pre(not proc *.init() && not proc HostList.add()) = ready;5 default S = card(StringTokenizer.S) = 0;6 proc init(argv:string[]) suspends I requires not ready7 modifies StringTokenizer.S, Mimetypes.init, ready8 ensures ready’;9 proc getPort() returns p:int ensures true;10 } Figure 3-4: Defaults examplethe abstra
t state of a module's en
apsulated data stru
tures using spe
i�
ation-levelsets.3.4.1 Core spe
i�
ation languageIn this se
tion we des
ribe Hob's set-based spe
i�
ation language. Be
ause all analy-ses ensure that implementations 
onform to spe
i�
ations expressed in this spe
i�
a-tion language, Hob's spe
i�
ation language enables di�erent analyses to 
ommuni
atein terms of a 
ommon set of program properties. Our 
ore spe
i�
ation language al-lows developers to express spe
i�
ations at the level of pro
edures.Figure 3-5 presents the 
omplete syntax for the 
ore module spe
i�
ation lan-guage. A spe
i�
ation module 
onsists of type and set de
larations, pro
edures, andmodule spe
i�
ation-level invariants. Type de
larations (format t) de
lare the typeswhi
h will be used in set de
larations and pro
edure parameters. The set de
lara-tions (specvar S) name the sets over whi
h the boolean 
lauses in the spe
i�
ationswill range. Boolean variable de
larations (specvar nb) similarly name the booleanvariables whi
h will be used in spe
i�
ations. A spe
i�
ation for pro
edure pn be-gins with an optional suspends 
lause (for defaults, dis
ussed later), a requires 
lauseexpressed in boolean algebra with 
ardinality 
onstraints, 
ontinues with a modi�es
lauses, and 
on
ludes with an ensures 
lause. Module invariants in spe
i�
ation se
-tions are a spe
ial 
ase of s
ope invariants (as des
ribed in Se
tion 3.4.2) whi
h applyto the de
laring module. Module invariants di�er from abstra
tion se
tion invariants(Chapter 5) in that they are expressed in the 
ommon set spe
i�
ation language,rather than in an analysis plugin-spe
i�
 notation.The expressive power of boolean 
lauses B is the �rst-order theory of booleanalgebras, where variables range over sets de
lared in some module in the program.The �rst-order theory of boolean algebras is de
idable [88, 53℄, and we use this fa
tto 
ompute whether impli
ation holds between boolean 
lauses as well as to performdata�ow analysis in the �ags analysis, as des
ribed in Chapter 6.Boolean 
lauses operate on set expressions SE. A set expression may name sets Sand pro
edure parameters p; in Hob, primed sets S ′ denote the 
ontents of a set upon50



M ::= spe
 module m {(format t)∗ (spe
var (nb : bool | S : t set))∗ P ∗ I∗}
P ::= pro
 pn(p1 : t1, . . . , pn : tn) [returns r : t]

[suspends d+] [requiresB] [modi�esS+] ensuresB

I ::= invariant B

B ::= nb | SE 1 = SE2 | SE1 ⊆ SE 2 | 
ard(SE )=k | disjoint(SE 1,SE 2)
| B ∧ B | B ∨ B | ¬B | ∃S.B | ∀S.B

SE ::= ∅ | p | [m.] S | [m.] S′ | SE1 ∪ SE 2 | SE 1 ∩ SE 2 | SE 1 \ SE 2Figure 3-5: Syntax of the Module Spe
i�
ation Languagereturn from a pro
edure in the 
ontext of requires 
lauses. Developers may 
ombineset expressions using the set union, interse
tion and di�eren
e operators.Requires/Ensures Clauses. Our spe
i�
ation language allows pro
edure e�e
tsto be spe
i�ed using requires and ensures 
lauses in boolean algebra 
lauses B. Whena pro
edure spe
i�
ation in
ludes a modi�es 
lause m, the Hob analysis frameworkadds some extra terms to the ensures 
lause e to give an e�e
tive ensures 
lause
ee�, whi
h is used as the summary of that pro
edure's e�e
ts. In parti
ular, in thepresen
e of a modi�es 
lause m, we use this augmented ensures 
lause to analyze thepro
edure:

ee� := e ∧
∧

S 6∈m

S=Ŝ ∧
∧

n 6∈m

n ⇔ n̂3.4.2 S
opesFigure 3-6 presents the syntax of s
ope de
larations. A s
ope de
laration 
ontainsthree parts: it de
lares a set of modules belonging to the s
ope; a subset of thesemodules�exported modules�whi
h are visible outside the s
ope; and (optionally)a s
ope invariant, whi
h is a formula preserved by the s
ope. Outside a s
ope, thes
ope's non-exported modules are invisible: modules whi
h do not belong to a s
opemay not invoke pro
edures in, or refer to sets of, that s
ope's non-exported modules.Only the exported modules and their sets may be used outside the s
ope. The s
opeinvariant is a formula whi
h Hob veri�es for the program's initial state and upon exitfrom the s
ope (assuming that the invariant always holds upon entry to the s
ope).Handling Reentrant Calls. In general, a 
all site inside a given s
ope may (po-tentially transitively) 
all an exported pro
edure from the same s
ope (whi
h willassume the s
ope invariant). We 
all su
h a 
all site a reentrant 
all site. When
ontrol rea
hes a reentrant 
all site, the s
ope invariant may be temporarily violatedat that point. However, sin
e the 
all site is a reentrant site, the �ow of 
ontrol maythen rea
h a s
ope entry point again. At a s
ope's entry points, the analysis assumesthat the s
ope's invariants hold.Our system therefore requires s
ope invariants to hold at all reentrant 
all sites.Combined with the veri�
ation of s
ope invariants upon exit from a s
ope, this en-51



sures that s
ope invariants always hold upon entry to a s
ope. It is the developer'sresponsibility to identify reentrant 
all sites. (It would also be possible to auto-mati
ally dete
t su
h 
all sites). A simple link-time 
he
k performed in the overallprogram veri�
ation des
ribed in Chapter 5.3, the 
all reentran
y 
he
k, ensures thatthe developer has 
orre
tly identi�ed all reentrant sites.Publi
 and Private S
ope Invariants. Our system supports two kinds of s
opeinvariants. Publi
 s
ope invariants are visible throughout the program. In parti
ular,the veri�
ation system may simply (potentially under developer guidan
e) assume thepubli
 s
ope invariant at any point in the program outside the s
ope2. To ensure thatthis veri�
ation strategy is sound, the system requires the publi
 s
ope invariant tohold whenever the program may exit the s
ope (either at the exit point of an exportedpro
edure or at an external 
all site).In 
ontrast, private s
ope invariants are not visible outside the s
ope. It would bepossible for the veri�
ation system to require private s
ope invariants to hold at thesame program points as publi
 s
ope invariants. But be
ause private s
ope invariantsare not visible outside the s
ope, the veri�
ation system applies a less restri
tivepoli
y. Spe
i�
ally, it only requires private s
ope invariants to hold at exit points ofexported pro
edures and at reentrant 
all sites. Note that this poli
y allows the s
opeinvariant to be (temporarily) violated a
ross non-reentrant 
alls outside the s
ope.The fa
t that private s
ope invariants are not visible outside their s
ope ensures thatthis poli
y is sound. Private s
ope invariants are useful be
ause they help the Hobsystem redu
e the size of the overall analysis task. They are espe
ially useful whenthe s
ope invariant mentions private sets: invariants on private sets should always behidden.Finally, the veri�
ation system assumes that the sets and boolean variables of agiven s
ope invariant (and more generally, all sets and boolean variables de�ned in themodules in the s
ope) do not 
hange a
ross non-reentrant 
alls. Hob's set stationarity
he
k ensures that only the pro
edures in the s
ope 
an a�e
t the values of the setsand boolean variables of the invariant.Set Stationarity Che
k: A s
ope invariant may use only sets and booleanvariables that are de�ned in the s
ope's modules.Be
ause of the set stationarity 
he
k, it is su�
ient to verify that the invariant holdsin the initial state and at s
ope exit points to ensure that the invariant always holdsat s
ope entry points.Entering and Exiting S
opes. A program 
an exit a s
ope in two pla
es: at theexit point of an exported pro
edure, or at a 
all site that invokes either a pro
edureoutside the s
ope or an exported pro
edure in the same s
ope. Su
h a 
all site is an2The Hob system 
urrently 
onjoins publi
 s
ope invariants to all pre
onditions outside the s
ope.This is not ne
essary in general. For instan
e, a s
ope invariant mentioning modules A and B shouldnot be 
onjoined to a pre
ondition on sets in modules C and D.52



S ::= s
ope C {modules M∗ ;exports M∗ ;
[[publi
] invariant B; ] ∗

}Figure 3-6: Syntax of S
ope De
larations
Exported Module M

Local Module P Local Module Q

Exit

Point

Entry

Point

Entry

Point

Exit

Point

Entry

Point

Exit

Point

Exit

Point

Entry

Point

Scope C

Call Edge Return EdgeFigure 3-7: S
ope Entry and Exit Pointsexternal 
all site. The program 
an enter a s
ope in two pla
es: at the entry point ofan exported pro
edure, or at the return point of an external 
all site.Figure 3-7 presents an example that illustrates the possible 
ases. The entry pointof ea
h pro
edure in the exported module M is an entry point for the s
ope C. The exitpoints of these pro
edures are s
ope exit points. Call sites from pro
edures inside C (inthe example, from pro
edures in the non-exported module Q) to pro
edures outside
C are s
ope exit points. The 
orresponding return points after the 
all sites ares
ope entry points. Finally, 
all sites from pro
edures inside C (in the example, frompro
edures in the non-exported module P) to pro
edures in exported modules in Care also s
ope exit points. The 
orresponding return points after the 
all sites arealso s
ope entry points.Controlling A

ess to Non-exported Modules. The s
opes me
hanism enablesHob to use properties of a program's stru
ture to eliminate the need to 
he
k theasso
iated s
ope invariants outside a s
ope. In parti
ular, the Hob system only needsto ensure that s
ope invariants hold at 
ertain key points, namely s
ope exit points.One key reason that this works is that a s
ope's exported pro
edures 
ontrol theoperation of non-exported modules: no non-exported module may be 
alled fromoutside the s
ope. The Hob system ensures that non-exported modules remain privateto the s
ope by using a s
ope 
all 
he
k, as des
ribed below.53



S
ope Call Che
k Consider a pro
edure 
all from module M to module M ′.Then for ea
h s
ope C that the target module M ′ belongs to, either: 1) M mustalso belong to s
ope C, or 2) M ′ must be exported in s
ope C.Note that this de�nition 
onjoins the 
alling restri
tions from all relevant s
opes: if
M is a non-exported module in some s
ope C, only modules that are also in C 
an
all M .S
opes and Set Visibility. The sets and boolean variables of non-exported mod-ules are not visible outside the en
losing s
opes. In parti
ular, the pre
onditions andpost
onditions of pro
edures in exported modules, the modi�es 
lauses of su
h pro-
edures, and publi
 s
ope invariants must not 
ontain sets or boolean variables fromnon-exported modules.This design de
ision means that modi�es 
lauses have a slightly di�erent meaningin the presen
e of s
opes with non-exported modules. Sets and boolean variablesfrom non-exported modules will be absent from the modi�es 
lauses of all exportedpro
edures, even if the pro
edures may modify some of the sets or boolean variables.To ensure that this absen
e does not 
ause soundness violations, the analysis mustassume that the pro
edure invoked at any reentrant 
all site may modify all sets andboolean variables from the non-exported modules of the s
opes to whi
h the module
ontaining the 
all site belongs.General Modi�
ation Semanti
s A set S of module M ′ is out of s
ope formodule M if there exists a s
ope C whi
h does not export M ′, and M does notbelong to C.Consider a 
all from module M to pro
edure p of module M ′, and let set T ofmodule M be out of s
ope for p.1. If the 
all to p is labelled as a reentrant 
all (that is, if p in
ludes a 
allba
k to the 
aller module M), then the 
aller must dedu
e, upon returnfrom p, that T may be arbitrarily modi�ed.2. Otherwise, the non-reentrant 
all to p preserves the 
ontents of set T .It is sound to preserve out-of-s
ope sets T a
ross non-reentrant 
alls: be
ause Tis de�ned in the 
alling module M , it may only be modi�ed in M . Furthermore,sin
e the 
all is non-reentrant, then T must be unmodi�ed upon return from the 
all.Be
ause the 
aller module's set T is out of s
ope for 
allee pro
edure p, the Hobsystem ensures that p does not expli
itly mention the 
aller module's set T in itsspe
i�
ation.Verifying S
ope Invariants. Having des
ribed what s
opes do and how theystru
ture the program, we next des
ribe how Hob veri�es that s
ope invariants hold.We have designed the Hob system so that Hob analysis plugins do not need to under-stand s
opes or other global properties. This simpli�es the design and implementation54



of analysis plugins, whi
h are solely responsible for verifying lo
al data stru
ture 
on-sisten
y properties. Brie�y, Hob translates global s
ope invariants into requires andensures 
lauses suitable for veri�
ation by analysis plugins.� Reentrant Call Sites. Sin
e potentially-reentrant sites are s
ope exit andentry points, the Hob framework 
on
eptually adds an assert statement 
on-taining the invariants of all potentially-reentered s
opes before that 
all siteand an assume statement with the same invariants after the 
all site.� Private S
ope Invariants. Private invariants do not appear in formulas out-side the s
ope. Private s
ope invariants are therefore 
onjoined to requires andensures 
lauses for publi
 pro
edures of exported modules when analyzing thebodies of these pro
edures. However, private invariants need not be 
onjoinedto these pro
edures when 
he
king validity of 
alls to those pro
edure. This isequivalent to adding an assume statement at the head of ea
h exported pro
e-dure 
ontaining the s
ope invariant and an analogous assert statement at thetail of ea
h exported pro
edure.� Publi
 S
ope Invariants. Publi
 invariants are known to hold throughoutthe program's exe
ution, and 
an 
on
eptually be 
onjoined to all pre
onditionsand post
onditions in the program outside the s
ope, as well as pre
onditionsand post
onditions of exported pro
edures. One possible optimization would
onjoin publi
 invariants to only those outside pro
edures that refer to sets andboolean variables used in the s
ope invariant.An Alternate Treatment of S
ope Invariants. It is possible to generalize thepre
eding treatment of s
ope invariants. Spe
i�
ally, the system 
ould require thedeveloper (or an analysis) to identify, at ea
h external 
all site, all of the s
opeinvariants that any potentially (transitively) invoked pro
edure may assume. Theveri�
ation system would then require these s
ope invariants to hold at the 
all site.A simple link-time 
he
k (similar to the link time 
he
k for reentrant 
all sites) wouldverify the 
orre
tness of the s
ope invariant usage information. This more generaltreatment eliminates the distin
tion between publi
 and private s
ope invariants,gives the developer more 
ontrol over when s
ope invariants are required to hold, andsupports a wider range of s
ope invariant pla
ement poli
ies. The potential drawba
kis that it might require the developer to intera
t more 
losely with the veri�
ationsystem.Expressive power of s
opes.Hob's s
opes me
hanism enables developers to spe
ify invariants whi
h hold a
rossa set of modules. S
opes are more powerful than defaults: while defaults 
ould 
on-join invariants to appropriate program points, defaults do not enable the developerto forbid 
alls to internal modules. The s
opes prote
tion me
hanism therefore in-
reases the expressive power of the Hob language by enabling developers to ensurethat, in the maintenan
e phase of program development, program modi�
ations do55



not inadvertently introdu
e 
alls to s
ope-internal modules whi
h result in invariantviolations.Non-hierar
hi
al program de
ompositions.Our s
opes me
hanism furthermore enables a module to parti
ipate in multiple s
opessimultaneously. This multiple parti
ipation enables modules to be grouped into s
opesalong orthogonal axes. By using s
ope invariants, developers 
an express propertiesthat are 
ommon to multiple pro
edures belonging to multiple modules, providinga de
omposition of the program layered on top of the module-based de
omposition.The s
ope-based de
omposition permits developers to en
apsulate invariants that 
uta
ross modules. S
opes also enable developers to separate the underlying analysistask (as 
arried out, for ea
h module, by Hob's various analysis plugins) from theset of program units that maintain a 
ertain global invariant: many di�erent analysisplugins 
an 
ooperate to establish a global invariant, as expressed in terms of a s
ope.Invariants and Regions Where They Hold. Given any region of 
ode expressedas a set of modules, and any invariant I, a developer 
an introdu
e a s
ope exportingthese modules. This s
ope will serve to pre
isely indi
ate where the invariant Ishould hold, without imposing any unwanted additional 
onstraints on the programstru
ture.Enfor
ing Arbitrary Calling Restri
tions. Consider the set of all modules
M1, . . . , Mk in a program, and suppose that we wish to ensure an arbitrary set ofrestri
tions on whether module Mi 
an 
all module Mj , given by a boolean matrix
aij (with the natural property that aii is true). Then we 
an always de�ne at most ks
opes that pre
isely en
ode the 
all matrix aij . Indeed, it su�
es to introdu
e ones
ope Ci for module Mi, make Mi be the sole lo
al module of Ci, and make the set ofmodules {Mj | aji = true}, that are allowed to 
all Mi, be the set of exported modulesof the s
ope Ci. The set of s
opes C1, . . . , Ck then ensures the desired 
all matrix aij .In pra
ti
e, programs exhibit non-trivial (even if not hierar
hi
al) stru
ture, whi
himplies that many fewer than k s
opes su�
e to de�ne the desired 
alling restri
tions.Exposing Various Interfa
es to a Module. Finally, note that s
opes 
an en
odethe situation where a module M exposes di�erent subsets of its fun
tionality to di�er-ent modules, providing more or less restri
tive interfa
es to di�erent 
lients [39℄. Tomodel this situation, write M by exposing a wide (�exible) interfa
e, and de�ne theproxy modules M1, . . . , Mp, ea
h of whi
h 
alls M but propagates only a subset of thefun
tionality of M . Then 
reate a s
ope with M as a lo
al module and M1, . . . , Mpas exported modules.3.4.3 DefaultsThe default 
onstru
t enables developers to state that a spe
i�
 property holds at aset of pro
edure pre
onditions and post
onditions unless expli
itly suspended. Devel-56



P ::= P1−P2 | P1&P2 | P1|P2 | not P

| pre S | post S | prepost S

S ::= S1 − S2 | S1&S2 | S1|S2 | not S

| pro
 pn(tn1, . . . , tnn) returns tnr

| exported (module ms) | exported (s
ope ss)
| lo
al (module ms) | lo
al (s
ope ss)
| all (module ms) | all (s
ope ss)
| allpn, tn, ms, ss ::= identi�er | identi�er*Figure 3-8: Point
ut Language for Defaultsopers may spe
ify the appli
ability of a default synta
ti
ally, by naming the modulesand pro
edures to whi
h the default should apply. Default de
larations have the form,
default N(A1, ..., Ak) : C = P (3.1)where N is the name of the default, the Ai are a set of optional parameter names, Cis an optional point
ut spe
i�
ation (spe
ifying where the property should be added),and P is a property expressed in the Hob set spe
i�
ation language. One 
ommon useof defaults is to 
apture initialization 
onstraints, whi
h always hold on
e a programhas 
ompleted its initialization phase.Our 
urrent system implements defaults by 
onjoining P to pro
edure pre
ondi-tions and post
onditions that 1) mat
h the point
ut spe
i�
ation C and parameternames Ai (dis
ussed below) and 2) do not expli
itly suspend the default N with aspe
i�
ation 
lause �suspendN�.Point
ut Spe
i�
ation Language. The two pie
es of information de�ning a de-fault are: (1) what is the property; and (2) where should it hold? Sin
e Hob hasa 
ommon set spe
i�
ation language to spe
ify program properties, it makes a lotof sense for developers to use this set spe
i�
ation language to spe
ify properties indefaults as well. Figure 3-8 presents the syntax for Hob's point
ut language, whi
henables developers to spe
ify where a property should hold. The developer 
an usethe point
ut language to identify a set of pro
edures S to whi
h the default applies,then spe
ify that the default applies to the pre
onditions (pre S), post
onditions(post S), or both pre
onditions and post
onditions (prepost S) of all pro
edures in

S. The developer may sele
t pro
edures by name, by membership in modules, or bymembership in s
opes. An omitted point
ut for a default spe
i�ed inside a moduleindi
ates that the default should apply to all pre
onditions and all post
onditions ofall pro
edures of that module; for a default spe
i�ed outside any module, an omittedpoint
ut means that the default should apply to all pre
onditions and post
onditionsin the program.Defaults and Modules. Defaults are often 
oupled to a spe
i�
 module�for ex-ample, a data stru
ture initialization default is typi
ally 
oupled to the module that57



en
apsulates the data stru
ture. In su
h 
ases the developer should de�ne the defaultwithin the 
orresponding module so that the instantiation of the module 
orre
tlyin
ludes the instantiation of the default (and the 
onstraint that it enfor
es). Devel-opers may also de
lare defaults on their own outside of any module�su
h de
larationsare typi
ally appropriate when the default property involves multiple modules.Default Parameter Names. If the default in
ludes parameter names, these pa-rameter names further 
onstrain the set of pro
edures to whi
h the default applies�ifthe default has a list of parameter names A1, . . . , Ak then it applies only to pro
e-dures that have at least k parameters with formal parameter names A1, . . . , Ak. Theparameter names may appear in any order in the pro
edure's parameter list. Forexample, in the Water ben
hmark (Se
tion 7.2), the default
default padRead(p) : pre(all(module Reduce)) = card(p)=1 &

(p in Reduce.Read)applies only to pre
onditions of pro
edures in the Reduce module that have (at least)a parameter named p. When 
onjoined with the pre
ondition of su
h a pro
edure,the default 
onstrains p to have 
ardinality 1 (i.e. it must not be null) and to be amember of the Reduce.Read set.Defaults as Formula Transformers. Con
eptually, defaults are formula trans-formers. The defaults we have dis
ussed so far transform pre
onditions and post
on-ditions by 
onjoining the default property P to these formulas. The default 
on
ept
an generalize to in
lude arbitrary formula transformers that may transform formulasin more sophisti
ated ways. We have implemented one instantiation of su
h generalformula transformers in the Hob system. However, one issue is that multiple trans-formers may apply to a single pre
ondition or post
ondition. If the transformers donot 
ommute, di�erent appli
ation orders may produ
e di�erent �nal formulas (andour 
urrent implementation does not guarantee a deterministi
 result in su
h a 
ase).One way to eliminate any su
h nondeterminism is to group formula transformers into
lasses (so that all transformers in the same 
lass 
ommute), then prioritize the 
lassesto �x an appli
ation order for transformers that may not 
ommute.3.5 Dis
ussionIn this se
tion, we dis
uss various 
onsequen
es of our parti
ular 
hoi
e of spe
i�
ationlanguage and its features. We �rst dis
uss the spe
i�
ation aggregation problem thatmotivated our s
opes me
hanism. Next, we dis
uss the expressive power of the s
opesme
hanism, as well as the advantages and disadvantages of the defaults me
hanism.We then move on to the general problem of 
hoosing a spe
i�
ation language andjustify our 
hoi
e of a set spe
i�
ation language. Finally, we 
ompare our experien
ewith the Hob stati
 analysis approa
h with the testing approa
h for the purpose ofvalidating program properties. 58



3.5.1 S
opes and spe
i�
ation aggregationAssume/guarantee reasoning, as used in the Hob system, 
omes at a 
ost: it requiresspe
i�
ations at boundaries of 
ode fragments su
h as pro
edures. Consider a pro
e-dure p. Any 
aller of p must be able to guarantee that p's pre
onditions r1∧r2∧· · ·∧rnhold prior to its invo
ation. These pre
onditions 
an hold either be
ause they aretrue in the program's initial state, or be
ause they are guaranteed by the post
ondi-tion of a pro
edure whi
h has been exe
uted in the past; the pre
onditions, of 
ourse,must have not been subsequently violated. In prin
iple, the developer must thereforethread 
onditions r1 to rn through all pro
edure pre
onditions and post
onditions,up and down the 
all 
hain, from where they are established to where they are used.Additionally, any transitive 
allee q invoked from p adds its own spe
i�
ation burdento the pre
onditions of p, su
h that p might in fa
t spe
ify pre
onditions r1 through
rn and rn+1 through rk.Note that these pre
onditions may, in parti
ular, propagate up the 
all 
hain toa pro
edure's 
allers. Of 
ourse, some 
allee pre
onditions must be established at
aller sites; however, many 
allee pre
onditions are purely internal and should not bevisible to the 
aller. Requiring 
allers to expli
itly guarantee internal pre
onditionswould often result in modularity violations: 
allers should not need to know aboutirrelevant details of a 
allee's internal state. For
ing the developer to 
onstrain the
allee's state at all 
allers makes reuse more di�
ult, sin
e the 
aller must be awareof required (yet irrelevant) pre
onditions.In general, developers must therefore either deal with a set of pro
edure post
on-ditions, ea
h of whi
h potentially in
reases at least as fast as the size of the program;or 
hoose some subset of these post
onditions to manually propagate throughout theprogram spe
i�
ations. If the subset is de�
ient, then (due to the limitations of as-sume/guarantee reasoning) Hob may de
lare that it is unsafe to 
all some neededpro
edure, or Hob may fail to prove some desired post
ondition for the program asa whole. This phenomenon�the spe
i�
ation aggregation problem�for
es the devel-oper to in
lude undesired, but mandatory, spe
i�
ation 
lauses representing future
allee invariants. Su
h 
lauses 
ut a
ross system spe
i�
ations, yet are irrelevantto most program points: they should only appear at those program points whi
hspe
i�
ally need su
h 
lauses.Our s
opes me
hanism was motivated by the spe
i�
ation aggregation problem.S
opes mitigate the 
ost of assume/guarantee reasoning: when providing spe
i�
a-tions for a 
ode fragment, the developer should only need to spe
ify properties ofthat fragment. The developer should not need to spe
ify any globally true propertieswhi
h are irrelevant to that fragment: if the fragment 
annot possibly a�e
t the va-lidity of the property, then the property will inevitably be preserved by the fragment.S
opes allow developers to spe
ify regions in whi
h globally true properties�s
opeinvariants�are temporarily violated. Outside a s
ope, its invariant will generally betrue.S
opes 
ombat spe
i�
ation aggregation by hiding irrelevant sets and 
lauses from
allers. Furthermore, they enable the spe
i�
ation and veri�
ation of 
ross-moduleinvariants by allowing developers to identify the subset of a program in whi
h an59



invariant is expe
ted to hold. S
opes are key to our system's veri�
ation of invariants
ontaining sets from di�erent modules: by designating 
ertain modules as publi
a

ess points, we ensure that s
ope invariants always hold outside their de
larings
ope by verifying the s
ope invariant at ea
h of a s
ope's exit points. S
opes alsoshield 
allers from irrelevant detail: only sets from exported modules may o

ur asfree variables in spe
i�
ations for modules in di�erent s
opes. This 
onstraint servesto bound the detail required in pro
edure spe
i�
ations: the spe
i�
ation of pro
edure
p belonging to s
ope C need only 
ontain the e�e
ts of pro
edures on sets in C andexported sets outside C. In other words, pro
edure spe
i�
ations omit all e�e
ts onsets that are private to a s
ope (a set is private to a s
ope if it is de
lared in amodule that is not exported from that s
ope). Moreover, note that this irrelevantdetail 
auses real problems for modularity. In the absen
e of this me
hanism, a 
alleroutside a s
ope would need to indi
ate (at the very least) that the 
allee's internalsets are non-deterministi
ally modi�ed, whi
h is unreasonable be
ause the outside
aller has no way of knowing about the 
allee's private modules.3.5.2 Advantages and disadvantages of defaultsDefaults are useful for several reasons: they redu
e the size of program spe
i�
ations,eliminate the spe
i�
ation aggregation that would otherwise o

ur when default 
on-ditions would propagate up the pro
edure 
all hierar
hy from pro
edures that requirethe default (in situations where s
opes are not appli
able), and eliminate spe
i�
a-tion errors that would otherwise o

ur when developers inadvertently omit defaultproperties. Developers often appear to un
ons
iously assume that a default holds(whi
h is understandable as many defaults do, in fa
t, hold almost everywhere in a
orre
t program) and therefore tend to write spe
i�
ations that omit required defaultproperties. Defaults 
an transform these in
omplete, unsound, but intuitively 
orre
tspe
i�
ations into 
omplete, sound spe
i�
ations. A disadvantage of using defaultsis that when they do not hold and, for instan
e, 
ause a formula to be
ome unsatis-�able, developers may �nd it di�
ult to debug the spe
i�
ation, sin
e the o�ending
lause was added by the default me
hanism and is not immediately visible. Bettertool support would mitigate this problem.3.5.3 Impli
ations of using a set spe
i�
ation languageWe next dis
uss the advantages and disadvantages of using a set spe
i�
ation lan-guage to provide module interfa
es. We �rst dis
uss the power of a set spe
i�
ationlanguage and 
ompare it to other possible spe
i�
ation languages. We then 
ompareset spe
i�
ations with less powerful alternatives, in
luding type and typestate sys-tems. We next justify our 
hoi
e of a set spe
i�
ation language. The 
hoi
e of aset spe
i�
ation language did have some drawba
ks, and we outline some of them.Finally, we des
ribe some advantages and limitations of using more powerful spe
i�-
ation languages. 60



Expressive power of set spe
i�
ationsSet interfa
es lie somewhere in the middle of the spe
trum of possible module inter-fa
e languages. Less expressive interfa
e languages in
lude standard type systems,whi
h �x the type of an obje
t at instantiation time, and typestate systems [91, 90℄,whi
h augment the �xed type of an obje
t with a varying state 
omponent dependingon the operations that have been performed on the obje
t. More expressive inter-fa
e languages 
ould allow developers to spe
ify relations between obje
ts, as in theJahob proje
t. The interfa
e language 
an be as detailed as the implementationlanguage, and indeed, JML [12℄ permits developers to use full Java expressions intheir spe
i�
ations. Finally, one 
ould permit the use of higher-order logi
 (as in, forinstan
e, [42, 78℄) in pro
edure interfa
es. Ea
h of the interfa
e languages in this para-graph is stri
tly more powerful than the ones listed before it. The tradeo� is that amore powerful interfa
e language is also more di�
ult to reason about; some interfa
elanguages will be unde
idable. Furthermore, well-designed interfa
e languages shouldenable developers to 
leanly abstra
t away from the underlying implementation andstate just the important properties of the system.Less expressive spe
i�
ation languagesOur modular analysis approa
h needs more information than standard type systemsmake available, sin
e these type systems do not permit developers to spe
ify anybut the most basi
 data stru
ture properties. In parti
ular, standard type systemsare in
apable of expressing the fa
t that obje
ts move in and out of a program'sdata stru
tures as the program exe
utes. Typestate systems [91, 90, 24℄ do allowdevelopers to express membership of obje
ts in data stru
tures and permit stati
analyses to 
he
k usage proto
ols, but they do not allow developers to dis
uss the
ontents of data stru
tures in their interfa
es. In other words, using a typestatesystem, it is only possible to dis
uss a program's abstra
t state one obje
t at a time.For instan
e, developers 
an only verify that a given obje
t does not simultaneouslyhave typestates X and Y ; typestate systems are not expressive enough for developersto state that no obje
t has typestate X and typestate Y .We next dis
uss the spe
i�
ation aggregation problem in the 
ontext of standardtype systems and typestate systems. In standard type systems, the type of an obje
t,as well as the set of type de�nitions, is �xed on
e and for all. Be
ause type 
onstraints
annot be violated in the 
ourse of a 
omputation, spe
i�
ations do not need to bereiterated up and down the 
all 
hain from where a property is established to whereit is used.However, in type systems whi
h in
lude subtyping, an obje
t may be 
ast to asupertype and later ba
k down to its a
tual type (the down
ast problem). Standardtype systems use run-time 
he
ks to ensure safety in the presen
e of down
asts. Theserun-time 
he
ks are mu
h more tra
table in the 
ontext of type systems than in the
ontext of our set spe
i�
ation language, be
ause a standard type system (whi
h usesrun-time 
he
ks) needs a mu
h weaker safety property than does our set spe
i�
ationlanguage: the fa
t that type de�nitions do not 
hange implies that the program only61



needs to verify the identity of the type, and not its de�nition. Re
overy from typeerrors, however, is still 
hallenging, sin
e there might be no appropriate a
tion whena pre
ondition is violated. Parametri
 polymorphism enables developers to stati
allyavoid the down
ast problem, sin
e the language will then keep the 
omplete typeinformation around; however, this leads to a restri
ted form of spe
i�
ation aggre-gation problem, be
ause the type information must be woven through the program'sexe
ution. Be
ause type information is more limited than our set spe
i�
ations, themagnitude of the spe
i�
ation aggregation problem is smaller for standard type sys-tems.In typestate systems, obje
ts 
an 
hange typestate during the 
ourse of a pro-gram's 
omputation. As with standard type systems, the program 
an easily verifyat run-time that an obje
t has the appropriate typestate. However, the fa
t that theprogram may 
arry out a typestate 
hange using an alias of an obje
t 
ompli
atesstati
 
he
king, and designers of typestate systems resort to various me
hanisms toensure safety, in
luding linear type systems for obje
ts whi
h may 
hange types [24℄.In any 
ase, the magnitude of the spe
i�
ation aggregation problem for typestatesystems is similar to that for type systems.Justi�
ation for a set spe
i�
ation languageSet spe
i�
ations are parti
ularly natural for developers to use be
ause they enabledevelopers to state obje
t membership properties and relationships between datastru
tures [59℄. After all, many data stru
tures are simply implementations of setswhi
h optimize 
ertain set operations. We feel that set spe
i�
ations 
an expressmany key data stru
ture properties and, in parti
ular, 
onsisten
y properties whi
hrelate the 
ontents of di�erent data stru
tures. Su
h 
onsisten
y properties are often
ru
ial design properties for a system whi
h ought to hold throughout its life
y
le; setspe
i�
ations provide a 
on
ise and easy-to-understand way for developers to expressand verify these properties. Our experien
e using set spe
i�
ations has been positive.Limitations of a set spe
i�
ation languageNote that our set spe
i�
ation language does not support the standard set theoreti

onstru
tion of the integers, be
ause our sets only 
ontain uninterpreted elements. Ata more pra
ti
al level, we 
annot express relations between obje
ts in our system. Forinstan
e, our modelling of maps (e.g. hashmaps) 
an only dis
uss the set of obje
tswhi
h a
t as keys and the set of obje
ts whi
h a
t as values. While Hob 
an stateand verify relationships between the set of keys and the set of values (for instan
e,no obje
t should be both a key and a value simultaneously), Hob 
annot state thata parti
ular key is related to a parti
ular value. Hob also 
annot express propertiesof obje
ts belonging to sets of sets. The set spe
i�
ation language does have theadvantage of being de
idable; the MONA tool [51℄ 
an de
ide formulas written in ourset spe
i�
ation language.Another limitation of Hob's spe
i�
ation language stems from the fa
t that ourspe
i�
ation language supports only a bounded number of sets. While this language62



design dramati
ally simpli�ed the spe
i�
ation language and the resulting spe
i�
a-tions, su
h a language design makes it di�
ult to spe
ify properties of dynami
allyinstantiable data stru
tures like Java's LinkedList utility 
lass. One potential solu-tion is to use a more powerful spe
i�
ation language; relations enable the veri�
ationof instantiable data stru
tures. Note that it is possible to work around the limita-tions of the spe
i�
ation language to some extent: developers 
ould use an unboundednumber of data stru
tures in the implementation while only spe
ifying properties of abounded number of these data stru
tures. Furthermore, it would be possible to �swapin� data stru
tures and spe
ify properties of only these �a
tive� data stru
tures. By
arefully 
onstru
ting the implementation, it would be possible to verify invariantsthat a
tually 
onstrain an unbounded number of data stru
tures.More powerful spe
i�
ation languagesA spe
i�
ation language based on relations goes beyond our set spe
i�
ation language.In the above example, it would permit parti
ular keys to be related to parti
ular val-ues. Binary relations are su�
ient to en
ode sets and general n-ary relations. Be
ausea relation-based spe
i�
ation language is more powerful, in general an intera
tive the-orem prover might be required to reason pre
isely about interfa
es expressed usingrelations. Going even further, a spe
i�
ation language whi
h enables developers tostate the full range of program properties, like JML [12℄, makes it tempting to expressdetailed implementation-level properties whi
h ought to remain hidden to a module's
lients. Su
h interfa
es also are potentially as di�
ult to 
he
k 
onforman
e againstas the original implementation, whi
h would obviate the advantage of using a spe
i-�
ation language to aid modular analysis.3.5.4 Comparison: Stati
 analysis and testingIn our experien
e, testing is a valuable 
omplement to the stati
 analysis providedby the Hob tool; sin
e it is easy to test a program 
omponent, we found a numberof straightforward errors using testing. Testing dis
overs many errors in implemen-tations, and a well-tested implementation may well behave properly on the vast ma-jority of (
ommon) program inputs. However, Hob's stati
 analyses guarantee thatdata stru
ture 
onsisten
y properties hold on all exe
utions of a program, whi
h isin general impossible to a
hieve using testing. One 
ommon weakness of testing, forexample, is in dete
ting the faulty treatment of errors and ex
eptions.Furthermore, the abstra
tness of Hob's spe
i�
ation language en
ourages devel-opers to think at a higher level of abstra
tion and enables them to express deeperproperties of programs. Su
h properties 
an easily be obs
ured in a program's imple-mentation. At the implementation level, design information is hidden behind a massof details, whi
h are ne
essary for implementing the design, but not useful for under-standing the underlying design. We believe that the set spe
i�
ation language exposesdesign information more e�e
tively than imperative implementation languages, sin
eset spe
i�
ation languages abstra
t away from the details of how the program 
arriesout its tasks and instead say what the program does. This is espe
ially true as a pro-63



gram moves through its development life
y
le through the maintenan
e phase: thedesign information may be
ome outdated, and the original developers may move on toother proje
ts. The Hob system enables developers to use data stru
ture 
onsisten
yproperties as veri�ed do
umentation. Our analysis tool veri�es that these propertieshold, not just at any one point in the program's life, but throughout 
hanges by su
-
essive developers, who may not understand the program's original design at all. Ourexperien
e with Hob suggests that it is 
apable of re
ording design de
isions taken bythe original developers and ensuring that this design information remains up-to-date.

64



Chapter 4Hob Abstra
tion LanguagesHob spe
i�
ations are written using the Hob spe
i�
ation language, whi
h enablesdevelopers to express program properties by des
ribing 
hanges to abstra
t sets ofobje
ts. Ea
h abstra
t set in a spe
i�
ation denotes a set of 
on
rete heap obje
ts.Hob abstra
tion modules enable developers to state abstra
tion fun
tions, whi
h de-�ne the 
ontents of abstra
t sets in terms of 
on
rete heap obje
ts. Abstra
tion fun
-tions therefore provide a 
onne
tion between spe
i�
ations (whi
h use abstra
t sets)and implementations (whi
h manipulate the 
on
rete heap). This 
onne
tion enablesboth developers and the Hob system to reason soundly about an implementation interms of its higher-level set spe
i�
ations.Pro
edure implementations assume that 
ertain properties of the 
on
rete statehold upon entry and guarantee that (potentially di�erent) properties hold upon exit.There are two main types of su
h properties: invariant properties and pre
ondition-s/post
onditions. In the Hob approa
h, developers spe
ify pre
onditions and post-
onditions using the previously-des
ribed set spe
i�
ation language. Be
ause theseproperties are expressed in terms of sets, they 
onstrain the abstra
t program stateat pro
edure entry and exit points.Many implementations maintain spe
i�
 
onstraints on the 
on
rete programstate. The Hob system allows developers to spe
ify these 
on
rete representationinvariants in abstra
tion se
tions. Analyses may then use these representation invari-ants as they verify the pro
edure implementations. In parti
ular, they may assumethat the invariants hold at the beginning of ea
h pro
edure and must guarantee thatthe invariants hold at the end of ea
h pro
edure. (Hob also supports set spe
i�
ation-level invariants in spe
i�
ation se
tions).Be
ause developers use a variety of te
hniques to implement sets, the Hob ap-proa
h supports arbitrary stati
 analysis te
hniques for analyzing these te
hniques.In the Hob system, we have implemented a number of stati
 analysis te
hniques. Ea
hanalysis veri�es whether or not a 
lass of implementations 
onform to their set-basedspe
i�
ations, using a spe
i�
 
lass of abstra
tion fun
tions 
ustomized for that anal-ysis. We have designed the Hob system so that ea
h stati
 analysis only needs topro
ess abstra
tion fun
tions 
orresponding to the 
lass of implementations that itis analyzing. All of Hob's stati
 analysis te
hniques are implemented in the 
ontextof analysis plugins, whi
h establish that pro
edure implementations 
onform to their65



spe
i�
ations. Furthermore, we have designed the Hob system to be extensible: re-sear
hers may add their own analysis plugins to verify new 
lasses of implementations,and the Hob system enables resear
hers to use any stati
 analysis te
hniques that areappropriate for a desired 
lass of implementations.4.1 Analysis Approa
hThe Hob system delegates the 
entral data stru
ture 
onsisten
y property analysistask�a proof that a pro
edure's implementation 
onforms to its spe
i�
ation, asinterpreted with the provided abstra
tion fun
tion�to a set of analysis plugins. TheHob system 
urrently 
ontains four analysis plugins: the �ags plugin, the Bohne andPALE shape analysis plugins, and a theorem proving plugin.� The Hob �ags plugin supports set de�nitions stated in terms of obje
t �eldvalues.� The PALE and Bohne shape analysis plugins use the monadi
 se
ond-order logi
for their de�nitions. Note that this logi
 is more powerful than the �rst-orderset spe
i�
ation language. Bohne additionally supports nondeterministi
 �eld
onstraints, whi
h enable it to verify a broader 
lass of data stru
tures than thePALE plugin.� The Hob theorem proving plugin enables developers to generate veri�
ation
onditions whi
h must be manually dis
harged using the Isabelle intera
tivetheorem prover. (Note that Hob 
an support arbitrarily powerful abstra
tionfun
tions�even ones that are based on unde
idable logi
s�by relying on de-velopers to manually dis
harge the resulting veri�
ation 
onditions. While su
ha strategy is always possible, the Hob approa
h generally fo
usses on applyingstati
 analysis te
hniques to the program veri�
ation problem).On
e the analysis plugins have veri�ed a program's implementations, the Hob sys-tem must somehow 
ombine the analysis results from the di�erent analysis plugins.We have designed the Hob set spe
i�
ation language spe
i�
ally to enable di�erentanalyses to 
ommuni
ate, and the developer always states pro
edure pre
onditionsand post
onditions in the 
ommon set spe
i�
ation language. This 
hapter des
ribesHob abstra
tion modules, whi
h allow analyses to link the set spe
i�
ations and im-plementations. Hob abstra
tion modules 
ontain abstra
tion fun
tions and invariants.Note that abstra
tion modules 
ontain yet another kind of spe
i�
ation information,besides the pro
edure spe
i�
ations, s
opes, and defaults that we have seen in Chap-ter 3.Analysis plugins 
ommuni
ate information in terms of the set spe
i�
ation lan-guage. Set de�nitions are always private to a module. There are therefore twoimpli
ations for analysis interoperability: any analysis plugin only needs to 1) pro-
ess spe
i�
ations written in the 
ommon set spe
i�
ation language and 2) parse itsparti
ular syntax for abstra
tion fun
tions. The Hob approa
h enables the modular66



design and implementation of analysis plugins be
ause plugins are not responsible forpro
essing the abstra
tion fun
tions used by other modules in the program.Con
eptually, an analysis plugin veri�es lo
al data stru
ture 
onsisten
y proper-ties for a module M by �rst translating referen
es to sets belonging to module M ina pro
edure's pre
ondition and post
ondition into the internal representation used bythe plugin, adding the appropriate invariants, and �nally verifying that the implemen-tation satis�es the (translated) post
ondition on all exe
utions through the pro
edure,assuming that the (translated) pre
ondition holds. At pro
edure 
all statements, theanalysis 
onverts the internal analysis representation ba
k into the 
ommon set spe
-i�
ation language and veri�es that the pre
ondition of the 
allee is satis�ed at thatprogram point.Some modules ex
lusively 
oordinate the a
tivities of other modules through pro-
edure 
alls. Su
h 
oordination modules may not de�ne any 
on
rete sets themselves.(Consequently, they may not manipulate any 
on
rete sets either). These moduleswork at a fully abstra
t level and rely on other modules to a

ess the program's
on
rete data stru
tures; it is su�
ient to investigate the set spe
i�
ations of thesemodules' 
allees to understand what these 
oordination do.However, many modules�parti
ularly implementations of data stru
tures�do notdepend on other modules and 
ontain mainly leaf pro
edures. Leaf pro
edures donot make further pro
edure 
alls; they perform 
on
rete data stru
ture manipulationsthemselves rather than delegating the work to 
allees. Analysis plugins that aretargeted towards analyzing parti
ular 
lasses of data stru
tures may therefore de
lineto handle pro
edure 
alls.The Hob system also requires all analysis plugins to verify that named abstra
tsets are always empty in the initial state of the program. This 
onstraint makesit possible for Hob to know the initial 
ontents of all sets in the program withoutinspe
ting all of the abstra
tion modules.Analysis plugin obligationsIn summary, when analyzing a module M , an analysis plugin must:� verify that the pro
edures of M satisfy their post
onditions (and module in-variants) assuming that their pre
onditions (and module invariants) hold uponentry;� verify that pre
onditions for all pro
edure 
alls originating inside M are satis�ed(if the analysis plugin handles pro
edure 
alls); and� verify that all sets de
lared in M are empty in the initial program state.Stationarity 
ondition. We designed the Hob analysis approa
h to support themodular veri�
ation of data stru
ture 
onsisten
y properties. Modular veri�
ationrequires that 
hanges to a program's state be somehow lo
alized. Hob plugins musttherefore ensure that only the implementation module de�ning a set may dire
tly67



manipulate that set. One way to do so is by using the format 
onstru
t: the imple-mentation language de�nition guarantees that any �elds that a module 
ontributesto a format may only be a

essed by that module. Therefore, if a module M 's setde�nitions rely only on the �elds that M 
ontributes to formats, then M 's sets mayonly be modi�ed by module M . In general terms, the Hob system requires plugins toverify that the following stationarity 
ondition holds:� no set or invariant may be de�ned in su
h a way that it would be modi�ableoutside its de�ning module.This 
ondition ensures that, even upon return from a pro
edure 
all to another mod-ule, a module's named sets do not surreptitiously gain or lose members. As a 
onse-quen
e of this 
ondition, modules only mutate sets that they de�ne; all su
h mutationsare de
lared in ensures and modi�es 
lauses.4.1.1 Spe
ifying Hob abstra
tion fun
tionsHob abstra
tion fun
tions exist in the 
ontext of abstra
tion modules. The primarypurpose of an abstra
tion module is to enable developers to spe
ify abstra
tion fun
-tions, whi
h identify sets of 
on
rete heap obje
ts satisfying some property. Theanatomy of Hob abstra
tion modules is therefore as follows.� Be
ause the set of properties (for naming sets) available to the developer de-pends on the analysis plugin used, the developer must identify whi
h analysisplugins to apply.� The developer provides set de�nitions in a notation suitable for that analysisplugin.� The developer identi�es the implementation-level boolean variables that appearin the module's spe
i�
ation se
tions.� The developer may optionally state invariants on the 
on
rete heap whi
h theasso
iated implementation module must preserve; analysis plugins are requiredto verify that these invariants hold upon exit from ea
h pro
edure, and mayassume that these invariants hold upon entry to ea
h pro
edure.4.1.2 Common abstra
tion module grammarThe Hob system uses a single grammar for all of its abstra
tion modules. However,be
ause di�erent analysis plugins de�ne sets and invariants di�erently, ea
h analysisneeds to be able to support its own syntax for set de�nitions and invariants. Figure 4-1presents the part of the abstra
tion module grammar that is 
ommon to all analysisplugins. Ea
h analysis plugin n must de�ne its own sub-grammar for the Dn and Inprodu
tions. 68



M ::= abst module m {M1 |Mmulti∗ }
M1 ::= use plugin “n”; B

Mmulti ::= use plugin “n”for { pro
s pn∗; B }
B ::= D∗ I∗ P ∗

D ::= id=Dr;
Dr ::= Dr ∪ Dr | Dr ∩ Dr | id | {x : T | “Dn”}
P ::= predvar p;
I ::= invariant “In”;Figure 4-1: Abstra
tion Language GrammarAn abstra
tion module 
ontains one or more abstra
tion module bodies. Ea
habstra
tion module body sele
ts an analysis plugin and spe
i�es invariants, set de�ni-tions, and boolean variable de
larations. If an abstra
tion module only uses one anal-ysis plugin, then the module itself 
ontains the abstra
tion module body. Otherwise,the abstra
tion module must be divided into a number of sub-modules. Ea
h sub-module 
hooses an analysis plugin and 
ontains an abstra
tion module body. Whenmultiple analysis plugins are used, ea
h pro
edure in a module must be 
laimed�andtherefore analyzed�by exa
tly one analysis plugin.The Hob system supports two kinds of set de�nitions: base set de�nitions andderived set de�nitions. Ea
h analysis plugin n must spe
ify a syntax for base setde�nitions by de�ning the produ
tion Dn. Derived set de�nitions de�ne a set by
ombining previously-de�ned sets (or �anonymous� set de�nitions, whi
h are givenon-the-�y during a derived set de�nition) using union and interse
tion.Abstra
tion module bodies may also 
ontain de
larations of predvars. In the 
ur-rent version of Hob, these predi
ate variables are tied to boolean variables in theimplementation on a one-to-one basis. Although it would be possible to support ar-bitrary de�nitions for these variables, we have not yet en
ountered a situation wherewe needed to do so.An analysis plugin n may also spe
ify a syntax for module invariants by de�ningthe In produ
tion. Not all analysis plugins de�ne a syntax for module invariants.Using Multiple Analysis Plugins in a Module. In our experien
e, we havefound that some implementation modules are best analyzed by multiple Hob analysisplugins. For instan
e, a given module may 
ontain both leaf and 
oordination pro
e-dures, whi
h require di�erent stati
 analysis te
hniques in general. The Hob systemenables developers to analyze these kinds of implementation modules by in
ludingmultiple abstra
tion bodies within a module's abstra
tion se
tion. When an abstra
-tion se
tion in
ludes multiple abstra
tion bodies, then ea
h abstra
tion body mustspe
ify whi
h pro
edures it applies to. Ea
h pro
edure must be analyzed by exa
tlyone Hob analysis plugin.We have implemented a doubly-linked list whi
h uses multiple analysis plugins.Figure 4-2 presents the relevant abstra
tion se
tion. Lines 2 through 28 
ontainthe Bohne decaf abstra
tion body for the DLL module, while lines 29 through 3269




ontain the flags abstra
tion body for that module. Our example abstra
tion modulede
lares that the clear pro
edure is to be analyzed with the flags plugins, while allother pro
edures are to be analyzed with the Bohne decaf plugin.
4.2 Flags Abstra
tion Module LanguageHob's �ag analysis plugin implements a typestate analysis. This typestate analysisis more general than the traditional typestate formulation [91, 90℄ be
ause it uses itssets to represent all obje
ts with a given typestate. The �ag analysis plugin uses thevalues of integer and boolean obje
t �elds (�ags) to de�ne the meaning of abstra
tsets. It veri�es set spe
i�
ations by �rst 
onstru
ting set algebra formulas whosevalidity implies the validity of the set spe
i�
ations, then verifying these formulasusing an o�-the-shelf de
ision pro
edure [52℄.The �ag analysis plugin is important for two reasons. First, the �ag analysis plu-gin 
an propagate 
onstraints between abstra
t sets de�ned in external modules usingarbitrarily sophisti
ated abstra
tion fun
tions. The plugin 
an therefore analyze mod-ules that, as they 
oordinate the operation of other modules, indire
tly manipulateexternal data stru
tures de�ned in those other modules. This enables the �ag analy-sis to perform the inter-module reasoning required to verify global invariants relatingdi�erent data stru
tures, e.g. in
lusion and disjointness of data stru
tures. Be
ausethe �ags plugin uses the boolean algebra of sets to internally represent its data�owfa
ts, it 
an propagate and verify these 
onstraints without any loss of pre
ision.Se
ond, �ag �eld values often re�e
t the high-level 
on
eptual state of the entitythat an obje
t represents, and �ag 
hanges 
orrespond to 
hanges in the 
on
eptualstate of the entity. One way to visualize this se
ond use of the �ag plugin is asfollows: the plugin is, in general, responsible for tra
king obje
t membership in sets.While most sets are de�ned externally�that is, the �ag plugin is only responsible fortra
king 
hanges to those sets by using pre
onditions and post
onditions�some setsare de�ned using a spe
i�
 simple 
lass of abstra
tion fun
tions, and these sets arehandled dire
tly by the plugin.By using �ags in pre
onditions of obje
t operations, the developer 
an spe
ifykey obje
t state properties required for the 
orre
t pro
essing of obje
ts and the
orre
t operation of the program. Standard typestate approa
hes ex
el at enfor
ingtemporal operation sequen
ing 
onstraints. The use of a set spe
i�
ation languageadditionally enables developers to express, for instan
e, relationships between setsof obje
ts with various typestates. Our �ag analysis plugin therefore goes beyondtemporal sequen
ing 
onstraints and su

essfully veri�es the more general propertieswhi
h are expressible in our set spe
i�
ation language.Our �ags plugin supports loop invariants for reasoning about pro
edures that
ontain loops. It 
an either use developer-provided expli
it loop invariants or inferloop invariants from available information.70



1 abst module DLL {2 use plugin "Bohne decaf" for {3 Content = { n : Node |4 "rtrancl (lambda v1 v2. next v1 = v2) (next root) n" };5 Iter = { n : Node |6 "rtrancl (lambda v1 v2. next v1 = v2) current n" };78 invariant "ALL x y.9 prev x = y ­­> (x ~= null &10 (EX z. next z = x) ­­> next y = x) &11 ((x = null | (ALL z. next z ~= x)) ­­> y = null)";121314 invariant "init ­­> (ALL x. ~(next x = root))";15 invariant "(~init ­­> root=null & current=null)";1617 invariant "(init ­­> (root ~= null & (current=null |18 rtrancl (lambda v1 v2. next v1 = v2)19 (next root) current)))";2021 invariant "ALL x. x ~= null &22 ~(rtrancl (lambda v1 v2. next v1 = v2) root x) ­­>23 ~(EX e. e ~= null & next e = x) & (next x = null)";2425 procs init, add, remove, removeFirst, getFirst,26 isEmpty, openIter, nextIter, isLastIter,27 closeIter, contains, removeAtIter;28 }29 use plugin "flags" for {30 procs clear;31 }32 } Figure 4-2: Example List Abstra
tion Module
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4.2.1 Example: Flag abstra
tion moduleThe Board module of our minesweeper example maintains the overall state of theminesweeper game board and 
oordinates with the data stru
tures whi
h are respon-sible for maintaining sets of exposed and unexposed 
ells. Figure 4-3 presents anabstra
tion se
tion for the Board module. The Hob system veri�es this module us-ing the �ags analysis, whi
h allows developers to assign membership in abstra
t setsbased on an obje
t's 
on
rete �eld values. Line 1 of the example states that an ab-stra
tion se
tion for the Board module follows; lines 1�9 will provide de�nitions forthe set and boolean variables used in the spe
i�
ation se
tion of the Board module interms of that module's 
on
rete program state. This module does not 
ontain any in-variants. The use plugin de
laration on line 2 states that the Board module shouldbe analyzed by Hob's �ags plugin. Line 3 de�nes the set U (for Universe) as the setof all Cell obje
ts in the 
on
rete heap whi
h have the �eld init set to true. Allother sets in this module are de�ned as interse
tions with the U set (the cap operatordenotes interse
tion). Lines 4 through 7 de�ne the MarkedCells, ExposedCells,
UnexposedCells and MinedCells sets as derived sets. Line 4, for instan
e, statesthat the MarkedCell set 
ontains those obje
ts that are members of the U set andhave their isMarked �eld set to true; the other set de�nitions are similar. Finally,line 8 de
lares that the gameOver, init and peeking boolean variables from theimplementation are visible as spe
i�
ation-level boolean variables.Prote
ting Sets from External Changes. The Hob implementation languagede�nition spe
i�es that new Cell obje
ts always isExposed set to false, the defaultinitial value for boolean �elds. If we de�ne the UnexposedCells set to 
ontain allobje
ts whose �eld isExposed is set to false, then this set would gain a new elementwhenever any part of the program instantiates a new Cell obje
t. In su
h a situation,it would be very di�
ult to reason modularly about the UnexposedCells set: anypart of the program 
ould modify this set! The impli
ation would be that any pluginthat wished to soundly analyze a pro
edure 
all would need to analyze all potential
allees from that site. Any modular analysis te
hnique must, of 
ourse, somehow avoidthe analysis of all of a pro
edure's transitive 
allees. The Hob stationarity 
onditionavoids this potential barrier to modular analysis by requiring plugins to prevent su
hpathologi
al set de�nitions. The set U satis�es the stationarity 
ondition, sin
e it
ontains those obje
ts with �eld init set to true, and new obje
ts have init set tofalse. Therefore, the subset UnexposedCells of U, as we've de�ned it, also satis�esthe stationarity 
ondition.Initial Program State. In general, developers may not de�ne sets that 
ontainnewly-initialized obje
ts�obje
ts that hold the initial �eld values assigned by theHob implementation language. Chapter 2 stated that in the Hob implementationlanguage, integer �elds are initially initialized to 0, while boolean �elds are initializedto false. The �ag plugin uses this property of the implementation language toenfor
e the 
onstraint that named sets must always de�ned to be initially empty.The format 
onstru
t guarantees that these sets remain empty until a �ags module72



1 abst module Board {2 use plugin "flags";3 U = { x : Cell | "x.init = true" };4 MarkedCells = U cap { x : Cell | "x.isMarked = true" };5 ExposedCells = U cap { x : Cell | "x.isExposed = true" };6 UnexposedCells = U cap { x : Cell | "x.isExposed = false" };7 MinedCells = U cap { x : Cell | "x.isMined = true" };8 predvar gameOver; predvar init; predvar peeking;9 } Figure 4-3: Example Flag Abstra
tion Moduleexe
utes: due to the format 
onstru
t, no other module may modify an obje
t's �ags,as long as modules only de�ne sets using the �elds that they have 
ontributed to atype. Our �ags plugin ensures that a module's set de�nitions use only the obje
t�elds that the module has 
ontributed.4.2.2 Loop invariant inferen
eLoops are typi
ally problemati
 for stati
 analyses, as they introdu
e a unboundednumber of exe
ution paths that need to be analyzed. A standard approa
h for dealingwith loops is by using loop invariants. Loop invariants state a 
ondition that holdsregardless of the number of times that the loop iterate. Loop invariants tame theveri�
ation task by eliminating the need to reason about an unbounded number ofexe
ution paths. Be
ause the Hob �ags plugin analyzes pro
edures by propagatingformulas in the boolean algebra of sets, it 
an use loop invariants expressed in thatlogi
 to verify properties of loops. In parti
ular, Hob's �ags plugin 
an either verifydeveloper-provided loop invariants or synthesize loop invariants from the programsour
e 
ode and spe
i�
ations. The loop invariant synthesis algorithm is a novel
ontribution of this thesis.Expli
it Loop Invariants. If the developer provides an expli
it loop invariant, the�ags plugin veri�es that the loop invariant: 1) holds on entry to the loop; and 2) ispreserved by the loop body. At the exit of the loop, the loop invariant 
onjoined withthe loop exit 
ondition 
hara
terizes the post-loop program state.Our loop invariant veri�
ation algorithm uses information from the loop's 
ontextto automati
ally augment the expli
it loop invariant with properties that are knownto be invariant over the loop. In parti
ular, the loop's 
ontaining pro
edure will havea requires 
lause, whi
h states the pro
edure pre
ondition. This 
lause involvesonly the initial values of sets at the beginning of the pro
edure (whi
h appear asunprimed set variables in our set spe
i�
ation language). Therefore, the 
lause holdsthroughout the pro
edure's exe
ution, and this 
learly in
ludes the interior of theloop body. We also use the 
ontaining pro
edure's implementation, as well as its73



modifies 
lause, to identify all non-modi�ed sets, and 
onstru
t a 
onjun
t whi
hstates that these non-modi�ed sets are preserved by the loop1. We then 
onjoin boththe original pro
edure pre
ondition and 
lauses guaranteeing the preservation of non-modi�ed sets to all expli
it loop invariants. Developers therefore need not providethese two pie
es of redundant information, whi
h helps to make expli
it invariantsmore 
on
ise and easier to understand.Inferred Loop Invariants. If the developer does not provide an expli
it loop in-variant, the �ag analysis plugin attempts to automati
ally synthesize one. The syn-thesis starts with the boolean algebra formula 
hara
terizing the program state atthe entry of the loop and weakens the formula by iterating the analysis of the loopuntil it rea
hes a �xpoint. We next present an example of the algorithm in a
tionand dis
uss some properties of the algorithm.Loop Invariant Inferen
e Example. Figure 4-4 presents the clear pro
edure,whi
h iterates through a set, removing ea
h element until the set is empty. We use thispro
edure to illustrate our loop inferen
e te
hnique. In this pro
edure, ea
h exe
utionof the loop body removes an element from the Content set. Be
ause the pre
onditionof the removeFirst pro
edure must hold prior to its invo
ation, the loop body 
annotexe
ute su

essfully unless the Content set is non-empty, i.e. 
ard(Content’) >= 1.Furthermore, to be useful in pra
ti
e, loop invariants must be strong enough to enablethe veri�
ation of the pro
edures whi
h 
ontain them. In this 
ase, the post
onditionof the clear pro
edure is 
ard(Content’) = 0. A valid loop invariant must thereforeensure that exe
uting the loop body in a state satisfying the invariant 1) does notviolate the pre
ondition of removeFirst, and 2) leads to a state that satis�es theloop invariant. A loop invariant that enables the analysis of clear must also ensurethat, upon termination of the loop, the post
ondition of clear holds (sin
e cleardoes not 
ontain any statements after the loop).One possible loop invariant that satis�es these 
riteria is
Ip : e′ ⇔ 
ard(Content’) = 0,where e′ is the return value from the isEmpty() pro
edure; it is true i� Content’is empty. Sin
e e′ is always false when exe
ution enters the top of the loop body, Ipexpresses the 
ondition that the set is non-empty, thereby guaranteeing that the loopbody 
an exe
ute 
orre
tly; and sin
e e′ is always true when exe
ution exits the loop,

Ip implies that the set is empty at the end of the pro
edure, satisfying the pro
edurepost
ondition.1Using the pro
edure's modifies 
lause alone results in an overly-
onservative estimate of mod-i�ed private sets in the presen
e of s
opes, be
ause s
ope-publi
 pro
edures do not de
lare modi-�
ations of s
ope-private sets. Our use of the modifies 
lause in 
onjun
tion with the pro
edureimplementation (to identify modi�
ations to s
ope-private sets), on the other hand, allows the devel-oper to state more detailed information about publi
 sets than our modi�ed-set inferen
e algorithm
ould dedu
e. 74



specvar Content : Element set;

proc clear() // specification

requires true

modifies Content

ensures card(Content’) = 0;

proc clear() { // implementation

pre: bool e; e = isEmpty();

head: while (!e) {

body: Entry q = removeFirst();

e = isEmpty();

}

post: return;

} Figure 4-4: Pro
edure 
ontaining a loop
proc isEmpty() returns b : bool

ensures not b’ <=> card(Content)>=1

proc removeFirst() returns e : Element

requires card(Content)>0

modifies Content

ensures (card(e’)=1) & (e’ in Content) &

(Content’ = Content ­ e’);Figure 4-5: Pro
edures 
alled within the loop
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The �ags analysis plugin analyzes the clear() pro
edure by starting with the pro-
edure pre
ondition (in this 
ase, true) and su

essively 
omputing an approximationof the strongest post
ondition over the statements in the pro
edure. Eventually, theanalysis rea
hes the while() statement 
ontaining the loop (labelled head), with theintermediate analysis result f . By 
onstru
tion, f holds for all rea
hable states atprogram 
ounter head that the analysis has explored up to this point. In our example,
f is the formula:

f = (∃e3. ¬e3) ∧ q′ = ∅ ∧ (e′ ⇔ ¬
ard(Content’) ≥ 1) ∧ Content = Content’The formula f states that: 1) at some intermediate stage (represented by e3), thevariable e was false (in this 
ase, e was initially false); 2) the variable q pointsto null; 3) e’ is true i� the Content set is nonempty; and 4) the Content set isun
hanged from its value on entry to the pro
edure. Note that e3 is only de�ned andnever a

essed in the formula. This variable arises from the initial value false forlo
al variable e, whi
h is never read.Our inferen
e algorithm next strengthens f by 
onjoining the loop 
ondition,produ
ing a formula f0 whi
h holds at the start of the loop at the label body afterzero loop iterations. For our example, f0 is f ∧ ¬e′:
f0 = (∃e3. ¬e3) ∧ q′ = ∅ ∧ (e′ ⇔ ¬
ard(Content’) ≥ 1) ∧ Content = Content’ ∧ ¬e′Sin
e any loop invariant I must hold for all su
h states, it must be the 
ase that
f0 ⇒ I. However, f0 is unlikely to be the desired loop invariant, sin
e it does nottake the e�e
t of the loop body into a

ount. In parti
ular, f0 is probably too strong.Our algorithm therefore 
omputes the strongest post
ondition over the loop body,starting with f0 at the top of the loop body, to obtain f ′0. The formula f ′0 holds forthe set of states that are rea
hable at the loop entry after exe
uting exa
tly one loopiteration. Any a

eptable loop invariant I must satisfy the 
onstraints f0 ⇒ I and
f ′0 ⇒ I. For our example:

f ′0 = (∃e3. ¬e3) ∧ (e′ ⇔ ¬
ard(Content’) ≥ 1)
∧ (∃e5. ¬e5 ∧ (e5 ⇔ card(Content) = 1))
∧ Content’ = Content \ q′ ∧ 
ard(q′) = 1 ∧ q′ ∈ Content ∧ e′The formula f ′0 states that the set Content’ is equal to the set Content minus q′,whi
h points to an obje
t in the heap (sin
e 
ard(q′) = 1). The formula f ′0 also statesthat at some previous program state, the variable e was true i� the set Content had
ardinality 1. (Note that e5 was formerly e′ at the top of the loop; when 
omposingformulas to take the e�e
ts of statements into a

ount, our analysis renames e′ to theexistentially quanti�ed e5.) Finally, f ′0 states that at some previous program state,the variable e was false, and that at the present state, e is true i� the Content’ setis empty. Note that these �nal two 
onjun
ts are 
ommon to f0 and f ′0.Building Potential Invariants. The formula f0 summarizes the program stateafter zero iterations of the loop body, while f ′0 summarizes the state after one iteration.76



Our goal is to produ
e a logi
al formula whi
h holds after an arbitrary number ofloop iterations. We 
an start by produ
ing a formula whi
h holds after either zero orone loop iterations. We take 
onjun
ts from f0 whi
h are implied by f ′0, as well as
onjun
ts from f ′0 whi
h are implied by f0. Any su
h 
onjun
ts will then hold afterboth zero and one iterations of the loop body. We 
onjoin these 
onjun
ts to produ
ethe formula f1:
f1 = (∃e3. ¬e3) ∧ (e′ ⇔ ¬
ard(Content’) ≥ 1)

∧ Content’ = Content \ q′ ∧ q′ ∈ ContentIn formula f1, we dropped the intermediate state e5 and the 
onstraint 
ard(q′) = 1.We dropped the intermediate state e5 be
ause it does not exist after zero iterationsof the loop, and we dropped the 
ardinality 
onstraint be
ause q′ is the empty setin f0 and known to be nonempty in f1; no 
ardinality 
onstraint in our analysisrepresentation satis�es both of these 
onditions. Dropping the 
ardinality 
onstraintallows q′ to 
ontain an arbitrary number of heap obje
ts; it is no longer required topoint to a single lo
ation in the heap.Our te
hnique then 
he
ks whether f1 is a loop invariant, using the te
hniquedes
ribed above for verifying expli
it loop invariants. In our example, f1 is not aloop invariant: it 
ontains the 
onjun
t Content’ = Content \ q′, where q′ is a freevariable; that is, in all iterations of the loop, Content’ is equal to Content minusthe set q′, for all values of q′. Here, q′ is only 
onstrained to be a subset of Content).While this 
onjun
t holds for the zeroth and �rst iterations of the loop, it does nothold for all iterations of the loop, be
ause q′ is free. Therefore, we iterate again,
omputing f ′1, the strongest post
ondition of f1 over the loop body. We 
ombine
onjun
ts from f1 whi
h are implied by f ′1 with 
onjun
ts from f ′1 whi
h are impliedby f1, yielding the next estimate f2.The formula f2 summarizes the program state after zero, one and two iterations. It
ontains the 
lause Content’ = Content\q8\q′. Be
ause q8 is existentially-quanti�ed(rather than free), and be
ause q8 does not 
arry any 
ardinality 
onstraints, the set
q8 
an be interpreted to represent the di�eren
e between the initial Content set andthe intermediate Content’ set after any number of loop iterations. The analysis tests
f2 and �nds that it is a loop invariant.

f ′1 = ∃e9. (¬e9 ∧ ∃q8. (q8 ∈ Content ∧ q′ ∈ Content \ q8

∧ Content’ = Content \ q8 \ q′)
∧ (¬e9 ⇔ card(Content \ q8) = 1))

∧ (∃e3. ¬e3) ∧ 
ard(q') = 1 ∧ (e′ ⇔ ¬
ard(Content’) ≥ 1)

f2 = ∃q8. (q8 ∈ Content ∧ q′ ∈ Content \ q8

∧ Content’ = Content \ q8 \ q′)
∧ (∃e3. ¬e3) ∧ q′ ∈ Content ∧ (e′ ⇔ ¬
ard(Content’) ≥ 1)The general loop invariant inferen
e problem 
onsists of �nding a formula thatsummarizes all of the possible number of exe
utions of the loop body. This formula is77



a �xed point (hen
e �invariant�) that is preserved by exe
uting the loop body. One wayto �nd su
h a formula is by starting with a formula that is stronger than the desiredinvariant and then weakening it. Formulas may be weakened by using disjun
tion; thisis how we treat 
ontrol-�ow merges. Disjun
tion preserves information; it summarizeswhat is happening if the loop might exe
ute n times or n + 1 times. On its own,disjun
tion will never �nd a �xed point: without somehow weakening the formula,disjun
tion 
ould only summarize the exe
ution of a �nite number of exe
utions. Ourapproa
h to weakening formulas is ad-ho
: we drop 
onjun
ts until we do rea
h a�xed point. We have designed our approa
h so that it is guaranteed to terminate,but the remaining formula might not be strong enough to enable the exe
ution of theloop body. However, in our experien
e, our approa
h found all loop invariants neededby our ben
hmarks.Existential Quanti�ers. In our exposition so far, we have ignored the internalstru
ture of the 
onjun
ts in our formulas, and treated ea
h top-level 
onjun
t asan atomi
 unit. However, we found it ne
essary in pra
ti
e to de
ompose top-level
onjun
ts, retaining only the parts of the 
onjun
t whi
h are true. In parti
ular,our algorithm 
an infer stronger invariants by examining the internal stru
ture ofexistentially quanti�ed 
lauses instead of dropping entire 
lauses at a time. Forinstan
e, in the formula above, if cj is of the form ∃e.
∧

c
j
k, then our algorithmdrops sub-
onjun
ts c

j
k that are not implied by f ′i . Note, however, that even if someset of sub-
onjun
ts K su
h that c

j
k ∈ K are individually implied by f ′i , it does notne
essarily follow that f ′i ⇒

∧

K: in the presen
e of existential quanti�ers, two sub-
onjun
ts may 
onspire to 
ontradi
t the ante
edent. If we do 
onstru
t su
h a Kwhi
h fails to imply f ′i , then we drop those 
onjun
ts of K that mention e and tryagain.Comparing our inferred loop invariant f2 with the invariant Ip, we 
an observethat f2 has a number of extraneous 
lauses (e.g. q′ ∈ Content ∧ (∃e3. ¬e3), and alsothe 
lause 
ontaining q8) whi
h are not required to verify the loop or the pro
edure ingeneral. We have found no simple way to automati
ally produ
e smaller invariants.One possible heuristi
 is to eliminate those 
onjun
ts from an inferred loop invariantwhi
h are not required for the analysis of the loop body to go through. In ourexperien
e, this strategy generates invariants that are sound, but too weak to provethe post
onditions of some pro
edures, so we do not apply it.Enfor
ing Termination. As presented above, our algorithm for generating and
he
king trial loop invariants is not guaranteed to terminate; we 
an 
onstru
t 
on-trived examples on whi
h our algorithm does not terminate. In pra
ti
e, we are ableto infer all loop invariants in our example programs in at most three iterations.A small 
hange to the algorithm presented above ensures termination in all 
aseswhere it is possible to 
onstru
t a loop invariant. We limit the number of iterationsthat the original algorithm may exe
ute. On
e the limit is rea
hed, the algorithmsubsequently drops any non-preserved 
onjun
ts and does not introdu
e any new ones;78



n ::= �ags
Dn ::= x.f=cFigure 4-6: Grammar for Flag Abstra
tion Modulesthat is,

fi+1 =
∧

j

{cj | f ′i ⇒ cj}.This phase is guaranteed to terminate be
ause it operates on a �nite number of
onjun
ts; no new 
onjun
ts are added. If no 
onjun
ts are dropped in a giveniteration, then the algorithm has found a loop invariant and terminates. Otherwise,the size of the formula stri
tly de
reases at ea
h step.Our algorithm, as amended, is guaranteed to never loop with an in�nite sequen
eof potential invariants that are too strong. On the other hand, it is possible to
onstru
t an example where our algorithm produ
es an invariant that is not strongenough for verifying the loop body. If a loop invariant exists, the developer 
anprovide a hint to the inferen
e algorithm by inserting the pair of statements assert
C; assume C; inside the loop body.Impli
ations of Loop Invariant Inferen
e. Hob's analysis approa
h relies onpro
edure summaries to enable the modular analysis of 
all sites. Analysis pluginsmust somehow analyze loops whi
h o

ur in module implementations; one way toanalyze loops is by verifying that the loops preserve loop invariants. Like pro
eduresummaries, loop invariants provide useful information for 
ode understanding; how-ever, unlike pro
edure summaries, they are not essential for modular analysis. Ourloop invariant inferen
e te
hnique therefore redu
es the annotation burden on devel-opers, whi
h simpli�es the tasks of developing programs and verifying relevant datastru
ture 
onsisten
y properties for these programs. We found that our loop invariantinferen
e te
hnique was su

essful in inferring all loop invariants in our ben
hmarks.4.2.3 Using the �ag analysis pluginFigure 4-6 presents the grammar for �ag abstra
tion modules. The �ags plugina

epts base set de�nitions of the form x.f = c and derived set de�nitions whi
h
ombine su
h base set de�nitions. The set de�nition S = { x : T | x.f = c }denotes all obje
ts of type T in the 
on
rete heap with �eld f equal to integer orboolean value c.A module M 's set de�nitions must satisfy the following 
onditions:� Any �eld f used in a set de�nition must be de�ned by module M .� Named sets may not 
ontain uninitialized (i.e. newly-instantiated) obje
ts.These 
onditions allow the �ags plugin to satisfy the stationarity 
ondition. Notethat the se
ond 
ondition is needed to ensure that arbitrary external modules 
annotmodify a �ags module's sets by exe
uting new statements.79



Be
ause the �ags plugin analyzes pro
edures by propagating formulas in theboolean algebra of sets, it would not gain any additional expressive power by sup-porting invariants at the level of abstra
tion modules: Hob's spe
i�
ation moduleinvariants have the same expressive power as would plugin-spe
i�
 �ags abstra
tionmodule invariants. We therefore do not provide a syntax for �ags analysis abstra
tionmodule invariants.To use the �ags plugin, a developer must give relevant �ag set de�nitions and en-sure that the implementation always ensures the spe
i�ed post
onditions. When thepost
ondition for a �ags pro
edure ranges only over sets de�ned in that pro
edure'smodule, the �ags analysis plugin starts with the pro
edure pre
ondition and 
om-putes the strongest post
ondition of the implementation by tra
king 
hanges in �agvalues. The analysis then uses the MONA de
ision pro
edure to verify that the imple-mentation's strongest post
ondition implies the pro
edure's spe
i�ed post
ondition.Otherwise, the �ags plugin relies on the design of the Hob system and in
orporatesthe post
onditions of 
alled pro
edures into its 
omputed strongest post
ondition toverify that �ags pro
edures satisfy their post
onditions. We found the �ags pluginto be espe
ially useful for analyzing modules that delegate data stru
ture manipula-tions to worker modules�
oordination modules�due to its loop invariant inferen
ealgorithm; in the 
ase of a 
oordination module, the developer only needs to spe
ifythe pre
onditions and post
onditions of pro
edures in that module (as well as theinformation needed to verify the worker modules) to verify data stru
ture 
onsisten
yproperties.4.3 Bohne Abstra
tion Module LanguageShape analysis is a family of stati
 analysis te
hniques for showing 
onsisten
y oflinked data stru
tures [71, 38, 84℄. Shape analysis is a promising te
hnique for generaldata stru
ture 
onsisten
y 
he
king, be
ause it 
an reason about stati
ally unboundedsets of obje
ts and relations between them. As a result, shape analysis has great po-tential for improving software reliability. Unfortunately, pre
ise shape analyses tendto la
k s
alability, greatly limiting their impa
t, despite signi�
ant re
ent progress inimproving shape analysis e�
ien
y [95, 69, 70℄.Hob's Bohne plugin enables developers to use �eld 
onstraint analysis [93℄, aparti
ular instantiation of shape analysis, for verifying 
onsisten
y properties of linkeddata stru
tures. Field 
onstraint analysis supports re
ursively-de�ned data stru
tureswhi
h have a tree-like ba
kbone plus nondeterministi
 �eld 
onstraints. Bohne 
anhandle a range of data stru
tures, from singly-linked lists to two-level skip lists. Likethe �ags plugin, the Bohne plugin 
an also use developer-supplied loop invariantsor infer them itself. Bohne uses symboli
 shape analysis based on boolean heaps todedu
e loop invariants.Field 
onstraint analysis uses set de�nitions stated in the monadi
 se
ond-orderlogi
 over trees augmented with nondeterministi
 �eld 
onstraints, whi
h allow de-velopers to 
onstrain non-tree �elds in the heap. Se
ond-order logi
 permits quanti�-
ation over predi
ates, namely fun
tions and relations, as well as base obje
ts in the80



logi
; monadi
 se
ond-order logi
 restri
ts quanti�
ation over predi
ates to quanti�-
ation over one-pla
e predi
ates (i.e. sets). Due to this restri
tion on quanti�
ation,monadi
 se
ond-order logi
 is de
idable.Be
ause Bohne's underlying logi
 is se
ond-order, it is su�
iently powerful to ex-press the 
on
ept of transitive 
losure, whi
h enables predi
ates in the logi
 to des
ribetree ba
kbones; nondeterministi
 �eld 
onstraints (stated in terms of invariants) thenenable developers to des
ribe properties of non-tree edges in the heap whose stru
tureis 
onstrained by the tree ba
kbone.4.3.1 Example: Bohne abstra
tion moduleWe designed the �ags plugin to analyze relatively simple modules whi
h rely onother modules to 
arry out sophisti
ated data stru
ture manipulations. Hob's Bohneplugin, on the other hand, uses shape analysis te
hniques to stati
ally analyze theworker modules that a
tually 
arry out data stru
ture manipulations. Su
h workermodules often do not 
ontain pro
edure 
alls. The Bohne plugin therefore supportsonly leaf pro
edures�pro
edures whi
h do not 
all other pro
edures in turn.Figure 4-7 presents the Bohne abstra
tion body for the doubly-linked list modulewith header (DLL) used in the minesweeper example. The Hob system veri�es the DLLmodule with the Bohne decaf and flags plugins. �Bohne de
af� refers to a variantof the Bohne [93℄ shape analysis whi
h relies on developer-provided loop invariants;the full Bohne plugin infers loop invariants using predi
ate abstra
tion. In this thesis,we dis
uss only the Bohne de
af plugin.Linked list set de�nitionsThe �rst part of the Bohne abstra
tion sub-module for the DLL module 
ontainsset de�nitions. The Bohne plugin allows developers to spe
ify set 
ontents usingmonadi
 se
ond-order logi
 (MSOL). Lines 2�3 use MSOL to de�ne the Content set,while lines 4�5 de�ne the Iter set. In Bohne's interpretation of MSOL, �elds in theheap are represented as relations between obje
ts, so that next x y is true i� the �eld
x.next points to y. Therefore, the 
entral lambda-expression lambda v1 v2. next

v1 = v2 is a predi
ate whi
h relates its formal parameter v1 (a heap obje
t) withformal parameter v2, a 
andidate linked-list su

essor; that is, the lambda expressionis true when v1.next = v2. Next, Bohne's built-in rtrancl higher-order fun
tiontakes a fun
tion and returns its re�exive transitive closure. This 
auses the lambdapredi
ate to be true for those obje
ts v2 rea
hable from v1 by following zero ormore next �elds. Finally, we supply arguments to the rtrancl lambda expression:
Content is the set of all obje
ts n rea
hable through next �elds from root.next,and Iter is the set of all obje
ts n rea
hable from current.Linked list invariantsLines 7 through 22 state invariants for the doubly-linked list. These invariants musthold initially, are assumed to hold upon entry to linked list pro
edures and veri�ed81



upon exit. They enable the Bohne analysis to fo
us its attention only on rea
hable
on
rete states; otherwise, pathologi
al (and unrea
hable) program states would pre-vent Bohne from su

essfully verifying the linked list. We next present all of theinvariants of this module.Field 
onstraints. The invariant on lines 7�10 is an example of a �eld 
onstrainton the prev �eld. In this 
ase, the 
onstraint on the prev �eld states that if x.prevpoints to y for x non-null, and if there exists another obje
t z su
h that z.next pointsto x, then it must be the 
ase that y.next points to x. In other words, prev is theinverse of next whenever next has an inverse. The 
onstraint also states that x.prevmust be null if x is null or if no obje
t points to x through its next �eld.Field 
onstraints enable developers to give interpretations for derived �elds. De-rived �elds are important be
ause monadi
 se
ond-order logi
 
an only support tree-like heap stru
tures; even a doubly-linked list is not a tree stru
ture due to the
prev �elds. Our de�nitions of the Content and Iter sets fall within the monadi
se
ond-order logi
 over trees be
ause they only dis
uss the subgraph of the heap whi
h
onsists of the heap obje
ts and the tree-stru
tured next �elds. In the presen
e of�eld 
onstraints, the Bohne shape analysis tool must verify 1) that mutations to the
Content and Iter sets are 
onsistent with their spe
i�
ations, and 2) that the prev�eld 
ontinues to satisfy the appropriate �eld 
onstraints. In return, the �eld 
on-straint tells Bohne how to interpret referen
es to prev in the implementation. Notethat this parti
ular �eld 
onstraint is deterministi
, sin
e prev is a deterministi
 fun
-tion of next. The Pointer Assertion Logi
 Engine [71℄ supports deterministi
 �eld
onstraints. The Bohne system also supports nondeterministi
 �eld 
onstraints [93℄,whi
h state (partial) 
onditions that must hold on derived �elds; nondeterministi
�eld 
onstraints enable developers to express data stru
tures like two-level skip lists.Only one pointer to root. The invariant on line 13 states that, if the modulehas been initialized (i.e. init is true), then for all obje
ts in the heap, no obje
thas a next �eld pointing to root. No stati
 analysis 
ould 
on
lude that the nextba
kbone remains a
y
li
 upon addition to the list without using some form of thisinvariant.Sets initially empty. The invariant on line 14 ensures that Content and Initare both empty if init is false. This invariant holds by the de�nition of the Hobimplementation language: variables are initialized to null or false, as appropriate.Constraints on variable values. Lines 16�18 give more well-formedness 
on-straints on initialized 
on
rete states. First, root must always be non-null if theprogram has been initialized. Furthermore, either current is null or it is rea
hablefrom root through the next field.Orphan obje
ts. Finally, lines 20�22 
onstrain obje
ts that are not in the Contentset. If an obje
t x is not in Content, then it must not be rea
hable through the next82



1 use plugin "Bohne decaf" for {2 Content = { n : Node |3 "rtrancl (lambda v1 v2. next v1 = v2) (next root) n" };4 Iter = { n : Node |5 "rtrancl (lambda v1 v2. next v1 = v2) current n" };67 invariant "ALL x y.8 prev x = y ­­> (x ~= null &9 (EX z. next z = x) ­­> next y = x) &10 ((x = null | (ALL z. next z ~= x)) ­­> y = null)";111213 invariant "init ­­> (ALL x. ~(next x = root))";14 invariant "(~init ­­> root=null & current=null)";1516 invariant "(init ­­> (root ~= null & (current=null |17 rtrancl (lambda v1 v2. next v1 = v2)18 (next root) current)))";1920 invariant "ALL x. x ~= null &21 ~(rtrancl (lambda v1 v2. next v1 = v2) root x) ­­>22 ~(EX e. e ~= null & next e = x) & (next x = null)";2324 procs init, add, remove, removeFirst, getFirst,25 isEmpty, openIter, nextIter, isLastIter,26 closeIter, contains, removeAtIter;27 } Figure 4-7: Bohne abstra
tion body for doubly-linked list�eld. Furthermore, x.next must be null. This invariant enables Bohne to 
on
lude,for instan
e, that adding an obje
t to the linked list adds pre
isely that obje
t to thelist, and no others.4.3.2 Using the Bohne analysis pluginFigure 4-8 presents the grammar for the Bohne abstra
tion language. As with otheranalysis plugins, Bohne abstra
tion modules 
ontain set de�nitions and invariants.In the 
ase of the Bohne plugin, set de�nitions must be expressed in monadi
 se
ond-order logi
 over trees. The Bohne plugin uses a subset of the Isabelle abstra
tionlanguage as its abstra
tion language; this design de
ision allowed us to leverage ourpre-existing parser for the Isabelle abstra
tion language.The Bohne plugin natively supports the rtrancl higher-order fun
tion for re�ex-83



ive transitive 
losure. A typi
al Bohne set de�nition uses the
S = { n : Node | rtrancl (lambda v1 v2. f v1 v2) r n };formulation to denote the set of obje
ts starting at module variable r and rea
h-able through the f �eld. In prin
iple, Bohne also supports more sophisti
ated setde�nitions in the monadi
 se
ond-order logi
 over trees; however, in our work, wehave fo
ussed on exploring appli
ations of the ri
her properties expressible as Bohneinvariants rather than on exploring appli
ations of more sophisti
ated Bohne set def-initions.Note that be
ause the Isabelle grammar is quite general, rtrancl does not needto appear expli
itly in the Bohne abstra
tion module language's grammar; duringparsing, rtrancl is treated as an uninterpreted fun
tion. rtrancl is given the properinterpretation in the Bohne veri�
ation stage.Nondeterministi
 �eld 
onstraints enable developers to state properties of �eldswhi
h do not belong to a data stru
ture's tree ba
kbone. Field 
onstraints are a spe-
i�
 kind of invariant whi
h enable the veri�
ation of implementations whi
h traversenon-tree �elds by stating the relationship between the non-tree �elds and the treeba
kbone �elds whi
h o

ur in set de�nitions. As with invariants in general, non-deterministi
 �eld 
onstraints are also useful for stating properties of non-tree �eldsthat the developer expe
ts to hold upon exit from all pro
edures (assuming that theseproperties hold upon entry). A nondeterministi
 �eld 
onstraint has the form

FCn(x, y) = ALL x y. n x y ­> f(x, y)where n is the 
onstrained �eld; this 
onstraint states that property FCn(x, y) holdswhenever x.n points to heap obje
t y. We have implemented an elimination algo-rithm for 
onverting modules whi
h use nondeterministi
 �eld 
onstraints into mod-ules whi
h use formulas expressible in the monadi
 se
ond-order logi
 over trees; theidea is to repla
e the o

urren
e G(f(x)) by the impli
ation ∀y. G(f(x)) ⇒ FCf (x, y).Our elimination algorithm is sound in all 
ases and 
omplete when �eld 
onstraintsare nondeterministi
; please refer to [93℄ for further details on �eld 
onstraint analysis.Bohne also supports general monadi
 se
ond-order formulas as invariants. Invari-ants enable modular analysis by identifying 
ertain 
on
rete states as being unrea
h-able by the implementation; without invariants, the analysis must assume the worstat ea
h pro
edure entry point, and this may in
lude program states whi
h are toopathologi
al for veri�
ation to su

eed. In general, the developer must provide su�-
iently strong invariants to enable the analysis to 
on
lude that the tree-like ba
kboneremains tree-like after exe
uting ea
h implementation pro
edure. Su
h invariants usu-ally in
lude prohibitions on pointers to the root of the data stru
ture and prohibitionsof pointers to and from obje
ts not in the data stru
ture; in our doubly-linked listexample, these invariants were on lines 13�22.Additionally, if a developer intends to maintain relationships between a module's
on
rete data stru
tures, Bohne 
an verify that these relationships are, in fa
t, pre-served by verifying that developer-provided invariants always hold upon exit from84



n ::= Bohne | Bohne de
af
Dn ::= F

In ::= F

F ::= ALL T.F | EX T.F | lambda T.F | G

G ::= A | A∗ | ∼ G | G ∧ G | G ∨ G | G ⇒ G | G ⇔ G | G = G | G 6= G

A ::= (F [, F ]∗) | id | id [F ] | null | true | false | ∅ | {id : F} | [|F [; F ]∗|]T ::= id∗ | (id :: Y )∗

Y ::= Y → Y | Y set | id ref | void | universe | idFigure 4-8: Grammar for Bohne Abstra
tion Modulesthe module's pro
edures. These invariants�stated at the abstra
tion module level�enable developers to state low-level properties of the 
on
rete state. The Hob systemalso a

epts high-level relationships between data stru
tures. Su
h relationships areexpressed in the set spe
i�
ation language and given in a module's spe
i�
ation se
-tion.For the Bohne analysis, a module M 's invariants may only use �elds that module
M 
ontributes to a format. Note how formats 
ontribute to modular veri�
ation:it is safe for other modules to remain oblivious of M 's invariants, sin
e they 
annotpossibly violate them.4.4 Theorem Proving Abstra
tion Module LanguageThe Hob system enables the use of arbitrarily powerful stati
 analysis te
hniques forreasoning about module implementations. Shape analysis, for instan
e, is one of themost pre
ise stati
 analysis te
hniques known today. However, sometimes developersreason about programs using te
hniques that lie beyond the 
apabilities of the 
urrentstate of the art in automated program analysis. We believe that if a developer iswilling to expend the e�ort needed to formally prove a parti
ular data stru
ture
onsisten
y property, then the Hob system should seamlessly a

ept su
h proofs inits program veri�
ation methodology. Theorem proving te
hniques 
an in prin
ipleverify arbitrarily 
ompli
ated 
onsisten
y properties; intera
tive theorem provers su
has Isabelle [81℄ and Athena [4℄ allow writing general mathemati
al statements aboutprogram state. The di�
ulty in using theorem proving tools is that their appli
ationmay require manual e�ort and familiarity with their behaviour. Be
ause manual e�ortis expensive, theorem proving is e�e
tive only if it is fo
used on relevant parts of aprogram; the assumptions used during theorem proving must then be guaranteed bythe rest of the program. Hob's theorem proving plugin [99℄ shows how it is possibleto apply intera
tive theorem proving te
hnology to the veri�
ation of data stru
ture
onsisten
y properties. Using this plugin, we veri�ed implementations of a set interms of a linear array, as well as a partial spe
i�
ation of a priority queue (heap)implemented as a binary sear
h tree stored in an array.85



1 abst module Arrayset {2 use plugin "vcgen";3 Content = { x : Node | "exists j. 0 <= j & j < s & x : d[j]"};4 predvar setInit;5 invariant "0 < s";67 } Figure 4-9: Example Theorem Proving Abstra
tion Se
tionThe theorem proving plugin takes set de�nitions and invariants in the Isabelleformula syntax. It then 
onverts pro
edure spe
i�
ations into Isabelle and 
omputesweakest pre
onditions from pro
edure implementations. The theorem proving pluginsplits the resulting proof obligations into subgoals, whi
h it attempts to prove auto-mati
ally using Isabelle. It then saves the proof obligations that 
annot be provenautomati
ally for the developer to dis
harge manually. Essentially, a user of the the-orem proving plugin must show that the pro
edure's pre
ondition (plus invariants)implies the weakest pre
ondition needed to imply that the pro
edure's post
ondition(plus invariants) holds at the end of the pro
edure. Note that, unlike the other plug-ins we have des
ribed, the theorem proving plugin does not in
lude a loop invariantinferen
e algorithm. Instead, the developer must always supply expli
it loop invari-ants in 
ode to be veri�ed with the theorem proving plugin, whi
h then generates theappropriate veri�
ation 
onditions for these annotated loops.4.4.1 Example: Theorem proving abstra
tion moduleFigure 4-9 presents an abstra
tion module for Arrayset, one of the set implementa-tions used in the minesweeper example. The Hob system uses the theorem proving(vcgen) plugin to analyze the Arrayset module; 
urrently, the theorem proving plu-gin is the only Hob plugin that 
an analyze properties of array-based data stru
tures.The theorem proving plugin generates veri�
ation 
onditions in Isabelle. On
e a de-veloper dis
harges the relevant veri�
ation 
onditions, the module is known to satisfythe spe
i�ed data stru
ture 
onsisten
y properties. A key point of the Hob systemis that 
lients of this module, or any module in general, do not need to understandhow the module is veri�ed. The e�ort of verifying a module 
an be amortized overall potential uses of the module.Line 3 of the abstra
tion module gives the de�nition of the Content set. It �rststates that the Content set 
onsists of the obje
ts x of type Node for whi
h there existssome integer j between 0 and s, the array's upper bound, su
h that d[j] 
ontains x.Line 4 states that the setInit boolean variable is visible in spe
i�
ations. Finally,line 6 states that the implementation-level variable s is always non-negative.86



4.4.2 Using the theorem proving analysis pluginAll analysis plugins must �rst 
on
eptually 
ompute weakest pre
onditions froma module's implementations, spe
i�
ations, set de�nitions, and invariants; pluginsthen verify that pro
edure pre
onditions imply the 
omputed weakest pre
onditions2.Hob's theorem proving plugin 
onforms to the general Hob analysis plugin s
heme by
omputing weakest pre
onditions. However, the theorem proving plugin di�ers fromother plugins be
ause it does not promise to dis
harge the resulting proof obligations(that is, it is not 
omplete): when using the theorem proving plugin, the developer isultimately responsible for guiding the theorem prover to the appropriate proofs.To use the theorem proving plugin, the developer must �rst provide set de�nitionsand invariants for the module under veri�
ation. Our 
urrent implementation ofthe theorem proving plugin supports Isabelle/HOL, so developers may express setde�nitions and invariants in terms of Isabelle/HOL 
lauses. Figure 4-10 presents the
on
rete grammar for the theorem proving plugin's abstra
tion language.Given implementation, spe
i�
ation, and abstra
tion parts of a module, the theo-rem proving plugin 
omputes weakest pre
onditions for the pro
edures in that module.Ea
h pro
edure's weakest pre
ondition takes the form of a set of 
onjun
ts. The the-orem proving plugin then attempts to verify ea
h 
onjun
t in turn. First, it veri�esif a 
onjun
t belongs to the library of proved lemmas; if not, it attempts to dis
hargethe 
onjun
t using proof hints in
luded (with assert statements) in the pro
edure
ode; �nally, if that veri�
ation fails, it attempts to prove the 
onjun
t using Isabelle'sbuilt-in simpli�er and 
lassi
al reasoner with array axioms.In our experien
e, most generated veri�
ation-
ondition 
onjun
ts are dis
hargedautomati
ally using array axioms. For the remaining 
onjun
ts, the fully automatedveri�
ation fails, and the plugin reports that these 
onjun
ts are �not known to betrue�. After the developer intera
tively proves these di�
ult 
ases in Isabelle, oursystem stores these 
ases in its library of veri�ed lemmas and subsequent veri�
a-tion attempts pass su

essfully without assistan
e. Our system 
ompares 
onjun
tsagainst the library of proved lemmas by 
omparing abstra
t syntax trees of formulas,taking into a

ount some basi
 properties of logi
al operations. This enables the reuseof existing lemmas even when the veri�
ation 
onditions have 
hanged slightly.4.4.3 Expressive power of the theorem proving pluginThe theorem proving plugin allows developers to state and prove set de�nitions andinvariants by writing higher-order logi
 predi
ates for the Isabelle/HOL theorem prov-ing system. In general, higher-order logi
 is more powerful than the �rst-order logi
used in our 
ommon set spe
i�
ation language [64℄. In our examples, we have usedse
ond-order logi
, whi
h allows quanti�
ation over relations. Se
ond-order logi
 isne
essary for naturally expressing the transitive 
losure relation, whi
h enables rea-soning about heap rea
hability (as needed for linked data stru
tures). More generally,2Re
all that the �ags plugin a
tually 
omputes strongest post
onditions rather than weakestpre
onditions. Nevertheless, the �ags plugin satis�es the general 
ontra
t of an analysis plugin; itjust uses a di�erent analysis te
hnique to do so.87



n ::= v
gen
Dn ::= F

In ::= F

F ::= ALL T.F | EX T.F | lambda T.F | G

G ::= A | A∗ | ∼ G | G ∧ G | G ∨ G | G ⇒ G | G ⇔ G | G = G | G 6= G

| G < G | G ≤ G | G > G | G ≥ G | G : G | G ∼: G | G ∪ G | G ∩ G

| G + G | G − G | G × G | G ÷ G | G :: G

A ::= arrayread | arraywrite | newarray | arraysize | �eldread | �eldwrite | (F [, F ]∗)
| id | id [F ] | null | true | false | nat | ∅ | {id : F} | [|F [;F ]∗|]T ::= id∗ | (id :: Y )∗

Y ::= Y → Y | Y list | Y set | Y array | id ref | bool | int | void | universe | idFigure 4-10: Grammar for Theorem Proving Abstra
tion Modulesse
ond-order logi
 enables the user to de�ne stru
tures whi
h are 
onstrained to hav-ing a �nite number of elements.Our use of Isabelle/HOL also enables developers to state internal 
onstraints whi
hrely on integer (or potentially �oating-point) values. For instan
e, a developer 
ouldde�ne a set whi
h 
ontains all elements of an array at prime indi
es. Be
ause thetheory of integers with addition and multipli
ation is unde
idable, we 
hose to notin
lude integer 
onstraints in our 
ommon set spe
i�
ation language.The Hob approa
h enables developers to 
ombine arbitrarily expressive theoremproving invariants with more tra
table logi
s for more straightforward parts of theprogram. When using the theorem proving plugin, developers may use basi
allyarbitrarily expressive invariants and set de�nitions. But pro
edure pre
onditions andpost
onditions must always be given using Hob's set spe
i�
ation language. Upon exitfrom any pro
edure, Hob must verify that the program state satis�es that pro
edure'spost
ondition 
onjoined with any appli
able invariants. Be
ause Hob ensures thatpro
edure post
onditions always hold upon exit, the analysis of a module may relyon the validity of other modules' high-level set spe
i�
ations without needing to seehow these spe
i�
ations are veri�ed.Limits of Isabelle/HOL's expressive power. Isabelle/HOL allows users to writeany logi
al statement for whi
h it 
an 
ompute the type; in parti
ular, it allows quan-ti�
ation over relations. Su
h quanti�
ation appears to be su�
ient for expressinga large number of 
on
epts used in modern mathemati
s. Isabelle/HOLCF [73℄ isan extension to Isabelle/HOL whi
h adds support for domain theory, thereby aidingthe reasoning pro
ess for fun
tional programs. Isabelle/HOLCF does not in
reasethe expressive power of Isabelle/HOL, but it does make some de�nitions and proofseasier to write. Finally, Isabelle/HOLZF supports the full axiom of 
hoi
e, unlikeIsabelle/HOL. Isabelle/HOL only supports a restri
ted form of the axiom of 
hoi
e(and this, of 
ourse, appears to have no impa
t on its usefulness).88



Comparing the theorem proving plugin and the Bohne plugin. The the-orem proving plugin might appear to be quite similar to the Bohne shape analysisplugin. Indeed, the Bohne plugin a

epts a subset of the theorem proving's abstra
-tion module syntax, and both the theorem proving plugin and the Bohne plugin usethe semanti
s of the implementation language to produ
e weakest pre
onditions fromthe sour
e module.The primary di�eren
e between these plugins is that, after generating veri�
ation
onditions, the Bohne plugin applies the MONA de
ision pro
edure to automati
allyverify these veri�
ation 
onditions. The theorem proving plugin subsumes the Bohneplugin in terms of expressive power, sin
e it supports a superset of Bohne's abstra
tionmodule syntax. However, be
ause we designed it to a

ept a restri
ted input language,the Bohne plugin will generate a restri
ted domain of veri�
ation 
onditions. Thisdomain is de
idable. That is, pro
edures whi
h are spe
i�ed using Bohne 
an beshown to satisfy (or not) their spe
i�
ations without user intervention3. Contrast thetwo-part Bohne plugin�it generates veri�
ation 
onditions (for MONA to pro
ess),then de
ides them�with the theorem proving plugin, whi
h just generates the veri�-
ation 
onditions (for Isabelle/HOL). While the Isabelle/HOL theorem prover mightsu

essfully prove some parts of the proof obligation resulting from the veri�
ation
ondition, users of Isabelle have no guarantees. Any user of the theorem provingplugin is obliged to prove any subgoals that Isabelle 
annot prove automati
ally.In any 
ase, on
e the developer manually veri�es the needed veri�
ation 
ondi-tions, the Hob system enables the developer to produ
tively use the analysis results.The broader impli
ation of the theorem proving plugin is that it allows the 
omposi-tion of veri�
ation results obtained through theorem proving with veri�
ation resultsobtained from stati
 analysis te
hniques. We have su

essfully used the Hob systemto establish global data stru
ture 
onsisten
y properties by 
ombining these di�erentveri�
ation results.4.5 How Abstra
tion Modules Enable Che
king ofGlobal PropertiesThe Hob system allows developers to state and verify global data stru
ture 
onsisten
yproperties using the s
opes and defaults me
hanisms. Figure 4-11 presents a s
opeused in our minesweeper example. The s
ope invariant states that, outside the s
ope,the set Board.ExposedCells is always equal to the set ExposedList.Content; sim-ilarly, Board.UnexposedCells is equal to UnexposedList.Content. But the Boardmodule is analyzed with the �ags plugin, while the ExposedList and UnexposedListmodules are both analyzed with the Bohne plugin. Hen
e the Board sets and the
ExposedList sets are de�ned using 
ompletely di�erent formalisms and veri�ed us-ing di�erent stati
 analysis te
hniques; despite this, the Hob system 
an su

essfullyverify a statement that relates the two di�erent kinds of sets.3The developer does have to spe
ify loop invariants for Bohne if the loop invariant inferen
e fails,however. 89



1 scope Model2 {3 modules Board, ExposedList, UnexposedList, List, Arrayset;4 exports Board;5 invariant (Board.ExposedCells = ExposedList.Content) &6 (Board.UnexposedCells = UnexposedList.Content) &7 (Board.init => ExposedList.setInit) &8 (Board.peeking | (card(UnexposedList.Iter) = 0));9 } Figure 4-11: Model s
ope from Minesweeper exampleThe Hob framework manages to divide the veri�
ation task among analysis plu-gins by using abstra
tion fun
tions throughout the analysis task. Due to the useof abstra
tion fun
tions, analysis plugins may safely assume that implementations ofpro
edures in other modules implement their 
ontra
ts, as expressed in the set spe
i�-
ation language. Analysis plugins therefore never need to inspe
t implementations orabstra
tion fun
tions of other modules. In the 
ontext of global program properties,the Hob approa
h enables the overall program veri�
ation task to guarantee that, forinstan
e, the Board.UnexposedCells set always equals the UnexposedList.Contentset, without requiring the flags plugin used for the Board module to read the 
odefor the UnexposedListmodule. Note that the analysis of the UnexposedListmoduledoes not require the spe
i�
ations for the Board module, be
ause the UnexposedListdoes not 
all the Board. Figure 4-12 illustrates this situation: it shows the modulesthat the flags and Bohne analyses see in the 
ontext of verifying the Board and
UnexposedList modules.
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Figure 4-12: Module visibility by various analysis plugins
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Chapter 5Ensuring Consisten
y PropertiesThe Hob system veri�es two broad 
lasses of data stru
ture 
onsisten
y properties:lo
al properties and global properties. Developers use lo
al properties to establish thevalidity of Hob's set abstra
tion by guaranteeing that data stru
ture implementations
onform to their set interfa
es, and then use global properties�expressed in termsof abstra
t sets�to guarantee that domain-spe
i�
 
onsisten
y properties hold. Be-
ause Chapter 3 has already des
ribed how Hob 
onverts global properties into lo
alproperties, it remains only to verify lo
al data stru
ture 
onsisten
y properties.The Hob system uses a suite of analysis plugins to ensure that various implemen-tations 
onform to their interfa
es. Ea
h plugin is espe
ially designed to verify datastru
ture 
onsisten
y properties for a parti
ular 
lass of implementations. It is thedeveloper's responsibility to sele
t an analysis plugin whi
h 
an verify the desireddata stru
ture 
onsisten
y properties. Se
tion 5.1 explains the general 
ontra
t ofHob analysis plugins; Chapter 6 presents one plugin, our Hob �ags plugin, in detail.Figure 5-1 presents a s
hemati
 diagram illustrating what analysis plugins do. Brie�y,analysis plugins read the implementation, spe
i�
ation and abstra
tion se
tions of amodule M as well as the spe
i�
ations for any modules that M 
alls, and de
idewhether the module's implementation 
onforms to its spe
i�
ation or not.Global 
onsisten
y properties, unlike lo
al properties, are not ne
essarily relatedto any parti
ular program module. Developers must therefore inform the Hob systemabout the 
omplete set of global 
onsisten
y properties to get sound analysis results.Se
tion 5.3 des
ribes our veri�
ation driver, whi
h ensures that all ne
essary externalmodule de
larations and s
ope de
larations are in
luded in the analysis of any givenmodule, and also ensures that Hob veri�es all of the modules in a program.5.1 Analysis Plugin ResponsibilitiesEa
h Hob analysis plugin is responsible for verifying that some target 
lass of pro-
edures 
onform to their spe
i�
ations. To verify that a pro
edure implementation
onforms to its spe
i�
ation, modular program veri�
ation tools�in
luding Hob�typi
ally assume that the pro
edure's pre
ondition holds upon entry to the pro
edureand attempt to show that the post
ondition holds upon exit from the pro
edure.93



implementation
for module M

abstraction
for module M

specification
for module M

Hob analysis plugin

VALID/INVALID

specifications
for M’s callees

Figure 5-1: Overview �ow
hart for generi
 analysis plugin. Boxes represent data.Hexagons represent a
tions.In the Hob approa
h, pro
edure spe
i�
ations 
ontain pre
onditions (requires
lauses) and post
onditions (ensures 
lauses) expressed in the boolean algebra ofsets, whi
h we presented in Chapter 3. Hob implementations are written in the Hobimplementation language. This language is formally de�ned by its operational seman-ti
s, whi
h we presented in Chapter 2. Abstra
tion modules, dis
ussed in Chapter 4,mediate the relationship between the 
on
rete states of the operational semanti
s andthe abstra
t set-based spe
i�
ations.Hob analysis plugins therefore use a module's abstra
tion module to 
onvert pro-
edure pre
onditions from the boolean algebra of sets into a suitable internal repre-sentation. Plugins then 
onstru
t a summary of the possible program states uponexit from the pro
edure (whi
h are de�ned by referen
e to the Hob implementationlanguage's operational semanti
s). Finally, plugins must verify that ea
h of the pos-sible states upon exit imply the pro
edure post
ondition. Figure 5-2 summarizes thistextual des
ription by presenting a more detailed view of the internal workings ofanalysis plugins.The Hob system in
ludes the �ags, Bohne and theorem proving plugins. Chapter 6des
ribes the Hob �ags analysis plugin. The �ags analysis plugin supports abstra
-tion modules whi
h assign set membership based on �eld values; be
ause it 
an inferloop invariants, it is also useful for analyzing high-level 
oordination modules. Coor-dination modules 
all upon other modules to manipulate data stru
tures but do notdire
tly maintain any data stru
tures themselves. The Bohne plugin allows developersto use shape analysis te
hniques to reason about program properties in the presen
e ofpointer-linked heap data stru
tures. Spe
i�
ally, the Bohne plugin implements �eld
onstraint analysis [93℄, a parti
ular instantiation of shape analysis. The theoremproving plugin enables developers to state and prove arbitrary program properties�94
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in
luding those that are beyond the rea
h of 
urrent stati
 analysis te
hniques�by
onstru
ting weakest pre
onditions from the implementation and relying on the de-veloper to dis
harge the resulting veri�
ation 
onditions using the Isabelle theoremproving system [99℄.5.2 Developing New Analysis PluginsA key design goal of the Hob framework was to support the development of a varietyof analysis plugins. We next explain how to extend Hob with new analysis plugins.Hob analysis plugins are responsible for verifying pro
edure post
onditions. Be-
ause developers write these post
onditions using the 
ommon set-based spe
i�
ationlanguage, analysis plugins must implement a mapping between the spe
i�
ation-levelset-based abstra
t state and the implementation-level 
on
rete state. The �rst step indeveloping a new analysis plugin is therefore to 
hoose a family of abstra
tion map-pings for the plugin; for instan
e, the Bohne shape analysis plugin enables its users tomap pointer-linked heap data stru
tures (e.g. linked lists) to abstra
t sets. Analysisplugins may also support implementation-level invariants, whi
h help make the anal-ysis problem more tra
table by 
onstraining the set of possible 
on
rete heap states.Be
ause di�erent analyses require markedly di�erent types of abstra
tion mappingsand invariants, it is the responsibility of ea
h analysis plugin to translate abstra
tionmappings and invariants from strings into some suitable internal representation.The designer of a Hob analysis plugin should next de
ide whether or not to handlepro
edure 
alls. Some Hob plugins, su
h as the Bohne plugin, are designed for leafpro
edures, and do not handle pro
edure 
alls. We believe that many program designsmodularize intri
ate data stru
ture manipulations rather than intermingling su
h ma-nipulations with pro
edure 
alls. Analysis plugins may therefore de
line to handlepro
edure 
alls, saving some implementation e�ort. Note that all of the ma
hineryfor handling pro
edure 
alls will be present (in some form) in any analysis plugin:to handle pro
edure 
alls, an analysis plugin needs to integrate the pre
ondition andpost
ondition of the 
alled pro
edure. But any analysis plugin must already integratethe pre
ondition and post
ondition of the pro
edure under analysis. Handling pro
e-dure 
alls is therefore just an issue of hooking up the appropriate ma
hinery at theappropriate program points. Nevertheless, in our experien
e, it was not ne
essary forall plugins to handle pro
edure 
alls.Most analysis plugins in
lude some provision for handling loops. The key 
hallengein supporting loops is in handling the potentially unbounded number of exe
utionpaths through the loop; many analyses use loop invariants to summarize the possiblee�e
ts of these paths. Existing Hob plugins support both developer-supplied loopinvariants and (in some 
ases) loop invariant inferen
e. Loop invariant inferen
emakes it easier for developers to verify programs at the 
ost of plugin developmente�ort. Even if a plugin supports invariant inferen
e, the fa
t that inferen
e may be
omputationally expensive (and possibly an open question, depending on the analysisplugin's internal representation) implies that it is almost always useful for analysisplugins to support developer-supplied loop invariants. A plugin developer might96




hoose to support developer-supplied loop invariants written in either, or both, theset spe
i�
ation language and the plugin's 
on
rete invariant notation. The Hobframework passes any provided loop invariants to the plugin as a string. If invariants
ontain set spe
i�
ations, the plugin may 
all ba
k into the Hob framework to parsethe set spe
i�
ations into abstra
t syntax trees.Having made these design de
isions, a developer must next implement the analysisplugin. The Hob framework provides the plugin with abstra
t syntax trees (ASTs) forthe module's implementation, spe
i�
ation, and abstra
tion se
tions. Whenever theHob framework 
annot provide an abstra
t syntax tree be
ause the interpretation ofthe input depends on the analysis plugin (e.g. abstra
tion mappings, assertions), ananalysis plugin developer must instead parse the strings into a suitable format insidethe plugin itself.The analysis plugin must a

ept the provided ASTs and de
ide whether, giventhe provided implementation, the post
ondition is guaranteed to hold at all pro
edureexits (assuming that pro
edure pre
onditions hold upon pro
edure entry). Re
all thatthe Hob framework has pro
essed the pre
onditions and post
onditions to in
lude anyne
essary global 
onsisten
y 
onditions and the e�e
t of the pro
edure's modifies
lause; at this point, the provided pre
onditions and post
onditions 
an be veri�edwithout referen
e to any other part of the program. The Hob framework has alsoarranged for all implementation-level invariants to hold at entry points for publi
pro
edures; the analysis is responsible for ensuring that these invariants hold uponexit.The Hob framework does not impose any parti
ular methodology for the 
oreveri�
ation task. Existing plugins have taken a number of di�erent approa
hes. Manyexisting plugins translate the pro
edure pre
ondition into an internal representationand perform some kind of veri�
ation 
ondition generation, passing an impli
ationto a de
ision pro
edure for ea
h pro
edure exit point (and 
all site, if appropriate).The PALE plugin, however, translates an entire pro
edure (both its spe
i�
ationand implementation) into a notation suitable for the PALE tool and delegates theveri�
ation task to the PALE tool.On
e a plugin has de
ided whether or not an implementation 
onforms to itsspe
i�
ation, the plugin must report su

ess or failure to the analysis tool. Analysisplugins are also en
ouraged to provide meaningful error messages in the event offailure.5.3 Hob Analysis DriverTo verify a program module M , the Hob system 
learly needs the implementation,spe
i�
ation and abstra
tion modules for M . However, this does not su�
e: Hobalso needs spe
i�
ations for M 's dependen
ies�the modules that M 
alls, as well ass
ope de�nitions for s
opes that M belongs to. Note that overlooking s
ope de�nitions
an result in soundness problems, be
ause s
opes impose additional requirements formodules to satisfy (in the form of s
ope invariants). This se
tion des
ribes how theHob analysis driver ensures that Hob's analyses see all needed 
omponents when97
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Figure 5-3: Hob analysis driver state after parsing minesweeper �les. Boxes representimplementation/spe
i�
ation/abstra
tion triples. Ovals represent s
opes.analyzing a module. It also presents a sample run of the Hob analysis driver on our
minesweeper example.Parse all �les. The Hob analysis driver �rst parses all Hob abstra
tion, implemen-tation, and spe
i�
ation �les in a dire
tory, as well as all s
ope de
larations. On
ethe Hob analysis driver has parsed all relevant �les, it 
an 
ompute inter-�le depen-den
ies. Figure 5-3 presents the state of the Hob analysis driver after parsing themodules in our minesweeper example.Instantiate modules. The Hob analysis driver next expands stati
 module in-stantiations (as des
ribed in Chapters 2 and 3), sin
e modules may have instantiatedmodules as dependen
ies. Figure 5-4 presents the state of the Hob analysis driverafter instantiating the Listmodule as UnexposedList and ArraySet as ExposedSet.Add dependen
ies. The Hob analysis driver must next add dependen
ies betweendi�erent program 
omponents. The analysis driver �rst adds dependen
ies betweens
opes and their 
ontained modules. Figure 5-5 illustrates the state of the Hob anal-ysis driver after adding dependen
ies from s
opes to their 
ontained modules. Next,the analysis driver adds dependen
ies between modules and their 
allees. Figure 5-6presents the state of the Hob analysis driver after adding inter-module dependen
ies.Topologi
al sort and 
ommand generation. Having 
omputed all of the de-penden
ies, the Hob analysis driver performs a topologi
al sort to determine 1) a98
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essing minesweeper stati
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i�
ation/abstra
tion triples.Dashed boxes represent instantiated modules. Ovals represent s
opes.
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Figure 5-5: Hob analysis driver state after adding minesweeper s
ope dependen-
ies. Solid boxes represent implementation/spe
i�
ation/abstra
tion triples. Dashedboxes represent instantiated modules. Ovals represent s
opes. Lines represent s
ope
ontainment. 99
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Figure 5-6: Hob analysis driver state after adding minesweeper inter-module de-penden
ies. Solid boxes represent implementation/spe
i�
ation/abstra
tion triples.Dashed boxes represent instantiated modules. Ovals represent s
opes. Lines represents
ope 
ontainment. Curved lines represent module dependen
ies.set of invo
ations of the Hob analysis tool whi
h guarantees that all modules are
he
ked; and 2) the set of relevant �les to pass to the Hob analysis tool for ea
hinvo
ation. This set of relevant �les in
ludes the implementation, spe
i�
ation, andabstra
tion se
tions of a parti
ular module, plus any s
opes that the module belongsto, and �nally all spe
i�
ation modules for the module's 
allees. Figure 5-7 presentsthe analysis tool invo
ations whi
h, together, verify the minesweeper ben
hmark.
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$ ../../bin/verify all

Verifying module Arrayset...

­> analyze ./arrayset.fl ./arrayset.sl ./arrayset.al

Verifying module List...

­> analyze ./list.fl ./list.sl ./list.al

Verifying module View...

­> analyze ./view.fl ./view.sl ./view.al ./board.sl

Verifying module Board...

­> analyze ./board.fl ./board.al ./model.scope ./view.sl

./arrayset.sl ./board.sl ./list.sl

Verifying module Controller...

­> analyze ./controller.fl ./controller.sl ./controller.al

./board.sl ./view.sl

Verifying module Main...

­> analyze ./main.fl ./main.sl ./main.al ./board.sl ./controller.slFigure 5-7: Commands generated by Hob analysis driver
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Chapter 6Flags Analysis PluginThe Hob �ags analysis plugin veri�es modules in whi
h integer or boolean �ags in-di
ate abstra
t set membership. The developer spe
i�es (using the �ags abstra
tionlanguage) the 
orresponden
e between the implementation's 
on
rete �ag values andthe spe
i�
ation's abstra
t sets, and additionally identi�es the 
on
rete boolean vari-ables whi
h also appear as abstra
t spe
i�
ation-level boolean variables. The �agsplugin is also suitable for analyzing 
oordination modules, whi
h do not maintain anysets themselves, but instead 
oordinate the sets of other modules; in analyzing su
hmodules, the �ags plugin keeps tra
k of set 
ontents for externally-de�ned sets andupdates them at pro
edure 
all sites.Se
tion 4.2 presented the abstra
tion language for the �ags plugin. The abstra
-tion language allows developers to spe
ify what properties to verify. This 
hapterexplains how the �ags plugin veri�es properties. The �ags plugin uses the MONA de-
ision pro
edure [51℄ to verify whether or not pro
edures satisfy their post
onditions.MONA was built to pro
ess formulas expressed in monadi
 se
ond-order logi
 so by
ompiling formulas into automata and analyzing these automata. Our �ags pluginonly emits formulas in the weak monadi
 se
ond-order theory of 1 su

essor, a subsetof the logi
 that MONA supports, and our examples verify in dozens of se
onds. Theweak monadi
 se
ond-order theory of 1 su

essor su�
es for the �ags plugin be
ausethis plugin only manipulates statements in �rst-order logi
 over uninterpreted sets.6.1 Flags Analysis ExampleFigure 6-1 presents the implementation and spe
i�
ation of a short pro
edure, as wellas the relevant part of its abstra
tion se
tion. This pro
edure either adds or removesan obje
t from the MarkedCells set by mutating its isMarked boolean-valued �eld.To analyze the pro
edure, the �ags analysis plugin generates boolean formulas forea
h program point and veri�es whether or not the formulas at pro
edure exit pointsimply the stated post
ondition.
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impl module Board {

proc setMarked(c:Cell; v:bool) {

c.isMarked = v;

}

}

spec module Board {

proc setMarked(c:Cell; v:bool)

requires (c in U) & (card(c)=1)

modifies MarkedCells

ensures (v <=> (c in MarkedCells’)) &

(MarkedCells’ <= MarkedCells + c);

}

abst module Board {

use plugin "flags";

U = { x : Cell | "x.init = true" };

MarkedCells = U cap { x : Cell | "x.isMarked = true" };

}Figure 6-1: Minesweeper Board spe
i�
ations, implementations, and abstra
tionsAt the start of the pro
edure, the �ags plugin generates the following formulaby reiterating the pro
edure pre
ondition and stating that all sets and variables areunmodi�ed.
∀2M.∀0p.∀2M

′.∀0p
′. · · · (6.1)

(M = U ∩ M1) ∧ ∃M ′
1. M ′ = U ′ ∩ M ′

1 (6.2)
c ⊂ U ∧ card(c) = 1 (6.3)

∧ M ′ = M ∧ U ′ = U ∧ C ′ = C ∧ p ⇔ p′ ∧ · · · (6.4)The formula ranges over the set variables and boolean predi
ates in the program.Pro
edure parameters o

ur as free variables of the formula, while the program'sabstra
t state is given in terms of universally quanti�ed variables. Note that thisformula is a relation between unprimed (initial) sets and boolean variables and primed(
urrent) sets and boolean variables. (For brevity, we refer to the MarkedCells set bythe abbreviation M . We also omit unused variables ex
ept for peeking, abbreviatedas p. We 
hose to leave p in our example to illustrate our treatment of unmodi�edvariables.)Line 6.1 
ontains universal quanti�ers for abstra
t variables. ∀2 denotes universalquanti�
ation over sets while ∀0 denotes universal quanti�
ation over boolean vari-ables. Line 6.2 states de�nitions for derived sets; M is a derived set be
ause it isde�ned as the interse
tion of the universal set U with the base set M1 of obje
ts with104



isMarked set to true. These de�nitions are repeated twi
e, on
e for unprimed vari-ables and on
e for primed variables. Line 6.3 states the pro
edure pre
ondition, whi
hholds throughout the pro
edure, sin
e it states 
onstraints on unmodi�able unprimedsets. Finally, line 6.4 
onstrains sets and boolean variables that are unmodi�ed bythe pro
edure. Initially, all sets and variables are unmodi�ed. Ea
h modi�
ation ofstate removes a variable from this line.The �ags plugin next pro
esses the statement c.isMarked = v, using the assign-ment statement transfer fun
tion, to obtain the following relation.
∀2M.∀0p.∀2M

′.∀0p
′. · · · (6.5)

(M = U ∩ M1) ∧ ∃M ′
1. M ′ = U ′ ∩ M ′

1 (6.6)
∧ ((M ′

1 = M1 ∪ c) ∧ v) ∨ ((M ′
1 = M1 \ c) ∧ ¬v) (6.7)

∧ c ⊂ U ∧ card(c) = 1 (6.8)
∧ U ′ = U ∧ C ′ = C ∧ p ⇔ p′ ∧ · · · (6.9)(6.10)The transfer fun
tion updates the value of the impli
it base M1 set by adding theobje
t c i� the v variable is true (line 6.7).Having rea
hed the end of the pro
edure, the �ags plugin then generates thefollowing formula to submit to the MONA de
ision pro
edure.

∀2M.∀0p.∀2M
′.∀0p

′. · · · (6.11)
(M = U ∩ M1) ∧ ∃M ′

1. M ′ = U ′ ∩ M ′
1 (6.12)

∧ ((M ′
1 = M1 ∪ c) ∧ v) ∨ ((M ′

1 = M1 \ c) ∧ ¬v)(6.13)
∧ c ⊂ U ∧ card(c) = 1 (6.14)
∧ U ′ = U ∧ C ′ = C ∧ p ⇔ p′ ∧ · · · (6.15)

=⇒ (6.16)
C ′ = C ∧ p ⇔ p′ (6.17)

∧ ((v ⇔ c ⊂ M ′) ∧ M ′ ⊂ M ∪ c) (6.18)The formula 
ontains two parts. Lines 6.11 through 6.15 spe
ify the programstate after symboli
 exe
ution of the pro
edure, while lines 6.17 and 6.18 state therequirements on the program state needed by the pro
edure's post
ondition. To verifythat the pro
edure satis�es its spe
i�
ation, MONA's de
ision pro
edure must provethat lines 6.11 through 6.15 imply lines 6.17 and 6.18. The known state at pro
edureexit (lines 6.11 through 6.15) simply 
ontain the relation that the transfer fun
tion
omputes; this relation 
aptures the e�e
t of the assignment to the isMarked �eld,Lines 6.17 and 6.18 
ontain the requirements that the �ags plugin must ensure.No exe
utions of the pro
edure's implementation may modify any sets that are notde
lared to be modi�ed, as stated in line 6.17. Also, the pro
edure's implementationmust 
ause its post
ondition to hold; line 6.18 states that 
onstraint.On
e the �ags plugin generates the appropriate formula, it passes the formula onto the MONA tool. In this 
ase, the veri�
ation su

eeds be
ause the ante
edent is105



su�
iently strong. The �ags plugin may therefore 
on
lude that the pro
edure indeedimplements its spe
i�
ation.6.2 Flags Analysis AlgorithmTo verify a pro
edure, the �ags analysis performs abstra
t interpretation [20℄, usingthe spa
e of boolean formulas as the abstra
t domain. It attempts to show thatpro
edure post
onditions are implied by the analysis domain element 
omputed forea
h pro
edure exit points. Figure 6-2 illustrates the operation of the �ags analysisalgorithm. Starting with the pro
edure pre
ondition, the analysis's transfer fun
tionsmanipulate boolean formulas and modify these formulas following assignment state-ments and pro
edure 
alls. The analysis treats loops by using developer-providedloop invariants or by inferring the invariants itself. We 
all the key te
hnique for ma-nipulating formulas in
orporation. This te
hnique updates a boolean algebra formulaby in
orporating the e�e
t of a se
ond boolean algebra formula. Whenever the anal-ysis 
reates a new formula (mostly during in
orporation), it also applies some simpleoptimizations to the formula before it is 
reated. We found that these optimizationswere 
ru
ial to the su

essful veri�
ation of our ben
hmark programs.More formally, our analysis asso
iates a quanti�ed boolean formula F with ea
hprogram point. A formula F is a relation between two 
olle
tions of variables.Unprimed set variables S (or boolean variables b) denote initial values of sets (orbooleans) at the entry point of the pro
edure, while primed set variables S ′ (or primedboolean variables b′) denote the values of these sets (or booleans) at the 
urrent pro-gram point. In general, set and boolean variables are de�ned in their 
ontainingmodule's abstra
tion se
tions; Se
tion 4.2 des
ribed how developers may de�ne setand boolean variables for the �ags plugin. The use of primed and unprimed variablesallows the �ags analysis to represent, for ea
h program point p, a binary relation onstates that overapproximates the rea
hability relation between pro
edure entry andpoint p [48, 19, 86℄.The �ags analysis also tra
ks (obje
t-typed) lo
al variables using sets. For ea
hlo
al variable, the 
orresponding set 
ontains the obje
t to whi
h the lo
al variablerefers; su
h a set 
omes with a 
ardinality 
onstraint that restri
ts the set to have
ardinality at most one (null referen
es are represented by the empty set). Thisapproa
h automati
ally disambiguates some lo
al variable and obje
t �eld a

esses;if a formula 
ontains a 
onstraint stating that two lo
al variables are disjoint, thenthese variables are unaliased. Other stati
 analyses often rely on a separate pointeranalysis to provide this information.The initial data�ow fa
t at the start of a pro
edure is the pre
ondition for thatpro
edure, transformed into a relation by 
onjoining S ′ = S for all relevant sets and
b′ ⇔ b for all relevant boolean variables. Clearly, at the beginning of a pro
edure, allsets and boolean variables have their initial values. At merge points, the analysis 
om-bines boolean formulas with disjun
tion. The analysis also performs loop invariantveri�
ation and inferen
e if ne
essary (Se
tion 6.6). After running the data�ow anal-ysis, our analysis 
he
ks that the pro
edure 
onforms to its spe
i�
ation by 
he
king106
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that the e�e
tive post
ondition (whi
h in
ludes the ensures 
lause and any requiredrepresentation or global invariants) holds at all exit points of the pro
edure. In par-ti
ular, the �ags analysis 
he
ks that for ea
h exit point e, the 
omputed formula Beimplies the pro
edure's post
ondition.6.3 In
orporationThe transfer fun
tions in the data�ow analysis update boolean formulas to re�e
tthe e�e
t of ea
h statement. Re
all that the data�ow fa
ts for the �ags analysis areboolean formulas B whi
h denote a relation between the state at pro
edure entry andthe state at the 
urrent program point. Let Bs be the boolean formula des
ribing thee�e
t of statement s. Our �ag analysis uses the in
orporation operation to update Bwith the e�e
t of Bs. The in
orporation operation B ◦ Bs 
omputes the 
ompositionof the relations de�ned by the formulas B and Bs.In
orporation example. Let B ≡ y′ = y ∧ x′ = x ∧ S ′ = S ∧ S = x. We explainhow the �ags plugin abstra
tly exe
utes the statement s: y = x. To exe
ute thisstatement, the plugin must in
orporate Bs ≡ y′ = x ∧ x′ = x ∧ S ′ = S (representingthe e�e
t of s) into B (the state before s exe
uted). In
orporation pro
eeds byquantifying over hatted sets v̂, substituting v̂ for v′ in B and v̂ for v in Bs andapplying quanti�er elimination. This gives the formula
∃Ŝ, x̂, ŷ. (ŷ = y ∧ x̂ = x ∧ Ŝ = S ∧ S = x) ∧

(y′ = x ∧ x′ = x̂ ∧ S ′ = Ŝ),whi
h simpli�es to S ′ = S ∧ x′ = x ∧ y′ = x, as desired.De�nition of in
orporation. The �ags plugin 
omputes B ◦ Bs by applyingequivalen
e-preserving simpli�
ations to the formula
∃Ŝ1, . . . , Ŝn, b̂1, . . . , b̂j . B[S ′i 7→ Ŝi, b

′
j 7→ b̂j ] ∧ Bs[Si 7→ Ŝi, bj 7→ b̂j ]In
orporation 
omputes the abstra
t state after exe
uting s in state B for the followingreason. The desired abstra
t state is the relation between the sets upon entry to thepro
edure (expressed in terms of unprimed, unhatted sets and booleans Si and bj)and after s has exe
uted (expressed in terms of primed sets and booleans S ′i and b′j).In
orporation 
reates (using existential quanti�
ation) the hatted sets Ŝi and hattedbooleans b̂i, and uses them to represent the abstra
t state after B by substitutingprimed variables of B by hatted variables. Sin
e Bs des
ribes the relation between theprogram's abstra
t state before exe
uting s (represented in Bs by unprimed variables)and after exe
uting s (represented by primed variables), in
orporation substitutes theunprimed variables of Bs with hatted variables. Conjoining the substituted B and

Bs formulae therefore gives a relation whi
h expresses the program's abstra
t stateafter exe
uting s from state B. 108



6.4 Transition RelationsOur �ags analysis handles ea
h statement in the implementation language by pro-viding appropriate transition relations for these statements. The generi
 transferfun
tion is a relation of the following form:
JstK(B) := B ◦ F(st),where F(st) is the formula symboli
ally representing the transition relation for thestatement st, as expressed in terms of abstra
t sets.Frame 
ondition generator. Before providing transfer fun
tions for implementa-tion language statements, we de�ne a generi
 frame 
ondition generator. This frame
ondition generator will show up in most of our transfer fun
tions. The generator
reates a boolean formula whi
h states that a parti
ular variable may potentially bemodi�ed, but that all other sets and booleans are unmodi�ed. Let

framex :=
∧

S 6=x, S not derived

S ′ = S ∧
∧

b6=x

(b′ ⇔ b),where S ranges over sets and b over boolean variables.Re
all that the set spe
i�
ation language enables developers to de�ne base setsand derived sets. A base set de�nition has the form {x:T | . . . }. Base set de�nitionsmay be named (S = {x:T | . . . }) or anonymous (when a base set de�nition o

ursas part of a larger derived set de�nition). Derived set de�nitions 
ombine named setsand anonymous set de�nitions using set operations.Note that our de�nition of the frame 
ondition expli
itly omits derived sets. In-stead, the �ags analysis 
reates a formula stating that the anonymous base sets usedin the derived set de�nitions are preserved and 
onjoins derived set de�nitions beforeapplying the de
ision pro
edure. This treatment automati
ally works for derived setsand helps avoid in
onsisten
y: as long as the base sets making up a derived set arepreserved, then the derived set is preserved as well.We 
ontinue by presenting transition relations for the statements in our imple-mentation language.Assignment statements. Our �ags analysis tra
ks values of boolean variables:
F(b = true) := b′ ∧ frameb

F(b = false) := (¬b′) ∧ frameb

F(b = y) := (b′ ⇔ y) ∧ frameb

F(b = 〈if 
ond〉) := (b′ ⇔ f+(〈if 
ond〉)) ∧ frameb

F(b =!e) := F(b = e) ◦ ((b′ ⇔ ¬b) ∧ frameb)where f+(e) is the result of evaluating e, de�ned below in our analysis of 
onditionals.109



The analysis also tra
ks lo
al variable obje
t referen
es:
F(x = y) := (x′ = y) ∧ framex

F(x = null) := (x′ = ∅) ∧ framex

F(x = new t) := ¬(x′ = ∅) ∧
∧

S(x′ ∩ S = ∅) ∧ framexWe next present the transfer fun
tion for mutating set membership. If R = {x :
T | x.f = c} is a set de�nition in the abstra
tion se
tion, we have:

F(x.f = c) := R′ = R ∪ x ∧
∧

S∈alts(R)

S ′ = S \ x ∧ frame{R}∪ alts(R)where alts(R) = {S | abstra
tion module 
ontains S = {x : T | x.f = c1}, c1 6= c.}The rules for reads and writes of boolean �elds are more detailed than those for�eld variables be
ause our analysis tra
ks the �ow of boolean values:
F(x.f = b) :=

(

b ∧ B+′ = B+ ∪ x

∧
∧

S∈alts(B+) S ′ = S \ x

)

∧

(

¬b ∧ B−
′
= B− ∪ x

∧
∧

S∈alts(B−) S ′ = S \ x

)

∧ frame{B}∪alts(B)

F(b = y.f) := (b′ ⇔ y ∈ B+) ∧ frameb.where B+ = {x : T | x.f = true} and B− = {x : T | x.f = false}.The rules presented above do not overlap in their appli
ability. However, theydo not 
over all statements in the Hob implementation language. We therefore use apair of default rules to 
onservatively a

ount for expressions not otherwise handled,
F(x.f = ∗) := framex F(x = ∗) := framex.Pro
edure 
alls. For a pro
edure 
all x=proc(y), our transfer fun
tion 
he
ksthat the 
allee's requires 
ondition holds, then in
orporates proc's ensures 
ondition:

F(x = proc(y)) := ensures1(proc) ∧
∧

S

S ′ = Swhere both ensures1 and requires1 substitute 
aller a
tuals for formals of proc (in-
luding the return value), and where S ranges over all lo
al variables.Conditionals. The analysis produ
es a di�erent formula for ea
h bran
h of an ifstatement if (e). We de�ne fun
tions f+(e), f−(e) to summarize the additionalinformation available on ea
h bran
h of the 
onditional; the transfer fun
tions for thetrue and false bran
hes of the 
onditional are thus, respe
tively,
Jif (e)K+(B) := f+(e) ∧ B Jif (e)K−(B) := f−(e) ∧ B.110



For 
onstants and logi
al operations, we de�ne the obvious f+, f−:
f+(true) := true f−(true) := false
f+(false) := false f−(false) := true

f+(!e) := f−(e) f−(!e) := f+(e)
f+(x!=e) := f−(x==e) f−(x!=e) := f+(x==e)

f+(e1 && e2) := f+(e1) ∧ f+(e2) f−(e1 && e2) := f−(e1) ∨ f−(e2)We de�ne f+, f− for boolean �elds as follows:
f+(x.f) := x ⊆ B f−(x.f) = x 6⊆ B

f+(x.f==false) := x 6⊆ B f−(x.f==false) := x ⊆ Bwhere B = {x : T | x.f = true}; analogously, let R = {x : T | x.f = 
}. Then,
f+(x.f==
) := x ⊆ R f−(x.f==
) := x 6⊆ R.We also predi
ate the analysis on whether a referen
e is null or not:
f+(x==null) := x = ∅ f−(x==null) := x 6= ∅.Finally, we have a 
at
h-all 
ondition,

f+(∗) := true f−(∗) := truewhi
h 
onservatively 
aptures the e�e
t of unknown 
onditions.Assertions and Assume Statements. We analyze a statement s of the form
assert A by verifying that the formula for the program point s implies A. Assertionsallow developers to 
he
k that a given set-based property holds at an intermediatepoint of a pro
edure. assume statements enable the developer to spe
ify propertiesthat are known to be true, but whi
h have not been shown to hold by the analysis.Our analysis prints out a warning message when it pro
esses assume statements, and
onjoins the assumption to the 
urrent data�ow fa
t. Assume statements have provento be valuable in understanding analysis out
omes during the debugging of pro
edurespe
i�
ations and implementations. Assume statements may also be used to 
ommu-ni
ate properties of the implementation that go beyond the abstra
t representationused by the analysis.Return Statements. Our analysis pro
esses the statement return x as an as-signment rv = x, where rv is the name given to the return value in the pro
edurede
laration. For all return statements (whether or not a value is returned), our anal-ysis 
he
ks that the 
urrent formula implies the pro
edure's post
ondition and stopspropagating that formula through the pro
edure.111



6.5 Verifying Impli
ation of Data�ow Fa
tsOur �ags analysis veri�es impli
ation when it en
ounters an assertion, pro
edure 
all,or pro
edure post
ondition. In these situations, the analysis generates a formula ofthe form B ⇒ A where B is the 
urrent data�ow fa
t and A is the 
laim to beveri�ed1. The impli
ation to be veri�ed, B ⇒ A, is a formula in the boolean algebraof sets. We use the MONA de
ision pro
edure to 
he
k its validity [51℄.6.6 Loop Invariant Inferen
eSe
tion 4.2.2 des
ribed our loop invariant inferen
e algorithm; we next des
ribe itsimplementation. The synthesis starts with the formula 
hara
terizing the transitionrelation at the entry of the loop and weakens the formula by iterating the analysis ofthe loop until it rea
hes a �xpoint. Figure 6-3 presents pseudo
ode for the algorithm.Compute-Post
ondition is the algorithm that we have presented in the pre
edingse
tion. This algorithm takes a boolean formula f and a statement s and outputs theboolean formula 
orresponding to the program state after exe
uting s, if f was thestate before exe
uting s. The top-level fun
tion Infer-Loop-Invariant thereforeattempts to �nd invariants by taking those 
onjun
ts whi
h are 
ommon to boththe pre-state f and the post-state f ′ of the loop (te
hni
ally, it identi�es 
onjun
ts
c whi
h are implied by both f and f ′). If loop invariant inferen
e takes too long,then our algorithm enfor
es termination by dropping 
onjun
ts from f ′. The Get-Implied-Conjun
ts subroutine �nds those 
onjun
ts of its �rst parameter f1 whi
hare implied by the se
ond parameter f2, while the Handle-Existential subroutinehandles existential quanti�ers by dropping sub-
onjun
ts (underneath the existentialquanti�er) that are not implied by the sour
e formula.6.7 Boolean Algebra Formula TransformationsIn our experien
e, applying several formula transformations drasti
ally redu
ed thesize of the formulas emitted by the �ags analysis, as well as the time needed todetermine their validity using an external de
ision pro
edure; in fa
t, some ben
h-marks 
ould only be veri�ed with the formula transformations enabled. This se
tiondes
ribes a number of useful transformations that we dis
overed.Smart Constru
tors. The 
onstru
tors for 
reating boolean algebra formulas ap-ply peephole transformations as they 
reate the formulas. Constant folding is thesimplest peephole transformation: for instan
e, optimizing B ∧ true gives B. Our1Note that B may be unsatis�able. This often indi
ates a problem in a pro
edure pre
ondition.The �ags analysis 
an, optionally, 
he
k whether B is unsatis�able every time it invokes the de
isionpro
edure, and emit a warning if it is. This 
he
k enabled us to identify errors in pre
onditionssooner; of 
ourse, it also slowed down the �ags analysis by a fa
tor of 2. Without su
h a 
he
k,unsatis�able pre
onditions be
ome visible only at 
alls to a�e
ted pre
onditions, whi
h are analyzedseparately�and possibly mu
h later�due to modular veri�
ation112



Infer-Loop-Invariant(f0, loop-
ondition, loop-body,max-iterations)1 i← 02 f ← f03 f ′ ← Compute-Post
ondition(f ∧ loop-
ondition, loop-body)4 while i < max-iterations and f ′ 6⇒ f5 do f ← Get-Implied-Conjun
ts(f, f ′, []) ∧ Get-Implied-Conjun
ts(f ′, f, [])6 f ′ ← Compute-Post
ondition(f ∧ loop-
ondition, loop-body)7 i← i + 18 if i ≥ max-iterations9 then while f ′ 6⇒ f10 do f ← Get-Implied-Conjun
ts(f, f ′, [])11 f ′ ← Compute-Post
ondition(f ∧ loop-
ondition, loop-body)12 return fGet-Implied-Conjun
ts(f1, f2, [x0, . . . , xn])1 result← True2 forea
h 
 in Conjun
ts(f1)3 if f2 ⇒ ∃x0, . . . , xn.
4 then result← 
 ∧ result5 else if 
 has the form ∃x.e6 then result← Handle-Existential(e,f2, [x0, . . . , xn, x]) ∧ result7 return resultHandle-Existential(e, f, [x0, . . . , xn])1 g ← Get-Implied-Conjun
ts(e, f, [x0, . . . , xn])2 if f ⇒ ∃x0, . . . , xn.g3 then return ∃xn.g4 g ← True5 forea
h 
 in Conjun
ts(e)6 if 
 does not 
ontain xn7 then g ← 
 ∧ g8 return Get-Implied-Conjun
ts(g, f, [x0, . . . , xn−1])Figure 6-3: Pseudo-
ode for Loop Invariant Inferen
e Algorithm
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onstru
tors fold 
onstants in impli
ations, 
onjun
tions, disjun
tions, and negations.Similarly, when there is a quanti�
ation over a variable that is not subsequentlyused, we simply drop the quanti�er: ∃x.F be
omes just F as long as x does noto

ur free in F . Most interestingly, we fa
tor 
ommon 
onjun
ts out of disjun
tions:
(A∧B)∨ (A∧C) is optimized to A∧ (B∨C). Conjun
t fa
toring greatly redu
es thesize of formulas tra
ked after 
ontrol-�ow merges, sin
e most 
onjun
ts are sharedon both 
ontrol-�ow bran
hes following a 
onditional. The e�e
ts of the 
onjun
tfa
toring transformation appears to be similar to the e�e
ts of SSA form 
onversionin weakest pre
ondition 
omputation [37, 63℄.Basi
 Quanti�er Elimination. The �ags analysis plugin symboli
ally 
omputesthe 
omposition of statement relations during the in
orporation step by existentiallyquantifying over all state variables. However, most relations 
orresponding to state-ments modify only a small part of the state and 
ontain the frame 
ondition thatindi
ates that the rest of the state is preserved. The result of in
orporation 
antherefore often be written in the form ∃x.x = x1 ∧ F (x), whi
h simpli�es to F (x1).This transformation redu
es both the number of 
onjun
ts and the number of quan-ti�ers in a formula. Moreover, this transformation 
an redu
e some 
onjun
ts to theform t = t for some Boolean algebra term t, whi
h 
an then be eliminated by furthersimpli�
ations.It is instru
tive to 
ompare our te
hnique to weakest pre
ondition 
omputation [37℄and forward symboli
 exe
ution [16℄. These te
hniques are optimized for the 
om-mon 
ase of assignment statements and perform relation 
omposition and quanti�erelimination in one step. Our te
hnique�using in
orporation and then performing arange of ad-ho
 formula optimizations�a
hieves the same result in pra
ti
e, but iseasier to implement and also enables the optimization of general boolean formulas.Our te
hnique 
an therefore also take advantage of equalities in transfer fun
tionsthat are not a result of analyzing assignment statements, but are given by expli
itformulas in ensures 
lauses of pro
edure spe
i�
ations. Su
h transfer fun
tions mayspe
ify more general equalities su
h as A = A′ ∪ x ∧ B′ = B ∪ x whi
h do notredu
e to simple ba
kward or forward substitution.Leveraging Quanti�er Elimination in Impli
ations The �ags analysis rewrites
∀x.f ⇒ g as ¬(∃x.f ∧ ¬g). On
e the analysis expresses impli
ations this way,the quanti�er-elimination optimization applies to the existential quanti�er inside thenegation, whi
h 
an greatly redu
e the size of the formulas that need to be veri�ed.Sin
e formulas with expli
it impli
ations are easier to understand, we have added aruntime �ag whi
h spe
i�
ally disables this optimization for debugging purposes.Quanti�er Nesting. We have experimentally observed that the MONA de
isionpro
edure works substantially faster when ea
h quanti�er is applied to the smallests
ope possible. We have therefore implemented a quanti�er nesting step that redu
esthe s
ope of ea
h quanti�er to the smallest possible subformula that 
ontains all free114



variables in the s
ope of the quanti�er. For example, our transformation repla
es theformula ∀x. ∀y. (f(x) ⇒ g(y)) with (∃x. f(x)) ⇒ (∀y. g(y)).To take maximal advantage of our transformations, we simplify formulas afterapplying in
orporation and before invoking the de
ision pro
edure. Our global sim-pli�
ation step rebuilds formulas bottom-up and applies simpli�
ations to ea
h sub-formula.6.8 Evaluating Formula Optimization Impa
tWe analyzed our ben
hmarks on a 2.80GHz Pentium 4, running Linux, with 2 gi-gabytes of RAM. Table 6.1 summarizes the results of our formula transformationoptimizations. Ea
h line summarizes a spe
i�
 ben
hmark with a spe
i�
 optimiza-tion 
on�guration. A Xin the �Smart Constru
tors� 
olumn indi
ates that the smart
onstru
tors optimization is turned on; a × indi
ates that it is turned o�. Similarly,a Xin the �Optimizations� 
olumn indi
ates that all other optimizations are turnedon; a × indi
ates that they are turned o�. The �Number of nodes� 
olumn reportsthe sizes (in terms of AST node 
ounts) of the resulting boolean algebra formulas.Our results indi
ate that the formula transformations redu
e the formula size by 2 to60 times (often with greater redu
tions for larger formulas); the Optimization Ratio
olumn presents the redu
tion obtained in formula size. The �MONA time� 
olumnpresents the time spent in the MONA de
ision pro
edure (up to 73 se
onds afteroptimization); the �Flags time� 
olumn presents the time spent in the �ags analysis,ex
luding the de
ision pro
edure (up to 477 se
onds after optimization). Without op-timization, MONA 
ould not su

essfully 
he
k the formulas for the 
ompiler, board,view, ensemble and h2o modules be
ause of an out of memory error.
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Optimizations Smart Number Optimization MONA FlagsConstru
tors of nodes ratio time (s) time (s)prod
ons X X,× 12306 2.46 0.17 0.03
× X,× 30338 1.00 0.27 0.04
ompiler X X 15854 32.06 0.45 5.10
X × 28003 18.15 0.60 6.19
× X,× 508375 1.00 N/A 60.27s
heduler X X,× 442 2.44 0.05 0.04
× X,× 1082 1.00 0.12 0.14
tas X X,× 2874 3.18 0.21 0.12
× X,× 9141 1.00 12.79 0.33board X X 28658 41.43 1.92 18.89
X × 106550 11.14 11.45 29.27
× X 926321 1.28 N/A 134.94
× × 1187379 1.00 N/A 151.46
ontroller X X 6759 4.23 0.41 0.18
X × 7101 4.02 0.41 0.18
× X,× 28594 1.00 3.08 0.54view X X 15878 59.08 1.07 12.38
X × 53925 17.39 1.45 18.88
× X,× 938000 1.00 N/A 263.15atom X X 9677 3.14 0.53 0.13
X × 10244 2.97 0.54 0.13
× X,× 30447 1.00 40.95 0.43ensemble X X 120279 20.60 50.90 34.15
X × 148748 16.66 105.59 47.06
× X,× 2478004 1.00 N/A 464.52h2o X X 205933 4.32 73.80 477.01
X × 206167 4.31 81.85 475.86
× X,× 889637 1.00 N/A 1917.99Table 6.1: Formula sizes before and after transformation. The entry X, × in a SmartConstru
tors 
olumn indi
ates that the smart 
onstru
tors did not a�e
t the resultsin that row.
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Chapter 7Experien
eWe have implemented our modular pluggable analysis system, populated it with sev-eral analyses (in
luding the �ags, Bohne shape analysis, and theorem prover plugins),and used the system to develop several ben
hmark programs and appli
ations.7.1 Data Stru
ture ImplementationsWe have veri�ed a number of data stru
ture implementations using the Hob sys-tem. Our experien
e 
on�rms the hypothesis that the Hob system 
an su

essfullyverify that data stru
ture implementations preserve lo
al invariants and 
onform totheir interfa
es. A data stru
ture implementation 
onforms to its interfa
e when allof the pro
edures in the implementation satisfy their post
onditions upon exit, as-suming that those pro
edures' pre
onditions held upon entry. As we have des
ribedearlier, abstra
tion fun
tions mediate between the 
on
rete heap operations of theimplementations and the abstra
t set operations of the interfa
es.Using the Bohne shape analysis plugin, we have su

essfully veri�ed singly-linkedlists, doubly-linked lists with and without iterators and header nodes, and two-levelskip lists. Se
tion 4.3 explained how developers spe
ify and verify properties with theBohne plugin. We have also veri�ed properties of queues, sta
ks, trees and priorityqueues using the PALE shape analysis plugin, a forerunner to the Bohne plugin.When the developer supplies loop invariants, Bohne veri�es data stru
ture 
onsisten
yproperties in times ranging from 1.7 se
onds (for the doubly-linked list) to 8 se
onds(for insertion into a tree). Bohne automati
ally infers loop invariants for insertionand lookup in the two-level skip list in 30 minutes total.7.1.1 Tree data stru
tureWe have used the Bohne plugin to verify insertion into a binary sear
h tree. Thistree maintains an abstra
t set S of obje
ts representing the 
ontents of the tree datastru
ture. The following de�nition gives the translation of the 
on
rete heap stateinto the abstra
t set S. In words, it states that S 
ontains the set of obje
ts rea
hablefrom the root module-level variable through left and right �elds.117



S = {x : Entry |

"rtrancl (lambda v1 v2. left v1 = v2 | right v1 = v2) root x"};The Bohne plugin automati
ally veri�es that the tree's ba
kbone is a
y
li
 andthat the ba
kbone forms a tree along the left and right edges. In addition, weexpli
itly instru
t Bohne to verify the following two invariants:
invariant "ALL x. x ~= null &

~(rtrancl (lambda v1 v2. left v1 = v2 | right v1 = v2) root x) ­­>

~(EX y. y ~= null & (left y = x | right y = x)) &

(left x = null) & (right x = null)";

invariant "ALL x y. parent x = y ­­>

(x ~= null & (EX z. left z = x | right z = x) ­­>

(left y = x | right y = x))

& (((ALL z. left z ~= x & right z ~= x) | x = null)

­­> y = null)";The �rst invariant states that that all heap obje
ts x (ex
ept null) that do notbelong to the tree are not pointed to by any other obje
t y in the heap1, and addition-ally that su
h obje
ts x have left and right �elds set to null. This invariant ensures,in parti
ular, that there are no �loose� tree fragments (in terms of this module's leftand right �elds) in the heap that exist independent of the main tree. Su
h fragmentsare potentially problemati
 be
ause they may 
ause insertions to add unanti
ipatedextra obje
ts to the tree.The se
ond invariant is a �eld 
onstraint on the parent �eld, whi
h is a derived�eld�that is, the parent �eld 
an be de�ned in terms of the left and right �elds.In parti
ular, this �eld 
onstraint states that the parent �eld is the inverse of the
left and right �elds. More pre
isely, if a heap obje
t x's parent pointer points to
y (again, for x non-null), and if there is some obje
t z whi
h has x as a 
hild, then
y has x as a 
hild. The se
ond invariant additionally states that if x has no parent(quantifying over the entire heap), then x's parent �eld must be set to null.Note that these two invariants des
ribe the pointer stru
ture of the tree, and donot dis
uss any sortedness properties for tree elements. Sortedness properties, whi
hare properties of integers, are beyond the s
ope of the Bohne shape analysis plugin.The Hob analysis approa
h enables developers to state and verify partial properties ofdata stru
tures and programs. Developers who are 
on
erned with the sortedness ofthe tree 
ould invent and use a spe
ialized plugin that 
ould reason about propertiesof integers. Alternatively, developers 
ould use the theorem proving plugin, whi
h
an handle arbitrarily 
ompli
ated properties at the 
ost of developer e�ort, to verifythe desired sortedness properties.One drawba
k of verifying partial properties is that su
h partial properties mightnot, by themselves, be strong enough to enable the veri�
ation of other desired prop-erties. The two invariants stated above are too weak to enable the veri�
ation of any1Note that this rea
hability relation is de�ned by only the left and right edges. Hob's formatme
hanism enables the Bohne plugin to safely ignore all other �elds in the heap.118



interfa
e for a remove pro
edure that states that the pro
edure removes its parameterfrom the tree. The issue is that any e�
ient implementation of a remove pro
edure�whi
h would remove its parameter from the tree, assuming that the parameter is inthe proper position�must rely on the ordering of elements in the tree. If the 
on
retetree in the heap were to 
ontain improperly sorted elements, then e�
ient implemen-tations of remove would not be able to 
orre
tly remove the requested obje
t, whi
hwould make it impossible to guarantee the pro
edure's desired post
ondition. Notethat a stronger invariant language would enable the veri�
ation of remove.We 
an, however, verify the add pro
edure for trees. This pro
edure's spe
i�
ationstates that the pro
edure adds its parameter e to the set S.
proc add(e:Entry; v:int) requires card(e) = 1 & not (e in S)

modifies S

ensures S’ = S + e;Figure 7-1 presents the 
omplete implementation of the add pro
edure. Thispro
edure implements a standard sear
h for e in the tree, removing it if present. Thepro
edure is remarkable only for its loop invariant. Bohne is, in prin
iple, 
apableof inferring this loop invariant given suitable abstra
tion predi
ates. However, theveri�
ation �nishes in dozens of se
onds rather than dozens of minutes if the developersupplies the invariant expli
itly. The invariant for add states the following properties:� The parameter e is non-null and remains un
hanged.� The obje
ts e, n and p are all rea
hable in the tree.� If lo
al variable p is non-null, then n is the 
hild of p.� If p and n are both null (indi
ating an empty tree), then root also 
ontains
null.� The de�nition of the set S 
ontinues to hold: an obje
t x belongs to the abstra
tset ’S2 if and only if x is rea
hable from the root through left and right �elds.� For all non-null obje
ts x in the heap that do not belong to the tree, no non-nullobje
t y points to x, and that x's left and right �elds are null.Note that we restate the module's invariants within the loop invariant. In general,module invariants must be stated expli
itly in the loop invariant be
ause they mightbe temporarily violated during the exe
ution of the add pro
edure; stating themexpli
itly guarantees that they are not violated a
ross loop iterations.2The prime indi
ates that the statement is about the 
urrent value of S; Bohne expe
ts the primebefore the set name, rather than after it, as in the general Hob 
onvention.119



1 proc add(e:Entry; v:int) {2 e.v = v;3 e.left = null; e.right = null; e.parent = null;4 Entry n = root, p = null;5 bool wentLeft;6 while "e ~= null & e = ’e &7 ~(rtrancl (lambda v1 v2. left v1 = v2 | right v1 = v2) root e) &8 rtrancl (lambda v1 v2. left v1 = v2 | right v1 = v2) root n &9 rtrancl (lambda v1 v2. left v1 = v2 | right v1 = v2) root p &10 (p ~= null ­­> (left p = n & wentLeft | right p = n & ~wentLeft)) &11 (p = null & n = null ­­> root = null) &12 (ALL x. (x : ’S) <=>13 rtrancl (lambda v1 v2. left v1 = v2 | right v1 = v2) root x) &14 (ALL x. x ~= null &15 ~(rtrancl (lambda v1 v2. left v1 = v2 | right v1 = v2) root x) ­­>16 ~(EX y. y ~= null & (left y = x | right y = x)) &17 (left x = null) & (right x = null))"18 (n != null) {19 p = n;20 wentLeft = (v < n.v);21 if (wentLeft)22 n = n.left;23 else24 n = n.right;25 }26 if (p == null) {27 root = e;28 } else {29 e.parent = p;30 if (wentLeft) {31 p.left = e;32 } else {33 p.right = e;34 }35 }36 } Figure 7-1: Implementation of TreeSet insert pro
edure
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7.1.2 Sta
k data stru
tureWe next des
ribe one aspe
t of our experien
e verifying a sta
k implemented as adoubly-linked list. The PALE shape analysis plugin (a prede
essor to our 
urrentBohne shape analysis plugin) dis
overed an invariant violation in the 
ourse of veri-fying the sta
k's implementation. Like our tree, our sta
k data stru
ture maintainsan abstra
t set S representing the 
ontents of the sta
k. The Hob system veri�es thatsta
k insertions a
tually insert the given obje
t into the sta
k (the insert pro
edureensures that S’ = S + e), and that removals a
tually remove an obje
t from thesta
k, if possible (the removeFirst pro
edure ensures that card(S) = 0 | (exists

e:Entry. (S’ = S ­ e) & card(e) = 1)).Hob's shape analysis plugins use developer-provided invariants to 
he
k that ob-je
ts that belong to a set have 
onsistent values for navigational �elds (e.g. next,
prev), and that obje
ts that do not belong to the set have their navigational �elds setto null. Our experien
e suggests that is not di�
ult to write implementations that in-advertently violate these invariants. Our initial implementation for the removeFirstpro
edure was as follows:

proc removeFirst() returns e:Entry {

Entry res = root;

if (root != null) root = root.next;

pragma "removed res";

return res;

}where the pragma statement indi
ates to the PALE analysis plugin that it is verifyinga set removal. We found that the analysis reports an error while verifying this imple-mentation. Careful inspe
tion of the above 
ode reveals that the removed obje
t, res,retains a referen
e to an obje
t in the sta
k even after its removal. Su
h an implemen-tation violates the invariant that obje
ts not belonging to the data stru
ture musthave their next and prev �elds set to null. Unexpe
ted �eld values for �orphan�heap obje
ts may in turn lead to non-list stru
tures appearing in the heap. Adding
res.next = null to this pro
edure satis�es the PALE plugin: setting ea
h obje
t's
next �eld to null on exit enables PALE to verify the invariant that all obje
ts passedin to the insert pro
edure will have their next �eld set to null.7.2 WaterHaving des
ribed the veri�
ation of a few data stru
tures using the Hob analysis sys-tem, we 
ontinue by des
ribing appli
ations of Hob to verifying 
omplete appli
ations.Our �rst appli
ation is water, a port of the Perfe
t Club ben
hmark MDG [10℄.Ben
hmark des
ription. The water ben
hmark evaluates for
es and potentials ina system of water mole
ules in the liquid state using a predi
tor/
orre
tor method.The 
entral loop of the 
omputation performs a time step simulation. Ea
h step121



predi
ts the state of the simulation, uses the predi
ted state to 
ompute the for
esa
ting on ea
h mole
ule, uses the 
omputed for
es to 
orre
t the predi
tion and obtaina new simulation state, then uses the new simulation state to 
ompute the potentialand kineti
 energy of the system.Our implementation of the water ben
hmark in
ludes the simparm, atom, H2O,
ensemble, and main modules, as well as a number of helper modules. Figure 7-2presents the module dependen
y diagram for the water ben
hmark, with an arrowbetween the box for module A and the box for module B indi
ating that module A
alls module B. These modules 
ontain 2000 lines of implementation and 500 lines ofspe
i�
ation.

main

consts

H2O

acc_double

skratch_pad

util

ensemble

simparm

atom

vec

Figure 7-2: Module dependen
y diagram for water ben
hmarkThe main module initializes the program state, 
alls the main loop (whi
h is in the
ensemble module), and prints out the �nal program state. The ensemble module
aptures the state of the entire 
omputation and 
alls the other modules to a
tually
arry out the 
omputation. The simparm module stores inputs to the 
omputationand values that are 
omputed on
e at the beginning of the 
omputation, while therelated consts module stores physi
al 
onstants used by the simulation. The H2Omodule stores 
olle
tions of atoms, whi
h are tra
ked by the atom module. Thehelper modules skratch_pad, vec, acc_double and util perform auxiliary tasks.Consisten
y properties. We veri�ed the following properties for the water ben
h-mark. These properties 
an be 
hara
terized mainly as typestate properties; for themost part, they do not des
ribe data stru
ture properties, sin
e the water ben
hmarkdoes not maintain spe
i�
 relationships between di�erent obje
ts in the heap.� Spa
e for simulation parameters is always allo
ated and the parameters alwaysloaded before a

esses to the simulation parameters.122



� The predic and correc a
tions on atom obje
ts are always interleaved: noatom is 
orre
ted unless it has just been predi
ted, and vi
e-versa.� A
tions on mole
ules are properly sequen
ed: for instan
e, a mole
ule alwayshas its kineti
 energy 
al
ulated before the boundary box is applied to it.� Global 
omputation state transitions are 
onsistent with the transition orderde
lared by the developer.The Hob system veri�es that the program does not load simulation parametersbefore it allo
ates arrays for holding these parameters, and that the program does nota

ess the simulation parameters until they have been loaded from the disk and storedinto the arrays. The simparm module is responsible for storing simulation parameters,whi
h are loaded from a text �le at the start of the 
omputation. To tra
k the 
urrentstate, this module de�nes two boolean variables, Init and ParmsLoaded. If Init istrue, then the module has been initialized, i.e. the appropriate arrays have beenallo
ated on the heap. If, additionally, the variable ParmsLoaded is true, then thesimulation parameters have been loaded from disk and written into these arrays.One important property of the main 
omputation 
on
erns atoms (handled bythe atom module); atoms are the fundamental unit of this simulation. Atoms 
y
lebetween the predi
ted and 
orre
ted states, whi
h are distinguished by values of the
predic and correc �ags on atoms. The predic and correc pro
edures perform the
omputations ne
essary to e�e
t these state 
hanges. Only atoms in the �
orre
ted�state may have their position predi
ted, and only atoms in the �predi
ted� state mayhave their position 
orre
ted. To enfor
e this property, we de�ne two sets, Predic and
Correc, and populate them with predi
ted and 
orre
ted atoms, respe
tively. The
correc pro
edure operates on a single atom; its pre
ondition requires this atom tobe a member of the Predic set. The correc pro
edure's post
ondition ensures that,upon exit, the atom is no longer in the post-state of the Predic set, but is insteadin the post-state of the Correc set. The predic pro
edure has the 
orrespondingsymmetri
 spe
i�
ation.The next step up from the atom is the mole
ule. Mole
ules (handled by the H2Omodule) 
ontain three atoms, tra
king their position and velo
ity. We verify thatwhen a mole
ule is in the predi
ted or 
orre
ted state, the atoms in the mole
uleare also in the same state. Mole
ule states indi
ate not only whether the programhas predi
ted or 
orre
ted the position of the mole
ule's atoms, but also whether theprogram has applied intra-mole
ule for
e 
orre
tions, whether it has s
aled the for
esa
ting on the mole
ule, and other similar properties. The interfa
e of the H2O module
an therefore ensure that the program performs the operations on ea
h mole
ule in the
orre
t order�for example, the bndry pro
edure may only be 
alled with mole
ulesin the Kineti set, whi
h have had their kineti
 energy 
al
ulated by the kinetipro
edure.Finally, the ensemble module manages the 
olle
tion of mole
ule obje
ts. Thismodule stages the entire simulation by iterating over all mole
ules and 
omputingtheir positions and velo
ities over time. The ensemble module uses boolean predi
atesto tra
k the state of the 
omputation as a whole. When the ensemble's boolean123



predi
ate INTERF is true, for example, then the program has 
ompleted the inter-for
e 
omputation for all mole
ules in the simulation. By en
oding allowable statetransitions into pro
edure pre
onditions and post
onditions, our analysis veri�es thatthe program's state progresses in only the following order:
Init ; INITIA ; PREDIC ; INTRAF ; VIR ; INTERF ; · · ·For example, the ben
hmark has a pro
edure INTRAF. This pro
edure requires thatthe boolean �ags INITIA and PREDIC be true upon entry, and ensures that the �ag

INTRAF’ is true upon exit.Unsoundness. Hob's su

essful veri�
ation of the water ben
hmark depends onan impli
ation from the simulation's global boolean predi
ates to properties rangingover the 
olle
tion of mole
ule obje
ts. We do not 
urrently verify this parti
ularimpli
ation; instead, we 
urrently use assume statements to let the veri�
ation gothrough. In the short term, the developer 
an manually verify all of a program's
assume statements by inspe
ting the 
ode. We foresee two possible longer-term so-lutions: the developer may use a theorem prover to verify the properties that arebeyond the rea
h of Hob's 
urrent analysis plugins, or a new analysis plugin that 
anverify the relevant properties 
ould be
ome available.Dis
ussion. The properties that we verify for the water ben
hmark ensure thatthe 
omputation's phases exe
ute in the 
orre
t order; su
h properties are espe
iallyvaluable in the maintenan
e phase of a program's life, when the original designer, ifavailable, may have long sin
e forgotten the program's phase ordering 
onstraints.In
identally, Hob spe
i�
ations' set 
ardinality 
onstraints also prevent empty sets(and null pointers) from being passed to pro
edures that expe
t non-empty sets ornon-null pointers.7.3 HTTP ServerThe HTTP 1.1 server implements a server whi
h responds to requests for web pages.We have used this server to host the Hob proje
t homepage.Ben
hmark des
ription. Our web server reads 
on�guration data from disk andthen listens for HTTP requests on the port spe
i�ed in the 
on�guration �le. It servesresponses to these requests by transmitting the appropriate headers and 
ontent tothe 
lient. If the 
lient's request indi
ate that it supports 
ompression, the serveruses library routines to 
ompress the data using the gzip algorithm, and then sendsthe 
ompressed version to the 
lient. Furthermore, we optimized our HTTP serverby 
a
hing the results of previous requests (both un
ompressed and 
ompressed) inmemory and serving results from the 
a
he whenever possible.Figure 7-3 presents a module dependen
y diagram for our web server. The
HTTPServermodule re
eives 
onne
tions and sends responses to the 
lient. It uses the124



Figure 7-3: Module dependen
y diagram for web server
HTTPRequest and Sendfile modules to pro
ess the request and send the response,respe
tively. The Sendfile module takes a �lename and a 
onne
tion and serves theappropriate response to the 
lient, using the Cache module to store �le 
ontents inmemory for later requests. In all, the Hob webserver 
ontains 14 modules, 1229 linesof implementation, and 335 lines of spe
i�
ation.The HTTP server in
ludes the following sets of obje
ts. HTTPRequest.Headersstores a set of HTTP request headers. The related HTTPResponse.C set storesHTTP response headers. The 
a
he uses a pair of sets, CacheSet.Content and
CacheBlacklist.Content, to store past requests and (if appropriate) their 
orre-sponding responses. The CacheSet.Content set stores obje
ts that point to re-sponses to 
ertain requests, while the CacheBlacklist.Content set 
ontains infor-mation about obje
ts that must not be pla
ed in the 
a
he (typi
ally be
ause theyare too large).Data stru
ture 
onsisten
y properties. Our implementation of the web servermaintains the following 
onsisten
y properties. Some of these properties 
onstrainthe heap and prevent 
orruption in the program's heap-based data stru
tures. Other,more interesting, properties, summarize design de
isions that we made during ourimplementation of the web server.� The linked list making up the 
a
he set maintains its list invariants (e.g., thelinked list prev �eld is the inverse of its next �eld).� The server 
on�guration is loaded before any requests are served.� Response headers are always 
leared between requests.� Responses are always either served from the 
a
he or bla
klisted from the 
a
he.Serving a request. When serving an HTTP request, the server �rst reads datafrom the 
lient des
ribing the request and the form of response that the 
lient isexpe
ting. The server then 
reates an HTTP response header and populates theset HTTPResponse.C with the proper header entries. Next, it sear
hes the 
a
he125



bla
klist CacheBlacklist.Content and the 
a
he 
ontent CacheSet.Content for
a
hed versions of the response; if no 
a
hed 
ontent is available, and the 
ontent isnot bla
klisted, then it adds the 
ontent to the 
a
he. The program then 
onsultsthe sendHead and sendBody pro
edure parameters (whi
h depend on the request) todetermine whether it should serve the header and 
ontent, and serves the relevantparts of the response to the 
lient.Response headers. The usual stru
ture of an HTTP response o

urs in two parts:response header and 
ontent. A response header is a list of 
olon-separated strings,ea
h string 
ontaining a key and a value. In our implementation, we build up anHTTP response in the HTTPResponse module. The HTTPResponse module also 
on-tains a pro
edure whi
h sends the response, as 
onstru
ted, over the network to a
lient.Our use of sets allows us to do
ument and stati
ally enfor
e the usage patternof the HTTP response module: we represent the 
urrent response header as a set,
HTTPResponse.C, and add header entries to this set. Sin
e we do not wish to emitstale header information from previous requests, the pre
ondition of the sendFilepro
edure in
ludes the 
ondition that card(HTTPResponse.C) = 0. When servingany HTTP request, the web server always emits a basi
 header, in
luding mandatory�elds like the Date �eld; su
h �elds enable us to guarantee that the HTTPResponse.Cset is non-empty. We ensure that this pre
ondition always holds by restoring it uponexit from sendFile; in parti
ular, we ensure that card(HTTPResponse.C’) = 0.Note that this spe
i�
ation does not 
onstrain the membership of C during theexe
ution of the pro
edure. In fa
t, the HTTPResponse.emit pro
edure requires that
C be non-empty; 
learly, it is in
onsistent with this parti
ular design to transmitempty responses. A di�erent (and in our opinion inferior) design might only populatethe set C if the 
lient had requested that headers be transmitted. Our spe
i�
ations
learly do
ument the design de
ision that we took in this parti
ular implementationand prevent maintainers from inadvertently violating this design in the maintenan
ephase of the program's life
y
le.Transmitting �les to 
lients. The sendFile pro
edure 
oordinates the task ofsending a �le to a 
lient, serving the �le from the 
a
he if possible. Content is generallystored in the 
a
he before being served. To avoid undesirable 
a
he e�e
ts, however,our server bla
klists 
a
he entities that are too large (greater than 1 megabyte inour 
urrent implementation). To simplify the implementation, we 
hose to have ourweb server always load the 
ontent into the 
a
he and then serve the 
ontent fromthe 
a
he, as long as the 
ontent is not bla
klisted. Our implementation re�e
ts thisdesign de
ision. In the absen
e of any reliable information about the design, the devel-oper would have to glean this design de
ision from the implementation, in parti
ularby lo
ating and understanding the following 
ode in the sendFile pro
edure:

if (!Cache.hasEntry (c)) {

/* ... [load content into t_array] ... */

Cache.setEntryContent (c, t_array);126



if (!blacklist)

Cache.addEntry (c);

}

else

Cache.loadEntryContent (c);

/* ... */

Cache.sendEntry(oc, c);and observing that the entry c is always loaded from the 
a
he or populated fromdisk and, if not bla
klisted, added to the 
a
he.Our approa
h makes this design de
ision expli
it and mu
h more a

essible. Wede
lare the sets CacheSet.Content and CacheBlacklist.Content. We de�ned thesesets using instantiated linked lists, and Hob's ability to 
ombine the shape analysisfor the 
a
he sets with the simpler typestate analysis used for this module is 
ru
ialfor obtaining a global design 
onforman
e result. The sendEntry pro
edure, whi
htransmits an entry to the 
lient, relies on membership information for these twosets. This membership information propagates from post
onditions of 
alls to themediating Cache module. The spe
i�
ation for the sendEntry pro
edure thereforereads as follows.
private proc sendEntry (oc:out_channel; n:Entry) returns c:int

requires (n in CacheSet.Content) |

(n in CacheBlacklist.Content)

ensures true;Dis
ussion. The spe
i�
ation of the sendEntry pro
edure makes it absolutely
lear that the 
ontent to be transmitted will either be in the CacheSet.Contentor CacheBlacklist.Content sets. The Hob analysis engine establishes the pre
on-dition for the sendEntry pro
edure by inspe
ting the rest of the sendFile pro
edureand observing that either the entry is already in the 
a
he or newly added to the
a
he, so that n in CacheSet.Content; or the entry is bla
klisted, in whi
h 
ase n
in CacheBlacklist.Content. In this way, the sendEntry spe
i�
ation 
learly anda

essibly do
uments this design de
ision, and the Hob analysis system automati
allyveri�es that the implementation 
orre
tly 
onforms to this design.7.4 MinesweeperOur next ben
hmark, minesweeper, shows how Hob 
an verify data stru
ture 
onsis-ten
y properties that span multiple modules.Ben
hmark des
ription. The minesweeper ben
hmark implements the standardmodel-view-
ontroller (MVC) design pattern. Figure 7-4 presents a module depen-den
y diagram 
ontaining the modules whi
h make up the minesweeper implementa-tion. The game board module (Board) represents the game state and plays the role ofthe �model� part of the MVC pattern; the 
ontroller module (Controller) responds127



to user input; the view module (View) produ
es the game's output; the exposed 
ellmodule (ExposedSet) uses an array to store the 
ells that the player has exposedin the 
ourse of the 
urrent game; and the unexposed 
ell module (UnexposedList)instantiates a linked list to store the set of 
ells that have not yet been exposed. Thereare 750 non-blank lines of implementation 
ode in the 6 implementation se
tions ofminesweeper and 236 non-blank lines in its spe
i�
ation and abstra
tion se
tions.The Board module stores one representation of the game state. (Game state infor-mation is also stored in the ExposedSet and UnexposedListmodules, whi
h must re-main 
onsistent with the Board.) At an abstra
t level, the board's sets MarkedCells,
MinedCells, ExposedCells, UnexposedCells, and U (for Universe) represent sets of
ells with various properties; the U set 
ontains all 
ells known to the board. Theboard also uses a global boolean variable gameOver, whi
h it sets to true whenthe game ends. Con
retely, the Board stores an array of Cell obje
ts and the globalboolean variable. The Board module represents state information for ea
h Cell usingthe isMined, isExposed and isMarked �elds of Cell obje
ts.

Figure 7-4: Module dependen
y diagram for Minesweeper implementationData stru
ture 
onsisten
y properties. The minesweeper appli
ation uses avariety of data stru
tures and veri�es a range of important 
onsisten
y propertiesboth within and between these data stru
tures. Among the data stru
ture 
onsisten
yproperties that the Hob system veri�es are the following:1. The set of unexposed 
ells in the UnexposedList module form an a
y
li
doubly-linked list with all prev referen
es being inverses of next referen
es.2. The iterator pointer of the UnexposedList module is either null or points insidethe list.3. If the board is initialized, then the ExposedSet module storing the exposed
ells is also initialized. 128



4. The set of unexposed 
ells maintained in the Board module (using �ags) isidenti
al to the set of unexposed 
ells maintained in the linked UnexposedListdata stru
ture.5. The set of exposed 
ells maintained in the Boardmodule (using �ags) is identi
alto the set of exposed 
ells maintained in the ExposedSet array.6. Unless the game is over, the set of mined 
ells is disjoint from the set of exposed
ells.7. The sets of exposed and unexposed 
ells are disjoint.8. At the end of the game, all 
ells are revealed; i.e. the set of unexposed 
ells isempty.Noti
e that the list of minesweeper properties 
ontains two di�erent kinds of prop-erties: i) data stru
ture 
onsisten
y properties that involve the implementation of asingle data stru
ture, su
h as Property 1, and ii) more abstra
t properties involvingrelationships between obje
ts stored in multiple data stru
tures, su
h as Properties 4,5, 6, and 8. One somewhat unusual feature of these abstra
t properties is that theyare outward-looking: they 
apture important features of the system that are dire
tlymeaningful to the users of the system, and not just the implementors. To the best ofour knowledge, the Hob system is the only 
urrently existing system that supportsand promotes the expli
it identi�
ation and guaranteed 
he
king of these kinds ofoutward-looking, appli
ation-oriented properties.Verifying data stru
ture use. Our minesweeper implementation uses iterators topro
ess the list of unexposed 
ells in two 
ontexts; both of these 
ontexts are shownin Figure 7-5. One use of iteration is the revealAllUnexposed pro
edure, whi
h isexe
uted at the end of the game. This pro
edure 
auses the implementation to exposeall of the Board 
ells. The se
ond use is in a peek pro
edure whi
h we added to ourminesweeper implementation. The �peek� 
ommand allows the player to peek at allunexposed 
ells. We implemented this 
ommand by iterating twi
e over the set ofunexposed 
ells, �rst exposing them, then hiding them.Figure 7-5 
ontains loop invariants for our examples. These invariants help toexplain how the �ags analysis 
an analyze ea
h of these examples. It turns outthat our �ags analysis plugin 
an su

essfully infer these loop invariants [59℄, therebyeliminating a potential sour
e of annotation burden on the programmer. Furthermore,this invariant inferen
e exe
utes relatively qui
kly, in a number of se
onds. We believethat one reason for the su

ess of our loop invariant inferen
e te
hnique is that thete
hnique operates at the level of abstra
t set variables.Note that users of the linked list module always use the list through its interfa
e;su
h users 
annot dire
tly manipulate the list itself. In other words, users of thelinked list do not have a

ess to the next and prev pointers making up the linkedlist stru
ture. In general, verifying 
onsistent interfa
e use is simpler than verifying
onsisten
y of data stru
ture operations, and our Hob system therefore uses the sim-pler but more e�
ient �ags plugin to verify the 
onsisten
y of data stru
ture uses. In129



1 // in Board specification23 proc setExposed(c:Cell; v:bool) returns causedGameOver:bool4 ...5 ensures (v => (ExposedCells’ = ExposedCells + c)6 & (UnexposedCells’ = UnexposedCells ­ c)7 & (UnexposedList.Iter’ = UnexposedList.Iter ­ c))8 & ((not v) => ((ExposedCells’ = ExposedCells ­ c)9 & (UnexposedCells’ = UnexposedCells + c)))10 & ...1112 proc revealAllUnexposed()13 requires gameOver14 modifies ExposedCells, UnexposedCells15 ensures card(UnexposedCells’) = 0;1617 // in Board implementation1819 proc peek() {20 peeking = true;21 Cell c;22 UnexposedList.openIter();23 bool b = UnexposedList.isLastIter();24 while "(b’ <=> (UnexposedList.Iter’ = {})) & peeking’"25 (!b) {26 c = UnexposedList.nextIter();27 View.drawCellEnd(c);28 b = UnexposedList.isLastIter();29 }30 // ... wait for key press ...31 UnexposedList.openIter();32 b = UnexposedList.isLastIter();33 while "(b’ <=> (UnexposedList.Iter’ = {})) & peeking’"34 (!b) {35 c = UnexposedList.nextIter();36 View.drawCell(c);37 b = UnexposedList.isLastIter();38 }39 peeking = false;40 }4142 proc revealAllUnexposed() {43 UnexposedList.openIter();44 bool b = UnexposedList.isLastIter();45 // loop invariant in quotes below:46 while "... & (b’ <=> (UnexposedList.Iter’ = {})) &47 (UnexposedList.Iter’ = UnexposedList.Content’)" (!b) {48 Cell c = UnexposedList.nextIter();49 setExposed(c, true);50 b = UnexposedList.isLastIter();51 }52 }Figure 7-5: Doubly-Linked List Client. An optional loop invariant appears in quotesafter the while keyword.
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this example, we use the �ags plugin to verify that the pre
ondition for nextIter �namely, that the Iter set is nonempty�is always satis�ed before 
alls to nextIter.Our implementations satisfy this 
onstraint by �rst 
alling the isLastIter pro
edureand ensuring that it returns false.The peek example nondestru
tively iterates over the UnexposedList set with-out 
hanging the ba
king Content set, whereas the revealAllUnexposed pro
edureremoves all elements from the list during iteration. The revealAllUnexposed pro-
edure guarantees that the unexposed set is empty at the end of the pro
edure asfollows. The pro
edure maintains the invariant that the Iter set equals the Contentset during every loop iteration, be
ause nextIter removes an element from the
Iter set and setExposed removes the same element from Content. Note that the
revealAllUnexposed loop runs until isLastIter returns true, whi
h implies that
Iter is true as well. Be
ause of the equality between Iter and Content, the �agsanalysis plugin may 
on
lude that, upon loop exit, Content is empty as well.Hob's set abstra
tion supports typestate-style reasoning at the level of individualobje
ts (for example, all obje
ts in the ExposedCells set 
an be viewed as havinga 
on
eptual typestate Exposed). Our system also supports the notion of globaltypestate. (Note that we have used both of these sorts of typestates�lo
al andglobal typestates�in the earlier water ben
hmark as well.) The Board module, forexample, has a global gameOver boolean variable whi
h indi
ates whether or not thegame is over. The Hob system uses this variable and the de�nitions of relevant setsto ensure the preservation of the following s
ope invariant,

gameOver ∨ disjoint(MinedCells, ExposedCells).This s
ope invariant 
onne
ts a global typestate property�is the game over?�with a obje
t-based typestate state property evaluated on obje
ts in the program�nomined 
ells are also exposed. As des
ribed in Chapter 3, the Hob system asks analysisplugins to verify these s
ope invariants by 
onjoining the invariants to pro
edurepre
onditions and post
onditions. Note that s
ope invariants must be true in theinitial state of the program. If some initializer must exe
ute �rst to establish aninvariant, then the invariant 
an be guarded by a global typestate variable whi
h theinitializer sets to true. Note the similarity between su
h a initialization guard andthe gameOver guard that appears above.A se
ond s
ope invariant states equalities between sets:
(Board.ExposedCells = ExposedSet.Content) ∧

(Board.UnexposedCells = UnexposedList.Content).This property ensures that the state of the board is 
onsistent�in other words, thatthe ExposedSet and UnexposedList heap data stru
tures and the Board do not 
on-tain 
ontradi
tory information. The Hob system veri�es this property by 
onjoiningit to the ensures and requires 
lauses of appropriate pro
edures. In this 
ase, itturns out that the Board module be
omes responsible for maintaining this invariant.131



Yet the analysis of the Board module does not, in isolation, have the ability to 
om-pletely verify the invariant: the �ags analysis 
annot reason about the 
on
rete stateof ExposedSet.Content or UnexposedList.Content (whi
h are de�ned in othermodules). Instead, relying on the ensures 
lauses of Board's 
allees, in 
ombinationwith its own reasoning that tra
ks membership in the ExposedCells set, enables ouranalysis to verify the invariant (assuming that ExposedSet and UnexposedList work
orre
tly).7.5 Impli
ations of Modular AnalysisWhile the Hob system was designed to verify both that modules preserve internal datastru
ture 
onsisten
y properties and that modules preserve 
onsisten
y propertiesrelating data stru
tures, Hob's modular analysis approa
h approa
h often allows thetwo kinds of properties�properties of 
oordination modules and of leaf modules�to be veri�ed separately. Coordination modules are those that de�ne few, or no,abstra
t sets of their own, but instead 
oordinate the a
tivity of other modules toa

omplish tasks. In the minesweeper ben
hmark, the View and Controller modulesare examples of su
h modules. The View module has no state at all; it simply queriesthe board for the 
urrent game state and 
alls the system graphi
s libraries to displaythe state. Conversely, leaf modules su
h as ExposedSet and UnexposedList oftenimplement a single data stru
ture and ensure that the data stru
ture remains in a
onsistent state. Su
h modules do not 
oordinate the a
tions of other modules andusually state no inter-data stru
ture 
onsisten
y properties.Be
ause 
oordination modules 
oordinate the a
tions of other modules�and donot en
apsulate any data stru
tures of their own�the analysis of these modules onlyneeds to operate at the level of abstra
t sets. Our �ags analysis is 
apable of ensuringthe validity of these modules sin
e it 
an tra
k abstra
t set membership, solve formulasin the boolean algebra of sets, and in
orporate the e�e
ts of invoked pro
edures asit analyzes ea
h module. Note that for these modules, our �ags analysis need notreason about any 
orresponden
e between 
on
rete data stru
ture representationsand abstra
t sets; it instead assumes that the modules whi
h implement the setsproperly implement the 
orresponden
e between implementations and spe
i�
ations.7.6 Summary and Re�e
tionsWe have used the Hob system to verify a number of data stru
tures, in
luding thosebased on linked lists and arrays, using theorem proving and shape analysis te
h-niques. Furthermore, we have veri�ed 
onsisten
y properties for three 
omplete ap-pli
ations: the water mole
ule simulation, a web server, and an implementation of theminesweeper game. These implementations in
lude up to 2000 lines of implementa-tion and 500 lines of spe
i�
ation. The spe
i�
ations that we have 
he
ked using Hobin
lude a number of properties that re�e
t appli
ations' design information, enablingdevelopers to verify that programs 
onform (and that they 
ontinue to 
onform) totheir designs. 132



Re�e
tions on the Hob spe
i�
ation approa
h. Our design de
ision limitingthe expressive power of our spe
i�
ation language made this language espe
ially suit-able for spe
ifying properties related to a program's design. The fa
t that Hob's setspe
i�
ations fo
us on sets as abstra
tions of data stru
tures�whi
h are 
entral toa program's operation�implies that su
h spe
i�
ations 
an more e�e
tively exposedesign information than full fun
tional spe
i�
ations. As an example, 
onsider againthe s
ope invariant about the disjointness of mined 
ells and exposed 
ells:
gameOver ∨ disjoint(MinedCells, ExposedCells).This invariant is remarkably 
on
ise. It states that either the gameOver boolean �agis true, or that the sets MinedCells and ExposedCells are disjoint. The invarianttherefore 
onstrains the program's state in a highly domain-spe
i�
 way. Note thatthis invariant is not a generi
 property that holds for all programs, but rather aproperty spe
ialized to this parti
ular appli
ation. Additionally, this invariant statesa fa
t that is relevant to end users: users expe
t that a minesweeper implementationshould not expose a mined 
ell unless the game is over.Furthermore, this invariant has a pre
ise meaning: given any state of the 
on
reteheap, it is possible to de
ide whether or not the invariant holds in that state. TheHob system de
ides whether or not an invariant holds by using the de�nitions ofthe MinedCells and ExposedCells sets. In this parti
ular 
ase, we de�ned boththe MinedCells and ExposedCells sets using the �ags plugin; for instan
e, the

MinedCells set 
onsists of the heap obje
ts with �elds init and isMined both setto true. Note that these set de�nitions have been fa
tored out of the invariant itselfand into the appropriate abstra
tion modules (as des
ribed in Chapter 4). Developersmay therefore swap out set de�nitions and repla
e them with di�erent de�nitions,even de�nitions whi
h are to be veri�ed using di�erent analysis plugins. Invariantssu
h as this one therefore illustrate how the Hob system enables developers to verifyproperties of arbitrarily 
ompli
ated data stru
tures and relationships between su
hdata stru
tures.If we view invariants as distilled design information, then set de�nitions are ir-relevant to the invariants, and the invariants are better expressed without inlineset de�nitions. Consider the minesweeper invariant above. For the purposes of theminesweeper appli
ation's design, it is unimportant that the ExposedCells set 
on-sists of those Cell obje
ts with �eld isExposed set to true. It is only important thatthe ExposedCells set and the MinedCells sets are disjoint. Of 
ourse, developersdo need to agree on a 
ommon vo
abulary before they 
an 
ommuni
ate using thesesets; the need to assign meaningful names to sets is similar to the need to assignmeaningful names to pro
edures and 
lasses.Our de
ision to use a set spe
i�
ation language also�unexpe
tedly�enabled usto deploy a simple loop invariant inferen
e algorithm, whi
h we previously des
ribedin Se
tion 6.6. This algorithm worked fairly well in our experien
e and it 
ontributedto our veri�
ation of the minesweeper and web server examples.Of 
ourse, sin
e our spe
i�
ations are partial and set-based, they do not always133




apture all important design de
isions. For instan
e, one property that we would haveliked to state and verify for the web server was that the 
ontent length, as stated inthe response header, always 
orresponds to the number of bytes that we send tothe 
lient. However, this property is inexpressible in Hob's spe
i�
ation language:we 
hose to omit integers from the spe
i�
ation language to limit the 
omplexity ofthe required de
ision pro
edure and to enable the use of pre-existing tools to de
ideformulas expressed in the Boolean algebra of sets.Implementation language design. To evaluate the Hob approa
h, we had todevelop programs for the Hob implementation language and write spe
i�
ations forthem. In our experien
e, it was in
onvenient to port programs to the Hob imple-mentation language, due to its la
k of modern programming language features su
has dynami
 dispat
h. In retrospe
t, we might have 
hosen to in
lude more featuresin the programming language, whi
h would have made it slightly more di�
ult toimplement the Hob system, but mu
h easier to write programs for it. Be
ause one ofthe primary bottlene
ks in our resear
h was the availability of ben
hmarks, it seemsthat trading in
reased system development 
omplexity for de
reased ben
hmark de-velopment 
omplexity would have been advantageous.Consisten
y properties for leaf and 
oordination modules. Our experien
eillustrated that it was possible to verify 
onsisten
y properties for leaf modules (whi
hdo not make any 
alls to other modules) using modular stati
 analysis te
hniques.The analysis of the linked list using the PALE plugin showed that it is possible touse stati
 analysis to verify properties that go beyond what is possible to verify usingtesting, sin
e it would be di�
ult to 
onstru
t a test 
ase whi
h exposes the problem.Reasoning about 
oordination modules that use higher-level set spe
i�
ations sug-gests that it is possible to use Hob's set spe
i�
ations to build more s
alable and moreautomated stati
 analyses whi
h verify design properties. We found that it was pos-sible to verify typestate properties for systems, as we did in the water example. Su
hproperties ensure that the proper operations o

ur in the 
orre
t order, both at aglobal level and at a per-obje
t level. The minesweeper and web server examplesfurthermore demonstrated that it was possible to verify properties whi
h related datastru
tures (using their set spe
i�
ations). In our experien
e, we found that theseproperties su

essfully expressed design-level information about the programs thatwe were verifying.User relevan
e. We were surprised to �nd that Hob's set spe
i�
ations are well-suited for expressing outward-looking user-level 
onstraints on the program's be-haviour. Generally, stati
 analysis te
hniques operate by reading sour
e 
ode and
reating models of the program's 
on
rete data stru
tures. It is possible to use thesemodels to 
onstrain permissible program states. However, in general, 
onstraining
on
rete program states may or may not a�e
t the program's observable behaviour:it is quite di�
ult to relate the state of a program's internal data stru
tures and aset of desired program outputs. 134



Hob's set spe
i�
ations, however, allowed us to express the following user-visible
onstraints in both the minesweeper and web server ben
hmarks:� In the web server ben
hmark, set spe
i�
ations ensure that response headersare always for the 
urrent request and are never stale.� In the minesweeper ben
hmark, set spe
i�
ations ensure that the mined 
ellsare never exposed unless the game is over.Hob's developer-provided set de�nitions enable stati
 analyses to verify propertiesthat dire
tly a�e
t user-relevant 
on
erns (in our above example, 
ontents of the re-sponse header and the set of mined 
ells) by translating them into 
onstraints on the
on
rete program state (the state of the linked list or array). The abstra
tion fun
-tions that make up Hob set de�nitions therefore make it possible for our Hob analysissystem to stati
ally verify properties that dire
tly a�e
t the program's output. Hob'sability to state and verify properties that are dire
tly relevant to users of the softwaremakes Hob's veri�
ation approa
h espe
ially 
ompelling to developers and valuableto their end users.
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Chapter 8Related WorkThe Hob spe
i�
ation language enables developers to su

in
tly express design prop-erties. One of our primary goals in designing Hob was to make design informationrelevant, a

essible and understandable. The Hob spe
i�
ation language thereforeallows developers to spe
ify a sele
ted subset of 
riti
al design properties. We be-lieve that our spe
i�
ation language hits a �sweet spot� between expressiveness andveri�ability; it is targetted parti
ularly towards expressing data stru
ture properties.We 
ontrast Hob's streamlined spe
i�
ation language to more powerful spe
i�
ationlanguages su
h as Z and VDM, whi
h allow developers to spe
ify (but not automati-
ally verify) arbitrary properties of systems, as well as design notations su
h as UML,whi
h are spe
ialized for design properties (again, without veri�
ation support).Hob relies on stati
 analysis to automati
ally verify that systems 
onform to theirdesign properties. We dis
uss related work on stati
 analysis te
hniques, in
ludingtypestate systems, shape analysis, model 
he
king and abstra
t interpretation. Hob'sprimary 
ontribution in this area is in integrating di�erent analysis te
hniques byusing the program's module stru
ture and using the 
ombined power of these analysiste
hniques to verify data stru
ture 
onsisten
y properties; we 
ompare Hob to relatedresear
h that 
ombines de
ision pro
edures.8.1 Spe
i�
ation LanguagesProgram spe
i�
ations enable modular veri�
ation by enabling the veri�
ation ofprogram parts�modules�against their interfa
es. Most related work in the area ofspe
i�
ation languages proposes 
omplete methodologies for better software devel-opment. Hob, on the other hand, uses a spe
i�
ation language to enable programveri�
ation. Be
ause the design of the spe
i�
ation language in�uen
es the types ofproperties that an asso
iated veri�
ation system 
an ensure, we next survey relatedwork on spe
i�
ations for software systems.Spe
i�
ation methodologies typi
ally 
over the part of a proje
t's life
y
le betweenthe proje
t's design phase and its implementation and delivery to 
ustomers. Someof these methodologies (for instan
e, Z) provide a general notation whi
h develop-ers may use to express program properties, but still expe
t developers to 
arry out137



proofs by hand. Most of these methodologies in
lude some tool support in the formof veri�
ation 
ondition generators and proof assistants. However, unlike Hob, thesemethodologies do not leverage 
urrent stati
 analysis te
hnologies, su
h as shape anal-ysis, to automati
ally verify program properties. In the absen
e of automati
 supportfor verifying 
onforman
e to spe
i�
ations, design drift�the phenomenon wherebydesign information be
omes outdated and therefore fails to re�e
t the 
urrent 
apa-bilities of a software system�inevitably be
omes a problem, espe
ially 
onsideringthat software maintenan
e typi
ally 
ontinues long after the software has been ini-tially delivered to 
ustomers.Origins of spe
i�
ation languages. Parnas was one of the earliest advo
ates formodule spe
i�
ations in [80℄. Many of the ideas proposed in this work have be
ome
ommonly a

epted, at least in prin
iple. The basi
 proposal is that spe
i�
ationsshould enable the developers of a module and the 
lient of that module to 
ommuni-
ate e�e
tively. Spe
i�
ations should hide implementation details but expose usage
onstraints and guarantees. Parnas a
knowledges that spe
i�
ations 
an easily beerroneous. Sin
e spe
i�
ations generally 
annot be exe
uted, Parnas suggests thatdevelopers should 
arry out manual symboli
 testing of spe
i�
ations: they shouldinvent a number of predi
ates whi
h ought to be 
onsequen
es of their spe
i�
ationsand verify that these predi
ates do hold.The original proposal for spe
i�
ations [80℄ does not propose a spe
i�
 spe
i�
ationlanguage1. Hob's set-based spe
i�
ations are espe
ially appropriate for data stru
ture
onsisten
y properties. However, many other spe
i�
ation notations exist, and wenext dis
uss some of these notations. We start with notations that are intended tomodel systems in general, su
h as the Z notation, and 
ontinue with wide-spe
trumspe
i�
ation languages and obje
t models. We then explore spe
i�
ation languagesthat are more spe
i�
ally targetted towards programs rather than systems, like theLar
h and JML spe
i�
ation notations. Like the Lar
h and JML approa
hes, the Hobapproa
h embeds spe
i�
ation information dire
tly into the program sour
e 
ode. Hobgoes beyond previous approa
hes: one of Hob's major 
ontributions is in verifyingthat implementations a
tually 
onform to their spe
i�
ations.The Z spe
i�
ation language. The Z notation [94, 89℄ allows system designersand implementers to express properties of their systems. Z was primarily designed asa notation for writing spe
i�
ations and for manually proving statements about thesespe
i�
ations; it is parti
ularly 
onvenient for writing short proofs about equivalen
esbetween Z spe
i�
ations.Z is based on �rst-order predi
ate logi
 and typed set theory. Z spe
i�
ations aretherefore unde
idable in general; that is, no algorithm 
an 
he
k (in general) thatZ spe
i�
ations are logi
ally 
onsistent, and the developer 
annot 
ompute (in all
ases) whether a given statement is implied by a system's spe
i�
ations. A numberof tools exist to type
he
k, model 
he
k and animate (i.e. exe
ute on small examples)1Parnas states, in a footnote, that the spe
i�
ation language that he uses in his paper should notbe 
onsidered in any way to be a model spe
i�
ation language, due to its short
omings.138



Z spe
i�
ations. These tools 
an in
rease a developer's 
on�den
e that his system'sspe
i�
ations are meaningful, but 
annot provide any guarantees to that e�e
t. Thepower of the Z notation enables it to 
ompletely spe
ify system properties, so that�inprin
iple�any system 
ould be spe
i�ed 
ompletely, even down to the implementationlevel.Z spe
i�
ations have been used to design large industrial systems. One reportis [46℄, whi
h des
ribes the experien
e of some pra
titioners at IBM in spe
ifyingthe CICS transa
tion pro
essing system. Even without any automati
 veri�
ationof the spe
i�
ations or the resulting implementations, they reported that the useof formal spe
i�
ations led to implementations with fewer errors in general, and toearlier dete
tion.Be
ause Z and Hob have di�erent design goals�Z enables developers to stateproperties of systems while Hob enables developers to verify data stru
ture 
onsis-ten
y properties�Z and Hob di�er in terms of spe
i�
ation language expressiveness.Hob requires developers to spe
ify more spe
ialized properties than Z; Hob's prop-erties are either global or lo
al data stru
ture 
onsisten
y properties. Global datastru
ture 
onsisten
y properties state relationships between sets (de�ned in termsof abstra
tion fun
tions), while lo
al 
onsisten
y properties primarily ensure thatset implementations maintain the proper invariants. Developers bene�t from usingHob spe
i�
ations be
ause their implementations 
an be veri�ed against propertiesspe
i�ed for the Hob system; this is not true for properties spe
i�ed in terms of Zdesigns.We are aware of one proof assistant for Z spe
i�
ations, ProofPower, whi
h usesan implementation of higher-order logi
 (HOL) as its ba
kend and embeds Z intoHOL. However, to our knowledge, there are no analogues to the Hob system whi
h
an automati
ally prove that implementations�espe
ially implementations with heapdata stru
tures�
onform to their Z spe
i�
ations.Wide-spe
trum spe
i�
ation languages. The wide-spe
trum spe
i�
ation lan-guage approa
h attempts to help developers ensure that implementations mat
h theirspe
i�
ations by providing a family of synta
ti
ally related languages to both spe
-ify and implement systems [49, 34, 22, 2℄. Previous work on automati
ally provingthat implementations 
onform to their spe
i�
ations has been sparse, and we are notaware of any su
h resear
h in the 
ontext of wide-spe
trum spe
i�
ation languages.Often, developers �nd de�
ien
ies in spe
i�
ations while implementing them.When 
orre
ting these de�
ien
ies, developers must take 
are to expli
itly updateboth the original spe
i�
ation and its implementation. In pra
ti
e, implementationsand spe
i�
ations tend to end up diverging�or drifting�in the absen
e of tools thatautomati
ally verify that an implementation 
onforms to its spe
i�
ation. We 
allthis phenomenon design drift.The Hob approa
h does not use a wide-spe
trum spe
i�
ation language; we in-stead provide separate spe
i�
ation and implementation languages, and automati
allyverify the 
onforman
e of an implementation to its spe
i�
ation using the providedabstra
tion fun
tions. Hob therefore guarantees that a program's implementation139




ontinues to 
onform to its design throughout its maintenan
e phase, preventing de-sign drift.Perhaps the most-used wide-spe
trum spe
i�
ation approa
h is the Vienna De-velopment Method [49℄; its su

essor VDM++ [34℄ extends VDM with support forobje
t-oriented analysis and design. VDM is quite expressive; it enables developers towrite spe
i�
ations for systems using numbers, sets, maps, sequen
es, and fun
tions.In fa
t, it is so expressive that the type-
he
king problem for VDM is unde
idable, be-
ause types may depend on 
onditional VDM expressions. VDM has been extensivelyused in industry; published examples in
lude models of railway interlo
k systems, nu-
lear safety systems, and telephone ex
hanges [62℄. The primary tool supporting theVDM is the VDM++ Toolbox [21℄, whi
h in
ludes some support for type 
he
king,an interpreter for exe
utable VDM spe
i�
ations, an veri�
ation 
ondition generatorfor VDM models whi
h generates 
onditions that ensure that these models are freeof run-time errors, a test fa
ility, and an automati
 
ode generator. Other wide-spe
trum languages in
lude RAISE [22℄, whi
h adds support for modular reasoningand 
on
urren
y, and the B-method [2℄, whi
h uses abstra
t ma
hines to represent thea
tions of the system. These spe
i�
ation languages generally require manual proofsof re�nements between di�erent levels of spe
i�
ations and implementations. TheHob approa
h, on the other hand, automati
ally veri�es that implementations 
on-form to their spe
i�
ations. Hob's approa
h helps prevent design drift by informingdevelopers immediately when implementations and spe
i�
ations diverge; it is there-fore possible to impose development pro
esses that require developers to immediately
orre
t either the implementation or the spe
i�
ation in 
ase of divergen
e.Lar
h. The Lar
h proje
t [44℄ explored the expressive potential of spe
i�
ation lan-guages. In the Lar
h approa
h, spe
i�
ations had two parts: an auxiliary spe
i�
ationand a trait. Traits enable developers to state properties of the mathemati
al obje
tsthat appear in Lar
h spe
i�
ations. Using these traits, developers would be able touse appropriate notations for the spe
i�
ation task at hand. Hob, on the other hand(like VDM and Z) takes a strong position on the types of spe
i�
ations that users maywrite; we 
hose set spe
i�
ations for Hob be
ause we believe that sets are parti
ularlyapt for stating data stru
ture 
onsisten
y properties. Furthermore, Hob spe
i�
ationsare designed primarily to enable veri�
ation.Hob does support extensibility in the following sense: it allows developers toprovide user-de�nable abstra
tion fun
tions whi
h relate 
on
rete states to abstra
tstates as implemented in analysis plugins; if Hob's set of analysis plugins is insu�
ient,then developers may write their own analysis plugins. By �xing the spe
i�
ation lan-guage to the boolean algebra of sets, we simplify the task of analysis plugins; after all,plugins must 
onsume and produ
e 
onditions expressed in the 
ommon spe
i�
ationlanguage, and an overly-
ompli
ated spe
i�
ation language would impose an ex
essiveburden on writers of analysis plugins. We believe that the 
hoi
e of a set spe
i�
ationlanguage is a reasonable 
ompromise between expressiveness and tra
tability in thisregard.We next highlight the di�eren
es between Lar
h and Hob by brie�y dis
ussing140



the spe
i�
ation of a bounded sta
k in Lar
h. Basi
ally, the Lar
h spe
i�
ation doesnot abstra
t away the ordering of the elements in the sta
k, while Hob representsthe 
ontents of the sta
k as an (unordered) set. When using the Lar
h spe
i�
a-tion, the developer must refer to a sta
k state by writing a sequen
e of operations,e.g. push(push(push(empty, S), 2), 3), 
onsistent with a world-view based onalgebrai
 spe
i�
ations of abstra
t data types. The Hob approa
h instead allows de-velopers to state set-based properties of the sta
k's 
ontents. This enables developersto state, for instan
e, that the sta
k's 
ontents are disjoint from some other datastru
ture's 
ontents.One limitation of the algebrai
 spe
i�
ation methodology is that it is di�
ult tostate global program properties using algebrai
 spe
i�
ations. Be
ause the Hob spe
-i�
ation language supports global data stru
tures and has set-based spe
i�
ations,it 
an easily state global program properties, whi
h will appear as relations betweensets.In general, the Lar
h system does not have many tools for reasoning about im-plementations, sin
e it was designed to explore issues asso
iated with spe
i�
ationlanguages. One implementation-oriented tool is LCLint [29℄, whi
h performs a lim-ited set of stati
 
he
ks for generi
 memory-safety properties, guided by some Lar
hprogram properties. LCLint veri�es that programs never violate abstra
tion barriers;that they always spe
ify and use all global variables; that modi�es 
lauses are a

u-rate (with some limitations and some unsoundness); that uses o

ur after de�nitions;and that ma
ros are properly used.Note in parti
ular that LCLint does not perform any 
he
ks based on requiresor ensures 
lauses. Contrast this to Hob�one of the key goals of the Hob systemis to verify that ea
h pro
edure's ensures 
lause always holds upon exit from thatpro
edure, as long as the requires 
lause holds upon entry.Java Modelling Language. The Java Modelling Language enables developers tospe
ify properties for Java programs. JML applies many of the ideas from the Lar
hproje
t to obje
t-oriented Java programs. JML spe
i�
ations are typi
ally embeddedas 
omments within Java programs. The spe
i�
ation language mostly 
ontains Javaexpressions, plus a few extra keywords.Unlike Lar
h, Hob is designed to allow designers and developers to express andverify design-level information about a bounded (at 
ompile time) 
olle
tion of namedabstra
t sets of obje
ts. Hob's spe
i�
ation language is the boolean algebra over setsand boolean variables. Unlike JML spe
i�
ations, whi
h support implementation-level 
onstru
ts su
h as strings, integers, or �oating-point values, Hob's set-basedspe
i�
ation language is fo
ussed on a parti
ular set of properties that we believe isimportant and relevant to a system's design.We �nd our approa
h produ
tive in that it fo
usses the attention of the design-ers and developers on some important 
ore aspe
ts of the design and fa
ilitates thee�e
tive veri�
ation of those aspe
ts. In parti
ular, the Hob approa
h dis
ouragesdevelopers from writing spe
i�
ations that simply reiterate the implementation usingspe
i�
ation-level 
onstru
ts, be
ause we 
hose to omit the needed 
onstru
ts from141



the Hob spe
i�
ation language.8.1.1 Expressing design informationThe spe
i�
ation languages we have dis
ussed so far are primarily targetted towardsexpressing general system properties. We next dis
uss notations that were targettedspe
i�
ally for expressing design properties, in
luding some that address the issue ofdesign drift by extra
ting models dire
tly from sour
e 
ode. We believe that su
happroa
hes are most likely to su

eed in addressing the design drift problem.Obje
t Models. Obje
t-oriented analysis and design rely on a suite of te
hniquesfor spe
ifying (typi
ally software-based) systems. The 
entral te
hnique is obje
tmodelling. An obje
t model graphi
ally des
ribes the design of a system with boxesfor the di�erent 
lasses in a software system and arrows for the relationships betweenthese 
lasses. The most popular methodology for obje
t-oriented design is the Uni�edModelling Language [83℄. When following the UML methodology, a developer 
reatesa set of design artifa
ts whi
h des
ribe the system being designed and implemented.These artifa
ts are intended to be des
riptive, not pres
riptive; nothing guaranteesthat a system 
onforms to its design. It is the sole responsibility of the developer toensure that the artifa
ts produ
ed at ea
h stage remain 
onsistent with ea
h other,without even the notational help provided by wide-spe
trum spe
i�
ation languages.The UML approa
h typi
ally does not in
lude formal veri�
ation.There is ri
h tool support for obje
t models; some tools, in
luding TogetherJ andRational Rose, help the developer ensure that the implementation is 
onsistent withthe obje
t model by automati
ally generating a skeleton of the implementation fromthe obje
t model. Nevertheless, su
h approa
hes are still a�e
ted by the design driftproblem: unless the model is generated from the sour
e, the sour
e and model willdiverge in the 
ourse of development. We have previously developed the token anno-tation system, whi
h embeds obje
t modelling metadata into Java sour
e 
ode and
an later automati
ally extra
t this metadata to generate the model [61℄. We believethat su
h an approa
h will fa
ilitate the di�
ult task of keeping design informationup-to-date.Traditional obje
t models do not in
lude 
onstraints on system behaviours; obje
tmodels are instead intended for spe
ifying the system ar
hite
ture, i.e. the 
onne
-tions between di�erent system 
omponents. The Obje
t Constraint Language [79℄and the Alloy system [3℄ provide two ways of spe
ifying system behaviours on top ofobje
t models. Alloy also in
ludes tools for visualizing and automati
ally 
he
king
onsisten
y properties of these obje
t models, using bounded model 
he
king. Thesetools, however, do not verify that implementations of the obje
t models 
onform tothe original models.Be
ause the Hob approa
h attempts to verify data stru
ture 
onsisten
y prop-erties, its fo
us is quite di�erent from that of obje
t modelling languages. The keyfeatures relevant to an obje
t modelling language are the expressive power and theease-of-use of that language. The Alloy language was also designed to fa
ilitate in-ternal 
onsisten
y 
he
ks for spe
i�
ations. The Hob spe
i�
ation language supports142



more than just obje
t models and internal 
onsisten
y 
he
ks; we designed it in 
on-
ert with the Hob implementation language and the abstra
tion languages to enablethe stati
 veri�
ation of data stru
ture 
onsisten
y properties.Design 
onforman
e. Re�exion models [74℄ support the 
on
ept of design 
onfor-man
e: they enable developers to developers propose a model of a software systemand then 
ompare properties of the a
tual system to the model. The idea is to usean algorithm to extra
t a model from the sour
e 
ode; their tool then presents thedi�eren
e between the proposed model and the extra
ted model to the developer. Re-�exion models may, in prin
iple, use many di�erent kinds of models. In their paper,Murphy et al. propose the following model extra
tion algorithm: group a numberof �les together as a module (using wild
ards) and use pro
edure 
alls to de�ne theinter-module intera
tion stru
ture. Other model extra
tion algorithms would also bepossible. Like Hob, re�exion models atta
k the problem of design drift, by identifyingdi�eren
es between the intended design and the a
tual implementation. While su
han approa
h is quite useful, Hob 
an en
ode many design properties that would bedi�
ult to express in terms of graphi
al re�exion models. Be
ause Hob expressesproperties of the program state, it 
an state (for example) that two sets are alwaysdisjoint.The Pattern-Lint tool [85℄ uses dynami
 analysis and shallow stati
 analysis te
h-niques to verify whether or not software systems 
onform to desired ar
hite
tural 
on-straints. The novelty in Pattern-Lint appears to stem from how it de
ides whether ornot systems 
onform to their designs: Pattern-Lint 
olle
ts eviden
e for and against adesign property to de
ide whether or not the implementation 
onforms to that designproperties. Pattern-Lint only uses very simple stati
 analysis te
hniques: it appearsto only inspe
t method 
alls and shared global variable a

esses.8.2 Analysis Te
hnologies and Veri�
ation SystemsThe Hob system veri�es set-based spe
i�
ations by 
ombining various stati
 analysisand theorem proving te
hnologies. We next dis
uss a number of related approa
hesto stati
 program veri�
ation. A number of these approa
hes are stati
 analysis ap-proa
hes; these in
lude typestate systems, shape analysis, and abstra
t interpretation.We also des
ribe some resear
h whi
h uses model 
he
king. The typi
al appli
ationof model 
he
king veri�es that module interfa
es are used appropriately (but, unlikeHob, does not verify that the modules are properly implemented). Finally, we dis
usstheorem proving te
hnology; in our 
ontext, theorem provers help 
onstru
t proofsthat indi
ate that implementations have desired properties.In general, ea
h of the resear
h proje
ts below presents a single approa
h to veri-fying a single 
lass of program properties; there is no e�ort to integrate results fromdi�erent analysis approa
hes. For instan
e, ESC/Java uses the Simplify theoremprover to dis
harge all of its veri�
ation 
onditions. We believe that by applying spe-
ialized tools�working together�to spe
ialized 
lasses of data stru
ture 
onsisten
y143



properties, the Hob system enables the veri�
ation of more sophisti
ated propertieson larger programs than previous resear
h.Typestate systems. Typestate systems tra
k the 
on
eptual states that ea
h ob-je
t goes through during its lifetime in the 
omputation [91, 23, 32, 31, 28℄. Theygeneralize standard type systems in that the typestate of an obje
t may 
hange duringthe 
omputation. Aliasing (or more generally, any kind of sharing) is the key problemfor typestate systems�if the program uses one referen
e to 
hange the typestate ofan obje
t, the typestate system must ensure that either the de
lared typestate of theother referen
es is updated to re�e
t the new typestate or that the new typestate is
ompatible with the old de
lared typestate at the other referen
es.Most typestate systems avoid this problem altogether by eliminating the possi-bility of aliasing [91℄. Generalizations support monotoni
 typestate 
hanges (whi
hensure that the new typestate remains 
ompatible with all existing aliases) [32℄ andenable the developer to temporarily prevent the program from using a set of potentialaliases, 
hange the typestate of an obje
t with aliases only in that set, then restorethe typestate and reenable the use of the aliases [30℄. It is also possible to supportobje
t-oriented 
onstru
ts su
h as inheritan
e [24℄. Fink et al. propose the integrationof pointer analysis te
hniques with typestate property veri�
ation for Java programsin [33℄. Their te
hnique s
ales due to the use of a series of abstra
tions: the simplerabstra
tions qui
kly rule out many potential problems and leave more sophisti
atedproperties to more expensive analyses. The role system [54℄ also integrates pointeranalysis te
hniques with typestate veri�
ation. In the role system, however, the de-
lared typestate of ea
h obje
t 
hara
terizes all of the referen
es to the obje
t, whi
henables the typestate system to 
he
k that the new typestate is 
ompatible with allremaining aliases after a nonmonotoni
 typestate 
hange.In our approa
h, the typestate of ea
h obje
t is determined by its membership inabstra
t sets as determined by the values of its en
apsulated �elds and its parti
ipa-tion in en
apsulated data stru
tures. Our generalizations of typestate in
lude mul-tiple orthogonal typestates (
orresponding to multiple sets), and, most importantly,the ability to verify a
tual properties asso
iated with the typestate abstra
tion, asopposed to taking for granted the 
orre
tness of interfa
e spe
i�
ations.Bierho� and Aldri
h des
ribe a dynami
 analysis system for verifying typestateproperties in Java programs that 
orre
tly handles typestates in the 
ontext of sub-
lassing [8℄. Like Hob, [8℄ also supports multiple orthogonal typestates. While adynami
 analysis 
an prevent programs from exe
uting undesirable a
tions, typi
allyby terminating a program when it attempts to exe
ute su
h a
tions, the advantageof our stati
 approa
h is that it provides stronger guarantees that programs never vi-olate typestate 
onstraints on any possible exe
ution before a
tually exe
uting theseprograms.Shape analysis. The goal of shape analysis is to verify that programs preserve 
on-sisten
y properties of (potentially-re
ursive) linked data stru
tures. In [67℄, Lu
khamand Suzuki des
ribe an early attempt to verify properties of linked data stru
tures.144



They expli
itly in
orporate rea
hability and a
y
li
ity into the �rst-order StanfordPas
al Veri�er logi
. Their tool dedu
es that the appropriate shape 
onstraints hold,making use of user guidan
e throughout the theorem proving pro
ess. However, theydo not have any notion of shape abstra
tions as in modern shape analysis, so thatthe desired program properties are expressed as assertions in Pas
al-like expressionsaugmented with the rea
hability predi
ate; it is therefore di�
ult to modularize theirapproa
h.Sin
e then, resear
hers have developed many shape analyses and the �eld remainsone of the most a
tive areas in program analysis today [41, 71, 54℄. In general, shapeanalyses fo
us on extra
ting and verifying detailed 
onsisten
y properties of individualdata stru
tures.We expli
itly mention TVLA, the Three-Valued Logi
 Analysis engine [84℄. TVLAhas some similarity to Hob in that it is not a single analysis, but rather a frameworkwhi
h allows resear
hers to spe
ify spe
i�
 abstra
tions of the heap. The TVLA toolembeds the operational semanti
s of a parti
ular implementation language and pro-du
es abstra
t interpreters for this language using the spe
i�ed abstra
tion. The Hobframework gives developers more �exibility to develop analysis plugins�Hob plug-ins do not ne
essarily have to use abstra
t interpretation, as shown by our theoremproving plugin. We also designed Hob so that it would be able to verify higher-leveldomain-spe
i�
 properties, in addition to low-level properties of the 
on
rete heap.Be
ause shape analyses are very pre
ise, the detail of the properties these analysesmust tra
k have limited their s
alability. One of our primary resear
h goals is toenable the appli
ation of these sophisti
ated analyses in a modular fashion, with ea
hanalysis operating on only that part of the program relevant for the properties thatit is designed to verify.Model Che
king Approa
hes. Model 
he
king is a lightweight approa
h to pro-gram veri�
ation that attempts to dete
t violations of 
ertain spe
i�
ation propertiesin systems by setting up an abstra
t model of the program and exhaustively test-ing the program in that abstra
t model. Bultan et al. des
ribe one appli
ation ofmodel 
he
king to modular veri�
ation in [7℄. Their resear
h fo
usses on dete
tingsyn
hronization errors in 
on
urrent programs: they �nd instan
es where programsimproperly order syn
hronization operations. Su
h a model-
he
king approa
h 
ane�e
tively use the information provided in terms of module interfa
es, as long as theinterfa
es have only �nite amounts of state (whi
h the model 
he
ker 
an exhaustivelyexplore); this is similar to verifying programs with typestate-like spe
i�
ations.Note that, like ESC/Java, Bultan's model-
he
king approa
h only veri�es theuse of the interfa
es, and not the underlying implementations of these interfa
es.The model 
he
king approa
h is not, in isolation, well-suited to verifying Hob-styleproperties of unbounded data stru
tures in the 
on
rete heap, be
ause it is di�
ultto exhaustively explore an unbounded data stru
ture. Te
hniques su
h as symboli
model 
he
king 
ould help, but have not yet been applied to heap data stru
tures.145



Abstra
t interpretation. The ASTREE stati
 analyzer [9℄ has su

essfully veri-�ed millions of lines of automati
ally generated C 
ode for the absen
e of run-timeerrors. Like Hob, ASTREE 
ombines a number of di�erent stati
 analyses to stati
allyverify program properties; ASTREE uses abstra
t interpretation over a number of spe-
ialized abstra
t domains. However, the goals of ASTREE di�er substantially fromour goals. We emphasize two points in parti
ular. First, ASTREE's input languageis a subset of C whi
h does not in
lude dynami
 memory allo
ation; we spe
i�
allydesigned Hob to support the in
lusion of shape analyses, whi
h reason about the rela-tionships between di�erent dynami
ally allo
ated obje
ts. Se
ond, ASTREE veri�esthat programs never en
ounter run-time errors su
h as out-of-bounds array a

essesand arithmeti
 over�ows; the set of properties of interest is built into the ASTREEanalyzer itself. The Hob system, on the other hand, veri�es developer-provided datastru
ture 
onsisten
y properties. These properties enable the developer to expressdomain-spe
i�
 program properties whi
h 
apture the program's design information.Stanford Pas
al Veri�er. The Stanford Pas
al Veri�er [40, 66℄ was an early pro-gram veri�
ation e�ort. It was surprisingly powerful for its time. Like Hob, theStanford Veri�er attempted to prove that a pro
edure's post
onditions held uponexit if its pre
onditions held upon entry. However, a key di�eren
e between Hob andthe Stanford Veri�er is that the Stanford Veri�er ex
lusively uses theorem provingto establish program properties, 
ompared to Hob's notion of analysis plugins. Ina retrospe
tive evaluation of the Stanford Veri�er [68℄, Lu
kham writes (in 1981)that �... theorem proving still represents a major bottlene
k in veri�
ation systems.�We believe that, even though theorem proving te
hnology has improved sin
e 1981,the use of stati
 analysis te
hniques�as in the Hob system�greatly fa
ilitates theveri�
ation of many important program properties.Another key di�eren
e between the Stanford Veri�er and Hob is in the expe
teds
ope of the pre
onditions and post
onditions. The Stanford Veri�er ambitiouslyattempted to prove partial 
orre
tness for pro
edures, rather than our more limiteddata stru
ture 
onsisten
y properties. Unfortunately, proving 
orre
tness for realisti
programs was beyond the 
apability of both the 
omputer hardware and the theoremproving te
hnology of the time. Note that, due to its design goals, the StanfordVeri�er a

epts pre
onditions and post
onditions dire
tly stated its underlying logi
(whi
h Lu
kham des
ribes as being �
umbersome�). Unlike Hob, it does not use a setspe
i�
ation language or abstra
tion fun
tions. Therefore, even though the StanfordVeri�er 
an reason about heap rea
hability using 
ustom reach primitives added ontop of its �rst-order logi
 [67℄, heap data stru
tures are quite di�
ult to reason aboutin pra
ti
e, due to the la
k of abstra
tion fun
tions. It is mu
h easier to expressproperties of sets using their names.ESC/Java and ESC/Java2. ESC/Java [36℄ (and its su

essor ESC/Java2) areprogram 
he
king tools whi
h aim to identify 
ommon errors in programs with the helpof program spe
i�
ations expressed in a subset of the Java Modelling Language [12℄.ESC/Java and ESC/Java2 
urrently use the Simplify theorem prover to verify pro-146



gram properties; their design is reminis
ent of the Stanford Pas
al Veri�er's design,updated to use more modern spe
i�
ation languages and theorem provers. The de-signers of ESC/Java have expli
itly stated that, like ASTREE, it was designed tostati
ally identify potential run-time errors, e.g. null-pointer ex
eptions. ESC/Javaadditionally attempts to establish, at least partially, that pre
onditions hold at 
allsites. The Hob system was prin
ipally designed to verify program-spe
i�
 properties,whi
h in
lude pre
onditions and post
onditions, but also global data stru
ture 
on-sisten
y properties. Hob's support for abstra
tion fun
tions and s
opes make datastru
ture 
onsisten
y properties mu
h easier to express.The ESC/Java2 tool [26, 18℄ extends the original ESC/Java work by supporting
urrent versions of Java and verifying more JML 
onstru
ts. In parti
ular, ESC/Java2(as well as ESC/Modula-3 [26℄) allows the use of heap abstra
tions via its support formodel �elds. Model �elds use developer-provided representations. These represen-tations are similar in spirit to the set de�nitions whi
h appear in Hob's abstra
tionmodules. However, not all model �elds are annotated with representations; for in-stan
e, the library annotations provided with ESC/Java2 for the LinkedList 
lassdo not dis
uss the a
tual 
on
rete 
ontents of the LinkedList as a set of obje
ts inthe heap. The �rst-order logi
 used by the underlying Simplify theorem prover [25℄does not support transitive 
losure; e�e
tive �rst-order approximations of transitive
losure are still a
tive areas of resear
h [76, 65, 56℄. ESC/Java2 has therefore not beenused to verify the 
on
rete data stru
ture 
onsisten
y properties that Hob veri�es forlinked lists, essentially be
ause its logi
 is not powerful enough. Cok explains howESC/Java2 handles model �elds in [17℄; essentially, it treats them as method 
allsand in
ludes the post
onditions of the model �elds' representations.On the other hand, the Hob system enables the developer to use�and verify�implementations whi
h use arbitrary set de�nitions, as long as an appropriate analysisplugin exists. This enables, for instan
e, the shape analysis and Isabelle plugins touse logi
s whi
h go far beyond the expressiveness of the set spe
i�
ation language.The logi
 used for inter-analysis 
ommuni
ation is still the �rst-order set-based spe
-i�
ation language, and we require that ea
h a analysis plugin be 
apable of reasoningabout the �rst-order set spe
i�
ation language.Spe
#. The Spe
# programming system [5℄ adds ESC/Java2-like features to C#,in
luding the ability to spe
ify method 
ontra
ts, frame 
onditions and 
lass 
ontra
ts.These 
ontra
ts may be veri�ed either at run-time or stati
ally. Stati
 veri�
ationrelies on the Boogie veri�er, whi
h uses a theorem prover to dis
harge its veri�
ation
onditions.We dis
uss two key di�eren
es between our approa
h and the proposed Boogieapproa
h. First, Boogie envisions the use of a single general-purpose theorem proverto dis
harge the generated veri�
ation 
onditions. Hob, on the other hand, is designedto support a diverse range of potentially narrow, spe
ialized analyses; as we've seen,this range in
ludes shape analyses, typestate analyses and intera
tive theorem provers.Hob's goal of supporting spe
ialized analyses is re�e
ted in Hob's format 
onstru
tand in its abstra
t set spe
i�
ation language, both of whi
h are designed to support a147



strong separation between di�erent analyses (su
h a separation is ne
essary, of 
ourse,if multiple analyses are to 
ooperate to su

essfully analyze a single program). Thisapproa
h minimizes the amount of expertise required to work within the Hob systemand maximizes the ability of developers with spe
ialized skills to 
ontribute to Hob.We believe that enabling as many developers to 
ontribute as possible will lead to ari
her, more powerful analysis system.Se
ond, Boogie is designed to verify obje
t invariants, with an obje
t ownershipme
hanism supporting the hierar
hi
al spe
i�
ation and veri�
ation of invariants thatinvolve hierar
hies of linked obje
ts. This me
hanism eliminates a form of spe
i�-
ation aggregation for 
omputations that traverse a hierar
hy of owned obje
ts�ifthe pro
edure 
all hierar
hy mat
hes the ownership hierar
hy, ea
h pro
edure needonly state 
onsisten
y requirements for the obje
t that it dire
tly a

esses, not all ofthe 
hild obje
ts that that obje
t owns. This hierar
hi
al spe
i�
ation approa
h isreminis
ent of hierar
hi
al a

ess spe
i�
ations in Jade [82℄ and hierar
hi
al lo
kingme
hanisms in databases [87℄.Hob, on the other hand, is designed to support 
omputations organized around a�at set of data stru
tures. The 
onstru
ts that eliminate spe
i�
ation aggregation 
uta
ross the pro
edure 
all hierar
hy rather than working within it. This adoption of
ross-
utting organizational approa
hes re�e
ts the maturation of 
omputer s
ien
e asa dis
ipline�over time, the overwhelming dominan
e of hierar
hi
al approa
hes willfade as the e�e
tiveness of using other approa
hes in addition to hierar
hies be
omesobvious.Other theorem provers. We use the Isabelle/HOL intera
tive theorem prover [81,78℄ to dis
harge the veri�
ation 
onditions generated by our theorem proving anal-ysis plugin. Other intera
tive theorem provers in
lude Athena [4℄, whi
h separates
omputations from dedu
tions in the 
ontext of proof presentations and sear
hes;HOL-Light [45℄, whi
h has an espe
ially small set of base axioms; and CVC Lite [6℄,whi
h is quite adept at automati
ally proving theorems about programs with arraysdue to its support for integer arithmeti
. Users of the ACL2 [50℄ theorem-provingsystem have applied theorem-proving te
hniques as well as term-rewriting te
hniquesto verify properties of large-s
ale systems, among them software systems [72℄. Withsome engineering work, any of these theorem provers ought to be embeddable intothe Hob system as an analysis plugin.Typi
al appli
ations of stati
 analysis. Many systems that use stati
 analysisto improve software quality, su
h as FindBugs [47℄, sear
h for violations of generi
properties that all programs written in a parti
ular programming language must sat-isfy. Other systems, su
h as Synergy [43℄, verify usage properties for system 
alls(su
h as lo
king primitives). While su
h properties are somewhat domain-dependent,in that they only apply to programs that belong to a 
ertain domain (e.g. devi
edrivers), these properties still do not dis
uss anything spe
i�
 about the programsthemselves. The spe
i�
ation languages that we have dis
ussed 
ould enable the ver-i�
ation of design-level properties. However, to our knowledge, other spe
i�
ation148



languages have not been used for verifying su
h properties. Note that the level ofdetail in most other spe
i�
ation languages makes it di�
ult to identify whi
h prop-erties are design properties in a potentially unwieldy spe
i�
ation. We believe theHob approa
h is the �rst approa
h that gives developers the power to both stateand verify truly domain-spe
i�
 properties whi
h 
an express aspe
ts of a softwaresystem's design.8.3 Combining Stati
 AnalysesOur resear
h aims to enable the appli
ation of multiple analyses that 
he
k arbitrarily
ompli
ated properties within a single program. This 
ontrasts with most existingapproa
hes, whi
h attempt to develop a single new analysis algorithm or te
hnique.Our system supports the loose integration of analyses where ea
h analysis applies toone pro
edure or module. The set spe
i�
ation language is key to this integration,as it serves as a lingua fran
a between analysis plugins. Hob's design de
isions weretaken, in part, to fa
ilitate the in
orporation of external tools.Most other veri�
ation systems 
ombine analyses by using a single analysis engine(usually a theorem prover) and 
ombine the de
ision pro
edures for di�erent prop-erties using Nelson-Oppen te
hniques [75℄ and their generalizations (e.g. [96, 97℄).Theorem provers based on these prin
iples in
lude Simplify [25℄, Verifun [35℄, andCVC [92℄. In [13℄, Chang and Leino explore an approa
h that proposes a tighter
ombination of a parti
ular domain (uninterpreted fun
tion symbols) with an arbi-trary base domain. Their approa
h would enable the appli
ation of stati
 analysiste
hniques whi
h 
ould reason about the program state using a number of di�erentabstra
t domains.Brie�y, our approa
h works well for 
ombining analyses at granularities abovethe pro
edure level, while the Nelson-Oppen approa
h is targeted towards 
ombininganalyses below the pro
edure level. Note also that the two te
hniques are not mutu-ally ex
lusive: the Nelson-Oppen te
hnique of 
ombining abstra
t domains 
ould bein
orporated into a Hob analysis plugin. An important design goal of our Hob systemwas to enable developers to 
ommuni
ate data stru
ture 
onsisten
y properties to theba
kend stati
 analysis engines for veri�
ation.Compositional Reasoning Our resear
h has only 
onsidered safety properties inthe 
ontext of sequential programs. In [1℄, Lamport and Abadi des
ribe a generalComposition Prin
iple whi
h examines the 
ir
umstan
es under whi
h it is safe to
ompose spe
i�
ations. In the 
ase of Hob-style data stru
ture 
onsisten
y proper-ties for sequential programs, the Composition Prin
iple basi
ally states that whensequentially 
omposing two pro
edures, the 
omposition of the pro
edures requiresthe pre
ondition of the �rst pro
edure and ensures the post
ondition of the se
ondpro
edure, as long as the post
ondition of the �rst pro
edure implies the pre
ondi-tion of the se
ond pro
edure. We expe
t to extend the Hob system to support moregeneral types of software systems in the future, in
luding 
on
urrent and rea
tivesystems, and we expe
t to use the full Composition Prin
iple for su
h systems.149
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Chapter 9Con
lusionThis dissertation has been motivated by the problem of verifying that implementa-tions satisfy stated design properties. In this dissertation, I have presented the Hobsystem, whi
h 
an verify that implementations 
onform to design properties expressedin the form of global data stru
ture 
onsisten
y properties. Developers may use Hob'sset spe
i�
ation language (whi
h 
ontains the boolean algebra of sets) to state de-sign properties and a standard imperative language for implementations. Hob's setspe
i�
ation language also 
ontains the s
opes and defaults me
hanisms, whi
h en-able developers to omit redundant 
lauses from spe
i�
ations and therefore to writeshorter spe
i�
ations.Be
ause implementations and spe
i�
ations a
t on di�erent representations ofthe program state�
on
rete heap states for implementations versus abstra
t setsfor spe
i�
ations�the Hob system uses developer-provided abstra
tion fun
tions torelate implementation and spe
i�
ation states. Abstra
tion fun
tions mediate be-tween 
on
rete states and abstra
t states by giving de�nitions for abstra
t sets interms of 
on
rete states. Stati
 analysis te
hniques use these abstra
tion fun
tionsto verify that implementations 
orrespond to their set-based spe
i�
ation; many pre-
ise analyses exist and are 
apable of verifying some quite sophisti
ated 
lasses ofimplementations.Issues asso
iated with using pre
ise stati
 analyses in
lude s
alability limitationsand the diversity of important data stru
ture properties, some of whi
h will inevitablyelude any single analysis. A key element of the Hob approa
h is in its use of modularanalysis to address these issues: developers may divide the program into modules andverify ea
h pro
edure belonging to these modules separately, 
hoosing an appropriateanalysis te
hnique for ea
h module. To enable modular analysis, Hob modules en
ap-sulate �elds (not obje
ts) and data stru
ture implementations; the analysis relies onspe
i�
ations based on membership in abstra
t sets; and developers may use sets toexpress (and enable the veri�
ation of) properties that involve multiple data stru
-tures in multiple modules analyzed by di�erent analyses. The te
hniques des
ribed inthis dissertation will enable the produ
tive appli
ation of a variety of pre
ise analysesto verify important software design properties.This dissertation has des
ribed how the Hob framework integrates the �ags, Bohneand theorem proving analysis plugins. The �ags plugin enables developers to reason151



about modules that manipulate sets de�ned by integer and boolean �ag values, aswell as modules that 
oordinate the a
tions of 
lient modules. The Bohne pluginsupports reasoning about linked heap stru
tures by summarizing them in terms ofmonadi
 se
ond-order logi
. Finally, the theorem proving plugin allows developersto state arbitrarily 
ompli
ated program properties and to verify them (by dire
tingtheorem provers towards proofs of these properties). The Hob system enables devel-opers to 
ombine implementation modules whi
h are analyzed using the �ags, Bohneand theorem proving modules. Furthermore, the use of a 
ommon set spe
i�
ationlanguage enables developers to verify global 
onsisten
y properties whi
h depend onresults obtained by any plugin in the Hob framework.Finally, this dissertation has evaluated the feasibility of the Hob approa
h byapplying it to a number of ben
hmarks, in
luding minesweeper, a web server, anda MIDI �le player. I found that the Hob approa
h was suitable for 
apturing 
er-tain kinds of design information. In parti
ular, the use of set spe
i�
ations enableddevelopers to state and verify outward-looking properties. These properties 
ould
onstrain a program's behaviour and guarantee that it does not misbehave in 
ertainuser-visible ways.9.1 Future WorkI next outline several possible resear
h dire
tions.Veri�ed data stru
ture library. The Hob system enables the development ofa standard library of veri�ed data stru
tures. To date, we have implemented andveri�ed a number of useful data stru
tures, in
luding linked-list and array-based setimplementations. I believe that it should be possible to implement all of the datastru
tures in 
ommon usage and to verify data stru
ture 
onsisten
y properties forthese data stru
tures. Be
ause Hob's set spe
i�
ation language only supports a target-ted 
lass of spe
i�
ation properties, it would not be possible to spe
ify all propertiesof interest. However, set spe
i�
ations should be expressive enough to state manyuseful properties.A library of veri�ed data stru
tures would be useful in itself, as a toolbox fordevelopers to use, but would also 
ontribute to our understanding of an analysissystem's power. Su
h a library 
an shed light on whi
h properties a system 
an verifyas well as whi
h properties the system 
an 
ommuni
ate to the developer.Spe
i�
ation and implementation inferen
e. Developers using the Hob sys-tem must 
urrently state both spe
i�
ations and implementations; in some sense,the spe
i�
ations and implementations redundantly state some of the same informa-tion. While this redundan
y 
an help to identify errors in both spe
i�
ations andimplementations, the overall resear
h goal of ensuring that implementations 
onformto their designs does not depend on this redundan
y. Note that a spe
i�
ation in-feren
e approa
h would be no worse than the 
urrent state of the art in terms of�nding program errors, sin
e spe
i�
ations are 
urrently either nonexistent or�at152



best�un
he
ked. Even though inferred spe
i�
ations would not immediately �ndany errors, they would be helpful for identifying design drift: developers 
ould benoti�ed when their implementations 
hange and no longer mat
h previously-inferredspe
i�
ations.In prin
iple, it would be possible for analysis plugins to synthesize spe
i�
ations�or at least initial drafts of spe
i�
ations�from some 
lasses of implementations, tobe polished by the developer later on. The �ag analysis plugin would be parti
ularlysuitable for inferring spe
i�
ation.Conversely, it should also be possible to synthesize implementations from spe
i�-
ations, at least for a 
ertain (limited) 
lass of implementations. To synthesize im-plementations, it would be ne
essary to dedu
e the sequen
e of method 
alls requiredto implement a given set of post
onditions, a sear
h problem. Su
h a synthesizerwould enable a style of programming whi
h 
ould turn out to be similar to the SETLprogramming language [27℄.Novel spe
i�
ation me
hanisms. A related area for future investigation is im-proved spe
i�
ation languages. Our spe
i�
ation language notions of s
opes and de-faults arose from an examination of how existing spe
i�
ation language me
hanisms
ould be improved. A general problem with spe
i�
ations is that developers some-times write nonsensi
al spe
i�
ations whi
h make program properties either va
uouslytrue or unsatis�able. I believe that the exploration of further spe
i�
ation 
onstru
ts
an yield te
hniques whi
h would make it easier to 
reate meaningful program spe
i-�
ations.Handling 
on
urrent programs. Con
urren
y has be
ome a ubiquitous featureof modern programming environments. It would be produ
tive to explore the issuesinvolved in 
ombining 
on
urren
y and the global data stru
tures supported by theHob system. A major obsta
le to developing reliable 
on
urrent programs is thepossibility that multiple threads may update the same data stru
ture at the sametime. Modular analysis of 
on
urrent programs is parti
ularly di�
ult be
ause a keyassumption in our 
urrent modular analysis te
hnique is violated: side e�e
ts from
on
urrent threads may o

ur at any time in a pro
edure's exe
ution. In the 
on-
urrent setting, it is no longer su�
ient to assume the pre
ondition of a pro
edureand prove the post
ondition. One possible solution is to augment the Hob system tosupport programs in whi
h the developer may 
hoose to implement data stru
turesusing either private per-thread instan
es (whi
h are not subje
t to 
hanges by 
on
ur-rent threads) or using atomi
 transa
tions to 
ontrol updates to data whi
h is sharedbetween threads. The 
urrent Hob approa
h ought to be easily adaptable to privatedata stru
tures. However, novel spe
i�
ation and veri�
ation te
hniques would beneeded for transa
tion-based shared data stru
tures. For example, the 
urrent Hobs
ope invariant me
hanism relies on the fa
t that only one thread is a

essing themodules that are working together to maintain the invariant. At the very least, theremust be some spe
i�
ation me
hanism allowing developers to identify the parts of thestate that must be a

essed under a transa
tion 
ontext.153



This resear
h would enable developers to verify higher-level data stru
ture 
on-sisten
y properties for 
on
urrent systems, in
luding relationships between lo
al andshared data stru
tures. These properties 
ould go beyond the 
urrent state of the artfor the analysis of 
on
urrent systems, whi
h verify basi
 properties su
h as freedomfrom data ra
es and typestate properties.Integrating dynami
 analysis results. Approa
hes based on dynami
 analysisand testing have proven to be e�e
tive for both dis
overing and enfor
ing programproperties. For instan
e, Nimmer and Ernst have investigated the dynami
 dete
tionof program invariants, as implemented in the Daikon tool, and the stati
 veri�
ationof these invariants, using the ESC/Java system; this work is des
ribed in [77℄. Whilethe Hob system 
urrently uses stati
 analysis approa
hes ex
lusively, future work
ould produ
tively investigate the possible 
ontributions of dynami
 analysis in the
ontext of the Hob approa
h. One approa
h, whi
h is being 
urrently explored byZee [98℄, uses information from program exe
utions to guide loop invariant inferen
e. Ibelieve that be
ause Hob's set spe
i�
ations fo
us on high-level relationships betweendi�erent parts of the program rather than low-level 
on
rete heap properties, theinferen
e of Hob-style set spe
i�
ations 
ould enable the automati
 inferen
e of designinformation.9.2 Impli
ationsUntil now, developers have been unable to rely on design information to guide themin the 
ourse of software development and maintenan
e: su
h information is oftenoutdated and ina

urate. Be
ause the Hob system 
an automati
ally verify whetheror not an implementation mat
hes its design, it enables developers to ensure that aprogram's design information remains valid throughout the program's life
y
le. Inparti
ular, automati
 veri�
ation enables developers, or their managers, to in
ludeprogram veri�
ation in development pro
esses in the same way that unit testing hasbeen in
orporated into 
urrent development pro
esses.It has histori
ally been di�
ult to enfor
e the use of spe
i�
ations in softwareproje
ts. Besides Hob, a number of other re
ent proposals have also proposed the useof spe
i�
ation information in 
onjun
tion with stati
 or dynami
 program analysisfor verifying this spe
i�
ation information; examples in
lude Bierho� and Aldri
h'sdynami
 typestate [8℄ and the Spe
# programming system [5℄. I believe that 
on-temporary approa
hes to the use of spe
i�
ations will enjoy greater su

ess than pastexhortations advo
ating the importan
e of spe
i�
ations. These past exhortationsmay have been ignored be
ause past approa
hes failed deliver any 
on
rete bene�tsfrom the use of spe
i�
ations. Be
ause the Hob approa
h enables developers to verifyimplementations against spe
i�
ations, spe
i�
ations 
an remain up-to-date, and de-velopers 
an 
on�dently use these spe
i�
ations when maintaining software. Further-more, su

essful veri�
ation (of both low-level data stru
ture 
onsisten
y propertiesand global properties that relate di�erent data stru
tures) will augment developers'
on�den
e in the overall quality of their software.154



The heap aliasing problem has always been an issue for stati
 analyses; all stati
analyses must somehow �nitize the heap to soundly handle the aliasing problem.Hob's set-based spe
i�
ations enable developers to state 
onstraints on the heap, in-
luding aliasing 
onstraints, and to �nitize the heap using a �xed number of sets.Note that Hob's set spe
i�
ation language obviates the need to dis
uss pointer-basedrelationships between heap obje
ts at the level of global spe
i�
ations, hiding the
omplexities inherent in the underlying 
on
rete state and repla
ing them with rela-tionships between abstra
t sets. My experien
e with set-based spe
i�
ations suggeststhat they are a useful abstra
tion of the heap and that their use ought to ease thedevelopment of future stati
 analysis te
hniques.Hob's set-based spe
i�
ations also point out a new approa
h for resear
hers touse in making stati
 analysis results a

essible to developers. Even though modernstati
 analyses are 
apable of verifying extremely detailed program properties, theseanalyses are not useful unless developers 
an provide program properties to the anal-yses in the required form. When using the Hob system, a program analysis expert
an provide ne
essary abstra
tion fun
tions during a module's initial design. Subse-quently, developers 
an apply stati
 analyses to a module's implementation withoutthe assistan
e of the expert, even as the module evolves, as long as the fundamen-tal representation invariants remain un
hanged. Of 
ourse, the Hob approa
h alsoenables developers to bene�t from stati
 analysis in the sense that Hob enables de-velopers to invoke veri�ed pro
edures, knowing that these pro
edures satisfy their
ontra
ts.Formal veri�
ation of large software systems has long been a goal of the programveri�
ation 
ommunity. I believe that an approa
h like Hob's modular pluggableanalysis approa
h is most likely to su

eed in verifying su
h systems. There has beena 
onstant tension between analysis power and s
alability: more-powerful analyseshave histori
ally s
aled poorly, yet they are needed to verify important properties ofprograms. A su

essful solution to the program veri�
ation problem must be able toharness powerful analysis te
hniques (to obtain needed analysis results) but may onlyapply them to limited parts of the program (for s
alability reasons). Modular analysisenables the produ
tive use of di�erent analyses, of varying power, to potentially verifyproperties of signi�
antly-sized programs.
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