The Hob System for Verifying Software Design
Properties
by
Patrick Lam

Submitted to the Department of Electrical Engineering and Computer
Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
February 2007
(© Massachusetts Institute of Technology 2007. All rights reserved.

Author ..o
Department of Electrical Engineering and Computer Science
February 1, 2007

Certified Dy
Martin Rinard

Professor

Thesis Supervisor

Accepted Dy ...
Arthur C. Smith

Chairman, Department Committee on Graduate Students

The Hob System for Verifying Software Design Properties
by
Patrick Lam

Submitted to the Department of Electrical Engineering and Computer Science
on February 1, 2007, in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy

Abstract

This dissertation introduces novel techniques for verifying that programs conform to
their designs. My Hob system, as described in this dissertation, allows developers to
statically ensure that implementations preserve certain specified properties. Hob ver-
ifies heap-based properties that can express important aspects of a program’s design.
The key insight behind my approach is that Hob can establish detailed software design
properties—properties that lie beyond the reach of extant static analysis techniques
due to scalability or precision issues—by focussing the verification task. In particu-
lar, the Hob approach applies scalable static analysis techniques to the majority of
the modules of a program and very precise, unscalable, static analysis or automated
theorem proving techniques to certain specific modules of that program: those that
require the precision that such analyses can deliver. The use of assume/guarantee
reasoning allows the analysis engine to harness the strengths of both scalable and
precise static analysis techniques to analyze large programs (which would otherwise
require scalable, imprecise analyses) with sufficient precision to establish detailed
data structure consistency properties, e.g. heap shape properties. A set-based spec-
ification language enables the different analysis techniques to cooperate in verifying
the specified design properties. My preliminary results show that it is possible to
successfully verify detailed design-level properties of benchmark applications: I have
used the Hob system to verify user-relevant properties of a water molecule simulator,
a web server, and a minesweeper game. These properties constrain the behaviour
of the program by stating that selected sets of objects are always equal or disjoint
throughout the program’s execution.

Thesis Supervisor: Martin Rinard
Title: Professor

Dedicated to the memory of Raja Vallée-Rai (1975-2004).

Acknowledgments

First, I must acknowledge my advisor Martin Rinard for guiding me through this
degree. His intuitions (usually spot-on) have certainly helped me design and execute
the research in this thesis. Martin has always been accessible and helpful to me. 1
would also like to thank Butler Lampson for his ability to spot inconsistencies and
non sequiturs in this document which eluded my notice.

Collaborating with Viktor Kuncak has certainly been difficult at times. I'd like to
thank him, though; together, we managed to get some research results that, I believe,
exceeded what we could have achieved separately.

Viktor is responsible for the idea of incorporation in the flags plugin. The Bohne
plugin was primarily developed by Thomas Wies in collaboration with Viktor. The
theorem proving plugin was developed and used by Karen Zee and Viktor.

An important component of a graduate degree—perhaps the most important part
of the learning experience—is that of belonging to a research group. Radu Rug-
ina, Maria-Cristina Marinescu, Darko Marinov, C. Scott Ananian, Brian Demsky,
Alexandru Salcianu, Karen Zee, Viktor Kuncak, and new students Michael Carbin
and Zoran Dzunic have contributed immensely to my experience at MIT. I'd also like
to explicitly thank Brian for not getting us into an avalanche.

Mary McDavitt, administrative assistant extraordinare, has provided invaluable
support to our group, and has furthermore helped proofread selected passages of this
thesis. I appreciate all of her help.

Jonathan Babb mentioned Viktor, Karen and me for being his last officemates
in his acknowledgements. I'd like to thank him for being my first officemate here at
MIT and setting the tone for the next six years of graduate school.

Seven years ago, I thanked Marie-Pascale Desjardins [57]. T am fortunate in that I
can once again thank her for her love, her support, and her acceptance of my quirks,
which she has, by now, had ample time to discover.

This research was partially supported by Canada’s Natural Science and Engineer-
ing Research Council as well as le Fonds québécois de la recherche sur la nature et
les technologies.

Contents

[1__Introduction

[L.1__Scalability and Diversitsl

£.1.5 _Executing Hob proqramsl

2.2 Implementation Lanenage Grammaid o o oo v

.41 TImplications of encapsulating fieldd

2.4.2 Tmplications of static instantiatiol

B.2.1 A elobalinvariant
B.2.2 Specifying elobal invariantd
B.2.3 Verifving global invariantd
B.2.4 Specification ACETCEAION

[7_Experiencd

[Z.1__Data Structure Implementationd o

I8__Related Work

I8 1 Specification Languagedo
R.1.1 Expressing design information
I8.2 Analysis Technologies and Verification Svstemd

11

117
117
117
121
121
124
127
132
132

137
137
142
143
149

12

List of Figures

6-1__Minesweeper Board specifications implementations, and abstractiond 104

I6-2 Flowchart for flags analvsis Dlugj_d 107
63 Pseudo-code for Loop Invariant Inference Algorithml 113
[7-1 _Implementation of TreeSet insert procedurd 120
[7-2Module dependency diagram for water benchmarld 122
[7-3_Module dependency diagram for web served 125
[7-4__Module dependency diagram for Minesweeper implementation 128

14

List of Tables

15

16

Chapter 1

Introduction

Design information can greatly contribute to understanding the structure of a software
artifact and the underlying assumptions behind that artifact. During the initial de-
velopment phase of a software system, design information enables developers to com-
municate productively while collaboratively implementing software systems, guides
them through the implementation process, and helps them pinpoint the causes of
software defects. In subsequent phases of software development and maintenance,
design information can help developers to avoid introducing pernicious errors based
on misunderstandings of a system’s design and understand how to most effectively
add new features to software. Today, however, design information is typically codified
at an early stage of a program’s development and rarely kept up-to-date: because no
tool can currently automatically verify design properties, it is difficult to keep design
information current as designs and implementations evolve. It is therefore difficult
for developers to take advantage of the benefits offered by up-to-date, valid design
information as systems progress through their entire lifecycles.

This dissertation presents a suite of techniques that allow developers to specify
important design properties of software systems and to automatically verify that
their implementations satisfy the specified design properties. These techniques focus
on properties that pertain to data structures. Since a data structure’s state can
often be productively summarized, in abstract terms, by the set of heap objects that
the data structure contains, this dissertation focusses on data structure properties
that can be expressed in terms of the boolean algebra of sets. (In this dissertation,
the term “abstract set” denotes a named set of heap-allocated objects, abstracting
away from the question of how the set is defined.) Abstract sets therefore enable
developers to describe the state of a software system in abstract terms—developers
may instead reason about the contents of different data structures without requiring
them to reason about the implementation details behind each data structure.

Relationships between abstract sets constitute a key type of design information,
and being aware of such relationships can help developers better understand the struc-
ture of their systems. This dissertation therefore proposes a set specification language,
containing the boolean algebra of sets, for expressing relationships between sets. Such
a specification language enables developers to state equality, containment, or disjoint-
ness relationships between sets and objects, and to verify that these properties hold

17

in the implementations of their systems. Because design properties often relate the
contents of different sets (and therefore data structures), the techniques presented in
this dissertation therefore enable developers to state and verify design-level properties
about a software system’s design and verify that they hold across all executions of a
software system. Such design-level properties may be most appropriately expressed
as invariants, which hold throughout a program’s execution, or as preconditions and
postconditions, which hold at specific points in the execution.

Reasoning in terms of abstract set specifications is only meaningful if data struc-
tures properly implement their set abstractions. Implementations of data structures
tend to be intricate and the necessary low-level concrete consistency properties are
typically difficult to verify. While static analysis techniques which can verify certain
classes of data structure implementations do exist, two challenges currently limit the
applicability of existing data structure analysis techniques. The first challenge is di-
versity: there exists a wide range of data structures, and yet each existing analysis
technique only applies to a subset of these data structures. The second challenge is
scalability: because data structure consistency properties are so complex, analysis
techniques must build detailed summaries of the implementation’s state. Such sum-
maries are computationally expensive to reason about, so existing analysis techniques
do not scale to even moderately-sized programs.

A key insight of this dissertation is that it is possible to use a modular analysis ap-
proach to overcome both the diversity and scalability problems: by applying existing
sophisticated static analyses in concert and using them to decide whether procedures
satisfy their set specifications, it becomes possible to handle many different classes
of data structure implementations; and by only applying expensive analyses to those
portions of a program that require them, the overall analysis can terminate in a
reasonable amount of time.

In summary, my research enables developers to verify both low-level concrete data
structure consistency properties, which ensure that data structures satisfy necessary
internal invariants, and abstract high-level properties, which relate the contents of
multiple data structures. These properties therefore help developers maintain veri-
fied, up-to-date design information. I expect that such design information will im-
prove developer productivity by giving developers reliable information about their
programs, especially when multiple developers participate in the development of a
software system and have roles that change over time.

1.1 Scalability and Diversity

Researchers have developed a range of static program analyses for verifying pro-
grams that manipulate data structures, and in particular for verifying that programs
preserve important data structure consistency properties in all possible executions.
Shape analyses, for instance, verify that programs correctly manipulate linked heap
data structures. Static analysis techniques work by constructing models of the pro-
gram’s state and actions that overapproximate its semantics. Each analysis technique
uses a set of models that is specific to the targetted set of programs and properties.

18

Analyzing different data structures therefore requires different abstract models: an-
alyzing linked lists is very different from analyzing arrays, which is in turn quite
different from analyzing data structures encoded using bit manipulations. It is hard
to imagine any single analysis abstraction which can effectively handle all data struc-
tures of interest. Therefore, any technique which verifies consistency properties that
cut across multiple data structures must somehow combine analysis results from dif-
ferent static analyses, each of which uses its private model of the program.

An additional challenge to verifying data structure consistency properties is the
issue of scalability. The design of any static analysis technique involves a funda-
mental tradeoff between precision and scalability: to verify more detailed program
properties, a static analysis must build more detailed models of the program’s state
and more accurate abstractions of how the program manipulates its state. It is, of
course, expensive to construct and maintain detailed models and abstractions. The
computational cost of state-of-the-art shape analyses, suitable for verifying key data
structure consistency properties, is typically super-exponential in the size of the pro-
gram fragment being verified, and the literature therefore does not contain successful
reports of applications of shape analysis to more than hundreds of lines of code at a
time.

Modular verification, in the form of assume/guarantee reasoningﬂ, is a well-known
technique in the program verification community. However, modular verification has
always been difficult to apply in practice. Firstly, it has been difficult to choose a
notation for expressing program properties which is suitable for modular verification.
This notation must be sufficiently expressive to enable developers to express inter-
esting properties, yet it must be concise enough so that the specifications remain
tractable. Secondly, even with a suitable notation, it has been difficult to find appro-
priate techniques for automatically verifying that implementations actually conform
to their stated properties. The key insights in this dissertation are that the use of
a common set specification language and the pluggable analysis approach enable the
productive use of modular reasoning for the verification of data structure consistency
properties. The set specification language enables the encapsulation of data structures
behind sufficiently rich abstraction barriers such that once an analysis proves that an
implementation conforms to its set interface, other analyses can productively use this
analysis result to guarantee data structure consistency properties. Furthermore, the
specification language contains notions that enable developers to control the growth
of specifications throughout the program. My results show that the approach pre-
sented in this dissertation can soundly and practically apply arbitrarily precise—and
hence arbitrarily unscalable—analyses to only those portions of an implementation
that need that precision.

!Because this dissertation focusses on sequential programs, assume/guarantee reasoning is equiv-
alent to reasoning based on preconditions and postconditions. The general formulation of as-
sume/guarantee reasoning is more general than preconditions and postconditions in that it relates
the actions of the system and its environment. In concurrent programs, the system and its environ-
ment may act concurrently.

19

1.2 Approach Based on Abstract Set Specifications

The Hob system presented in this dissertation analyzes programs consisting of a collec-
tion of program modules. Each module contains specifications and implementations.
Set-based specifications are a key part of the Hob methodology; they allow developers
to state properties of the heap by stating properties of sets of heap objects. Because
the contents of data structures can often be characterized using sets, Hob’s set-based
specification language enables developers to express important global data structure
consistency properties relating the contents of different data structures without need-
ing to understand the internal design of each data structure. The developer may
instead assume that each data structure encodes a set. This enables the developer
to reason about the state of a program by reasoning about its sets. Furthermore,
set-based specifications serve as an analyzable abstraction of the program state: the
use of set-based specifications as a common specification notation allows each of the
static analyses that comprise the Hob system to track the abstract state of the heap
relatively efficiently.

Such an approach to the verification of global properties, of course, relies on data
structures correctly implementing their set abstractions. The Hob system allows data
structure implementors to specify internal data structure properties—relationships
between the abstract state, expressed in terms of sets, and the concrete state, ex-
pressed in terms of properties of heap objects. Abstraction functions and invariants
relate the abstract and concrete states. The Hob system enables developers to use
different static analysis techniques to verify each module by supporting analysis plu-
gins. Each analysis plugin processes a particular family of abstraction functions and
decides whether or not implementations conform to their specifications, using the
provided abstraction functions.

Because different data structures may be analyzed using different analysis tech-
niques, and because Hob’s common set specification language enables developers to
uniformly express properties about different data structures, the Hob system enables
developers to verify implementations using a variety of analysis techniques. For in-
stance, developers can state and verify the property that two data structures share
no elements, even if these data structures are implemented using completely different
data structures. Data structure consistency properties can, in general, describe how
program modules may interact.

Once Hob has verified that all modules satisfy their contracts, then the program’s
data structure consistency properties are guaranteed to hold. Note that Hob’s anal-
ysis task is structured in terms of assume/quarantee reasoning: developers express
program data structure consistency properties in terms of the assumptions that pro-
cedures may expect to hold upon entry, as well as the conditions that procedures
guarantee upon successful completion. Assume/guarantee reasoning in Hob works at
two levels: first, modules assume that their client modules properly implement their
interfaces, and second, modules may rely on their preconditions holding upon entry.
The Hob system discharges the relevant guarantees when it encounters them during
the analysis task.

20

1.2.1 Two novel specification-level constructs

In the Hob system, modular verification depends on the availability of program spec-
ifications. The size and complexity of program annotations is a critical parameter
determining the feasibility of assume/guarantee reasoning, in terms of both annota-
tion and analysis effort. Having observed that certain clauses tended to cut across
specification statements in different parts of the program, and that these clauses
tended to accumulate towards the top of the program’s call graph, I invented and
implemented two specification-level constructs that proved useful in reducing the size
and the complexity of annotations. These constructs made it easier both to write
annotations and to reason about them; they enable a second kind of scalability in the
Hob system. Hob therefore contains scalability constructs for both the analysis task
and the specification task.

Scopes are a construct for grouping together modules. Scopes contain scope in-
variants, which are logical formulas correlating the state of the contained modules. A
scope invariant might state, for instance, that a program has two sets that are always
disjoint. These formulas may be temporarily violated inside the associated scope,
but are verified at scope boundaries, and therefore hold universally throughout the
program’s execution. In particular, scope invariants must hold in the program’s ini-
tial state. Scope invariants simplify both program annotation and program analysis:
they simplify the annotation task by allowing the developer to omit clauses from the
annotation; furthermore, they simplify the analysis task by relieving the analysis of
the responsibility for proving the invariant, except at certain crucial program points.
A simple worst-case estimate for a modestly-sized program with a call depth of 6
shows that the use of scopes can reduce aggregate specification size from 384 clauses
to 64 clauses and maximum specification size from 64 to 1.

I also observed that some clauses hold almost everywhere in the program, but
not everywhere, and are in fact false in the program’s initial state; these clauses are
therefore not appropriate for use as scope invariants. Because these clauses should not
need to be explicitly stated throughout a module’s specification, I implemented the
default construct, which simplifies annotations by conjoining such clauses to procedure
preconditions at arbitrary points in the program’s specifications. I adapted the notion
of a pointcut from aspect-oriented programming to enable developers to specify where
these clauses should hold.

[expect that these constructs will help developers to annotate programs. This dis-
sertation therefore contains an evaluation of how scopes and defaults help developers
specify programs.

1.3 Verifying Program Properties

Hob’s approach decomposes the analysis of a program into the analysis of its com-
ponent modules. Some of these modules are reusable generic library modules, while
others contain application-specific code. Library modules may be implemented using
a range of techniques: some modules might store objects in structures like arrays and

21

linked lists, while others could go as far as using bit-level manipulation to efficiently
store and retrieve information. The sophistication of data structure consistency prop-
erties places them beyond the reach of scalable analysis techniques, while the diversity
of these properties makes it hard to imagine that any single analysis could verify the
full range of data structure consistency properties.

The problems of scalability and diversity inspired Hob’s analysis plugin approach.
Instead of attempting to use a single analysis to verify all of a program’s interfaces,
the Hob system is made up of a number of analysis plugins, each of which is designed
to verify a narrow class of targeted consistency properties. Hob’s analysis plugins
currently include a field-value based analysis, a shape analysis, and an analysis that
uses interactive theorem proving tools. When presented with a module to analyze,
the Hob analysis driver uses an analysis for that particular module, as directed by the
developer. No matter which analysis plugin is used, though, library modules only need
to be verified once; as long as the module has been successfully verified, developers
may subsequently rely on the module’s specification as a correct summary of the
behaviour of the module. Note that despite the pervasive use of unscalable analyses,
the overall Hob approach can scale, since it verifies the program one procedure at
a time, using assume/guarantee techniques, and communicates analysis information
between procedures using the common set specification language.

1.4 Rationale

A key contribution of this dissertation is its thesis that set specifications allow de-
signers and developers to state, communicate, and enforce design-level information
about programs. The Hob approach enables developers to abstract a program’s state
into a collection of sets of heap objects and express design information in terms of
1) set membership constraints for objects, and 2) relationships between set contents.
The Hob program verification framework then uses set specifications to automatically
verify design information and ensure that the program satisfies the stated design con-
straints. A key part of the set specification language is its support for scalability at
the specification level: the notions of scopes and defaults enable developers to write
more concise specifications.

Set membership constraints allow developers to specify that objects must have
particular states before certain actions may occur. Such constraints therefore enable
developers to encode necessary dependencies between program operations on heap
objects. In particular, an object’s participation in a module’s sets gives insight as to
how the object is participating in the computations being carried out by that module.
When different modules work together, objects will often carry correlated set mem-
berships in the various modules. Conversely, when a program consists of independent
and loosely-coupled submodules, objects may carry orthogonal set memberships in
different modules.

Hob’s set specifications enable developers to select an appropriate collaboration
model for the modules in a program and to encode that collaboration model in a
verifiable form. To this end, the Hob approach also allows developers to express and

22

enforce required relationships between sets. Developers may express domain-specific
properties by requiring that sets (or combinations of sets: unions, intersections, set
differences) always be either empty or nonempty. Hob therefore enables developers to
succinctly describe anticipated global program states and allowable state transitions
in terms of set-based constraints.

Set specifications therefore enable the Hob framework to automatically verify de-
sign information. Note that the targetted expressibility of the set specification no-
tation allows developers to state relevant properties of the program state, while the
analyzability of the notation enables analysis plugins to verify that implementations
conform to their designs.

1.5 Results

In an effort to evaluate how the Hob approach works in practice, we have built a
prototype implementation of the Hob framework and used this implementation to
successfully verify a number of benchmark programs. This dissertation describes my
experience using the Hob system to implement and specify design information for
three programs: a simulation of water molecules; an implementation of an HTTP 1.1
server; and an implementation of the popular Minesweeper game. The water simula-
tion contains 10 modules, 2000 lines of implementation and 500 lines of specifications.
The HTTP server contains 14 modules, 1200 lines of implementation, and 300 lines
of specifications. The minesweeper implementation contains 6 modules, 787 lines of
implementation and 328 lines of specifications. While these applications are relatively
modest in size (due in part to the difficulty of translating applications into the Hob
implementation language), they demonstrate that it is possible to successfully ap-
ply the Hob methodology for program verification—in my experience, it was never
necessary to verify more than one procedure at a time.

The sets in the HT'TP 1.1 server include sets of request headers, response headers,
and sets that capture design information related to a server-side cache. The sets in
the Minesweeper game include sets of hidden and exposed cells. These sets are imple-
mented using linked heap data structures and verified using shape analysis techniques.
The design of the Hob implementation language permits the shape analysis to inspect
just the library modules that manipulate the linked data structures rather than the
entire program (which would be infeasible using current shape analysis technology
due to scalability issues).

I was surprised to discover that abstract set specifications could express outward-
looking user-relevant program properties. For instance, the web server’s set specifica-
tions state that response headers are emptied between requests; that is, no response
would contain stale headers from the previous response. Also, in the minesweeper
application, set specifications state that exposed cells are disjoint from mined cells
unless the game is over. To my knowledge, Hob is the first system that enables
developers to state and verify program properties that are relevant to end users.

23

1.6 Limitations

The research described in this dissertation and embodied in the Hob analysis tool has
some limitations which arise from design decisions made early on in the project’s life-
time. This section discusses limitations in the Hob implementation and specification
languages and the annotation burden involved in specifying program behaviour.

I designed the Hob implementation language to be syntactically similar to Java
at a statement level. I decided to use a custom procedural implementation language
as a convenient way to explore the automatic verification of data structure consis-
tency properties while avoiding inessential complexities of a full-fledged programming
language. In particular, I omitted common object-oriented features such as inheri-
tance, dynamic dispatch, and object-based encapsulation. In my experience, it was
relatively straightforward (if time-consuming) to port Java code to the Hob imple-
mentation language. When comparing Java and Hob it is important to keep in mind
that Hob has two constructs that approximately correspond to Java’s classes: 1) for-
mats are used to represent memory cells, and 2) modules are used to structure a
program into its main constituent parts. The static module instantiation in Hob is
less general than the dynamic instantiation of classes with methods in Java, but it
encourages developers to express the static architecture of an application and aids
verifiability. Java programs built using stylized static instantiation idioms would also
be easier to analyze than arbitrary Java programs.

Hob programs are specified using set-based specifications. While I believe that
set-based specifications are quite appropriate for reasoning about program behaviour,
certain properties are not expressible in the Hob specification language. For instance,
developers cannot state that a map data structure links particular key and value
objects. The use of a more expressive specification language would permit developers
to state and verify more detailed program properties. Such a specification language,
however, would enable developers to write more detailed specifications which could
be more unwieldy and therefore both harder to understand and more expensive to
verify conformance against.

While Hob can state and verify relationships between the set of keys and the set of
values in its interface specification language (for instance, no object should be both a
key and a value simultaneously), Hob cannot state that a particular key is related to
a particular value. That is, the Hob specification language cannot express relations
between heap objects. Its modelling of maps (e.g. hash maps) can therefore only
discuss the set of objects which act as keys and the set of objects which act as values.
Nevertheless, our experience shows that many interesting data structure properties
can be expressed using just the boolean algebra of sets. Such descriptions may not
be full specifications of the behaviour of operations, but they do indicate important
partial correctness properties, so I believe they make a useful trade-off between the
expressive power and tractability of the analysis. I chose to explicitly omit integer
and floating-point arithmetic from the Hob specification languageE While many

2 In [55], we describe how to decide Boolean Algebra with Presburger Arithmetic; the Hob
system’s core specification language could be extended to support BAPA.

24

data structure consistency properties do depend on general integer and floating-point
arithmetic, I believe that, in most cases, these properties can be handled as local
consistency properties, and therefore do not need to be expressed to clients. Note
that the set specification language does not support sets of pairs or sets of sets, only
sets of uninterpreted elements. This is why it can be characterized using the Boolean
algebra of sets and decided in elementary time [b3] and in practice often belongs
to the quantifier-free fragment that can be decided in non-deterministic polynomial
time.

It is important to distinguish between Hob’s set-based common specification lan-
guage, which was designed to be less expressive and more tractable, and the speci-
fication languages inside the abstraction modules, which express data structure rep-
resentation invariants and abstraction functions. Specifications that occur inside ab-
straction modules are not bound by the limitations of Hob’s set-based specification
language; analysis plugins may use arbitrarily powerful specification languages for
expressing a module’s internal properties. For example, the monadic second-order
logic used in the Bohne plugin can express reachability properties that are not even
expressible in first-order logic. Monadic second-order logic can therefore certainly
express properties that are not expressible in terms of abstract set specifications.

Hob set specifications describe properties of abstract sets, which are encapsulated
within program modules. Unfortunately, this modularization is not appropriate for all
programs. For instance, sometimes a data structure’s encapsulation will be violated
for performance reasons. Or a program’s dominant decomposition may not correspond
to the module boundaries which would be required for the modular analysis of a
particular data structure. The scopes construct addresses this issue to some extent,
if the relevant consistency properties are set-based properties. However, scopes do
not handle local data structure invariants which are collaboratively maintained in
multiple places in a program’s implementation.

Finally, the need for program specifications imposes an annotation burden on the
development process. In our experience, specifications may grow to as much of 40%
of the implementation sizel. 1 feel that the overhead is not overly onerous because the
specifications provide additional value to developers. Program specifications serve as
verified design documentation; any property stated in a specification can automati-
cally be checked throughout a program’s lifecycle and, as long as developers continue
to run the Hob verification tool and ensure that it succeeds, the design information
will never become outdated.

Despite these limitations, I believe that the approach embodied in the Hob system
is useful for verifying software design properties. The first two issues mentioned here,
about limitations of the current implementation and specification languages, could
be overcome in future work. The encapsulation problem is real, but only applies
to a limited number of data structures; even programs with unencapsulatable data
structures may still contain other data structures whose consistency can be verified.

3To put this statistic in context, I sampled a number of C++ applications, including AbiWord,
Rosegarden and Inkscape, and found that their header files accounted for 19% to 28% to the appli-
cation size, in terms of lines of code.

25

Note that the partiality of the Hob approach allows it to still be helpful even if it
cannot solve the whole problem. While the annotation burden has traditionally been
a problem with specification-based approaches, I feel that developers will be quite
willing to write specifications if they find that these specifications are useful.

1.7 Contributions

The primary contributions of this research are 1) the identification of a specifica-
tion approach based on abstract sets as a suitable notation for expressing verifiable
program design information; and 2) the deployment of a range of existing and novel
static analysis techniques to enable the scalable automatic verification of arbitrarily
precise and sophisticated data structure consistency properties. This goal has, to this
point, appeared to be completely beyond the reach of automated program analysis
techniques—shape analyses, for instance, scale super-exponentially with the size of
the program being analyzed, and there are no successful reports of shape analysis
being used on programs in the 1000-line range. This dissertation makes the following
contributions.

e Specification Approach: This dissertation proposes a set-based specifica-
tion approach which enables developers to express data structure consistency
properties and verify that implementations conform to these properties. The
specification language allows developers to state program properties in terms of
sets of heap objects.

e Specification Scalability: Specifications tend to accumulate upwards in a
program and often become unmanageable (due to volume) at its top levels; we
call this phenomenon specification aggregation. This dissertation introduces
scopes and defaults, two novel constructs that mitigate the specification aggre-
gation problem and help developers write more concise specifications, which are
therefore less likely to be contain errors. In the absence of scopes, individual
specification clauses may grow exponentially due to specification aggregation.

e Multiple Analysis Plugins: The approach described in this dissertation
makes it possible to apply multiple arbitrarily precise, arbitrarily narrow, and
arbitrarily unscalable analyses in a general, scalable way to verify sophisticated
set-based data structure consistency properties in sizable programs. To my
knowledge, the Hob system is the first system to combine results from different
static analysis techniques to verify detailed data structure consistency proper-
ties.

e Analysis and Verification System: This dissertation presents our imple-
mentation of the Hob program analysis and verification system, which enables
the exploration of the ideas described above. It describes the various Hob anal-
ysis plugins and explains how developers can use these analyses to verify a range
of data structure consistency properties.

26

e Experience: Finally, this dissertation presents our experience using the Hob
system to verify software design properties in several complete programs ranging
up to 2000 lines. Hob has been able to verify detailed consistency properties
of individual data structures, then use these properties to verify larger software
design properties that involve multiple data structures analyzed by different
analyses.

Note that the first two contributions enable two orthogonal kinds of scalability.
Hob’s specification-based approach enables individual analysis plugins to draw valid
conclusions about a procedure without having to investigate the procedure’s environ-
ment. The specification scalability constructs operate at the level of specifications.
These specifications enable the analysis plugins to succeed; the specification scalabil-
ity constructs make it easier for developers to provide these specifications.

1.8 Structure

The remainder of this dissertation is structured as follows. Chapters B through E
explain the Hob system from a user’s perspective. Chapter [describes the Hob
implementation language. Chapter Bl describes Hob’s common set specification lan-
guage, shared by all analysis plugins, as well as the scopes and defaults specification
constructs, which enable developers to express crosscutting parts of specifications in
one place (rather than scattered across program specifications). Chapter H describes
how developers can link implementations and specifications using Hob abstraction
sections. Chapter Bl starts to peek behind the scenes and explains the basic obligation
of Hob analysis plugins: essentially, they must show that an implementation satisfies
its specification, where the meaning of the specification is given by the abstraction
function stated in the abstraction section. This chapter also explains how the Hob
system ensures that all modules in a program are analyzed and how the analysis of
each module is given the necessary external specifications. Chapter [l describes how
one particular Hob analysis plugin, the flags plugin, works. Chapter [presents my
experience using the Hob framework to verify data structure consistency properties
for a number of benchmark programs, including an implementation of the popular
minesweeper game, a MIDI player, and an HTTP server. Chapter Bl presents related
work, and Chapter @ concludes.

27

28

Chapter 2

Hob Implementation Language

Hob modules have three sections: an implementation section, a specification sec-
tion, and an abstraction section. In this chapter we present the Hob implementation
language, which is a simple module-structured Java-like imperative language with
references and dynamic object allocation. The implementation language is one of the
unifying components of our framework, since all analysis plugins handle programs
written in the implementation language. Notable features of our language include
the static instantiation of modules (which enables the specification language to work
with a finite number of sets) and the ability to specify different fields of objects in
different modules (formats), which ensures that modules’ private data remains private
even different modules share heap objects.

2.1 Example: Doubly-Linked List Implementation

Figures =1 =2 and present a pair of module declarations and a pair of module
instantiations in our implementation language. The first module, DLL, implements a
set abstract data type using a doubly-linked list. The second module, KeyedObject,
adds an integer key field to the Node type and implements a comparator, based on
key values, for Node objects. The example also instantiates CellList as a static copy
of DLL and KeyedObject as a static copy of KeyedCell.

2.1.1 Explicit module definitions

Developers may define Hob modules either explicitly or by static instantiation. Line 1
starts the explicit declaration of the DLL module with the line impl module DLL. Our
example also contains (starting on line 85) an explicit declaration of the KeyedObject
module. Implementation modules contain type and variable declarations as well as
imperative code, organized into a set of procedures.

2.1.2 Static module instantiation

The other mechanism for creating a module is to instantiate it, at compile time, from
another module. Static instantiation creates a fresh copy of a pre-existing module;

29

the new module shares no state with the old module. Lines 84 and 97 declare static
instantiations of the DLL and KeyedObject modules. On line 84, the developer states
that the program contains a CellList module which is an identical copy of the DLL
module, except that instances of the Node type are to be replaced by instances of the
Cell type. The CellList is therefore a doubly-linked list of Cell objects. Similarly,
line 97 declares that the program contains a KeyedCell module.

In general, a static module instantiation, e.g. impl module m = M with t <-
T, declares that module m instantiates module M, substituting instances of modules
or formats T for modules or formats t from the original declaration. Hob processes
static instantiations by creating a separate internal copy of the instantiated module
with the declared substitutions; this treatment is essentially macro expansion.

2.1.3 Type and variable declarations

Our example declares the Node datatype in two parts using Hob’s format construct.
Formats allow different modules to each—independently—contribute fields to a data-
type. The DLL module contributes (on line 2) the next and prev navigation fields
to the Node datatype, which are used to form the tree structure. The KeyedObject
module then contributes the key data field. Each of these modules acts independently
of other modules in adding fields. Within the code of the DLL module, only the next
and prev fields are in scope. The key field is out of scope for code belonging to the
DLL module and may not be accessed from that module.

The format mechanism identifies a field by its name and the name of the con-
tributing module. This enables different modules to use the same name for a field
without conflicts, which is especially useful in the presence of static instantiation.
Each of the different instantiations of a module will have its own copy of the fields
that it is contributing.

Note that the use of formats to encapsulate fields, not objects, enables our analysis
plugins to go beyond the ability of standard encapsulation systems to reason modu-
larly about the heap: multiple modules can have pointers to the same object (unlike
in most other encapsulation systems) and yet still know that the fields that they have
contributed to that object are unmodified by the other modules in the program. The
runtime system compiles an object’s complete type description by aggregating all of
the distributed type declarations; this aggregated description is irrelevant to Hob’s
static analysis and invisible to the developer.

Line 3 declares a root module variable for our doubly-linked list, which enables
the procedures in the module to access the heap objects representing the list. The
Hob runtime system initializes this variable to null upon program start, and the
variable exists for the lifetime of the program. However, only procedures belonging
to the DLL module may access this variable. The CellList instantiation creates a
distinct root reference, which points to a Cell object after substitution. Contrast
global variables with local variables, as declared for instance on line 52; local variables
are allocated upon entry to their declaring procedure and exist only during that
procedure’s lifetime.

30

2.1.4 Procedures

The DLL module contains procedures to remove and add an element from the doubly-
linked list, a procedure to test an object’s membership, a procedure that returns the
first element of the list and one that removes the first element of the list, a procedure
that tests list emptiness, and finally a procedure to clear all elements from the list.
This subsection briefly describe each procedure in the DLL module.

Embedding information for analysis plugins

The Hob system analyzes each procedure in the program using an analysis plugin.
Two of the analysis plugins in our system are the flags plugin, which we designed as
a lightweight analysis for client code—code that accomplishes tasks by invoking pro-
cedures in other modules—and the Bohne plugin, which uses field constraint analysis
to verify code that manipulates linked heap data structures.

Static analysis techniques can often benefit from additional developer-provided
annotations. The Hob implementation language contains three ways for developers
to embed information for an analysis plugin directly in the program code. We support
the use of loop invariants, assert statements and assume statements. These mech-
anisms have no run-time effect. Instead, when it encounters an invariant, assert or
assume statement, the Hob analysis engine transmits the annotation to an analysis
plugin.

Because loops potentially execute an unbounded number of times and static anal-
yses are expected to terminate in finite time, the static analysis of loops is always
challenging. Hob allows developers to provide loop invariants, which help plugins
efficiently reason about the behaviour of loops. Of course, many analyses are able to
automatically synthesize loop invariants from the procedure specifications and imple-
mentations. Note that when loop invariant inference techniques do fail, it is generally
an open problem to effectively communicate to the developer the reasons which caused
the inference to fail.

An assert statement contains a fact which the analysis engine must statically
verify. This differs from the usual meaning of assert, which asks the runtime envi-
ronment to dynamically check the validity of the assertion. We found that assertions
were a useful form of communication between the developer and the analysis. In
particular, assertions allowed the developer to query the analysis plugin and discover
its abilities and limitations.

An assume statement is another mechanism for developers to pass information to
analysis plugins. Unlike assert statements, which ask a plugin to verify that a state-
ment is true, assume statements tell an analysis plugin that a given fact holds (without
verification). Often, developers understand more about how a program works than
a particular analysis plugin can deduce; for instance, the developer may have some
specific domain knowledge about the problem domain. The ability to transmit this
domain knowledge to an analysis plugin can then be leveraged by the analysis for
it to guarantee a desired data structure consistency property. Each analysis plugin
may accept a different syntax for assumes, asserts, and loop invariants. Our example

31

presents both the flags (line 15) and the Bohne syntax (line 71) for these constructs.

remove procedure

The remove procedure (lines 5-10) uses the prev and next pointers to remove the
given object from the linked list. First, remove handles the special case of removing
the root of the list by setting root to root.next if the element to be removed is
at the root of the list. Next, if the given object e has a non-null prev field, the
remove procedure sets e’s predecessor’s next field to e’s successor, and similarly with
e’s successor. Finally, the remove procedure ensures that the following invariant on
Node objects continues to hold: an object is in the list if and only if its next and prev
fields are both non-null. Chapter [l describes this invariant, and other list invariants,
in greater depth.

removeFirst procedure

The removeFirst procedure removes the first element (which is pointed to by root)
from the linked list and returns it to the caller. The simplest way to remove a given
element from a list is to use the remove procedure, as we do on line 16. Note the use
of the assume statement on line 15.

addLast procedure

The addLast procedure navigates to the end of the linked list and adds the given
object p to the end of the list. The addLast procedure first handles the special case
of an empty list on lines 21-24. Next, addLast declares a local variable r which it
uses to navigate to the end of the list. The analysis of this module uses the Bohne
plugin in a mode that requires the developer to provide loop invariants, so lines 29-37
contain a loop invariant which is transmitted verbatim to the analysis plugin. Note
that the while loop in the clear procedure did not require a loop invariant; the
flags plugin used for that procedure can automatically infer loop invariants. Finally,
once the variable r points to the end of the linked list, addLast sets the next field
of r to the given object p, the prev field of p to r and the next field of p to null,
preserving the list invariant on null-ness of fields which we’ve previously mentioned
in the description of the remove procedure.

clear procedure

The clear procedure iterates through the elements of the list and removes them one
by one. The removeFirst and clear procedures both make calls to other procedures
in this module. Note that the target of these calls is known at compile-time, as the
Hob implementation language does not include inheritance or dynamic dispatch.

32

Other procedures

The contains procedure iterates through the list looking for the given element. Note
that contains uses assert statements. The getFirst procedure simply returns the
root of the linked list, which is the first element of the list. Similarly, the isEmpty
procedure tests root against null; equality indicates that the list is currently empty.

2.1.5 Executing Hob programs

Once a developer has produced a Hob program, he or she may want to execute
this program. We have implemented two ways for developers to test and execute
Hob programs: an interpreter and a source-to-source translator into Java. Both of
these tools use the Hob infrastructure to create an abstract syntax tree from the
source code. The interpreter directly executes the abstract syntax tree, whereas the
compiler performs a simple translation of the abstract syntax tree into Java source
code. The primary tasks of the Hob-to-Java compiler are to collect the distributed
type declarations into traditional Java-style class declarations and to provide Java
stubs for Hob library calls.

2.2 Implementation Language Grammar

Figure =4 presents the grammar for our core implementation language. An imple-
mentation module contains format declarations, module variables, and procedures.
A format (format) describes a module’s contribution to a concrete type. A module
variable (var) contains a pointer to a heap object; module variables serve as persis-
tent roots of data structures. A procedure (proc) contains a sequence of standard
imperative statements.

The Hob implementation language’s grammar has a built-in extension point: the
A production allows developers to specify assertions, which are to be statically checked
by analysis plugins, assumes, which are to be assumed by analysis plugins, and loop
invariants. The executable code generator always ignores assertions, but each analysis
plugin must check that all assertions can be guaranteed to hold at compile-time.

2.3 Operational Semantics

Figure presents operational semantics for a simplified version of the Hob imple-
mentation language. For the purposes of the operational semantics, we assume that
structured code has been converted to a control-flow graph by compilation and that
expressions have been normalized into three-address code. These semantics enable us
to precisely describe the task of an analysis plugin. The state of the heap is a pair
(s, H), where s is a call stack of pairs [p,r] and H is the garbage-collected heap. The
call stack s consists of program counters p and activation records r. Note that the
program counter contains static information about the program point: pc(p) points

33

1 impl module DLL {

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

format Node { next : Node; prev : Node; }
var root : Node;

proc remove(e : Node) {
if (e==root) root = root.next;
if (e.prev!=null) e.prev.next
if (e.next!=null) e.next.prev
e.next = null; e.prev = null;

e.next;
e.prev;

proc removeFirst() returns n : Node {
Node nn = root;
// assume statement is given directly to static analysis
assume "(nn’ in Content) & card(nn’) = 1";
DLL.remove (nn);
return nn;

proc addLast(p : Node) {
if (root==null) {
root = p; p.next = null; p.prev = null;
return;

}

Node r = root;
// first three lines are relevant to loop;
// remaining lines are general 1list invariants that we preserve
while "p ~=null & r ~=null & p = 'p & ~(p : ’Content) &
next p = null &
(rtrancl (lambda vl v2. next vl = v2) root r) &
(ALL v. ~(next v = p) & ~(next v = root)) &
(ALL v. (v : ’Content) <=>
rtrancl (lambda vl v2. next vl = v2) root v) &
(ALL x. x ~= null &
~(rtrancl (lambda vl v2. next vl = v2) root x) -->
~(EX e. e ~= null & next e = x) & (next x = null))"
(r.next !'= null) {
r = r.next;
}

r.next = p; p.prev = r; p.next = null;

Figure 2-1: Doubly-linked list implementation, part 1

34

a3 proc clear() {

44 bool e = DLL.isEmpty();

a5 while (!e) {

46 Node q = DLL.removeFirst();

a7 e = DLL.isEmpty();

48 }

49 }

50

51 proc contains(e : Node) returns b : bool {

52 Node n = root;

53 while "e ~= null &

54 (rtrancl (% x y. next x = y) root n) &

55 (ALL x. (x : ’Content) <=>

56 rtrancl (% vl v2. next vl = v2) root x) &
57 (ALL x. next x = root --> root = null) &

58 ~((rtrancl (% x y. next x = y) root e) &

50 (rtrancl (% x y. next x = y) (next e) n)) &
60 (ALL x. X ~= null &

61 ~(rtrancl (lambda vl v2. next vl = v2) root x) -->
62 ~(EX e. e ~= null & next e = x) & (next x = null))"
63 (n '= null) {

64 if (n == e) {

65 assert "rtrancl (% vl v2. next vl = v2) root e";
66 return true;

67 } else {

68 n = n.next;

69 }

70 }

71 assert "~(rtrancl (% vl v2. next vl = v2) root e)";
72 return false;

73 }

74

75 proc getFirst() returns e : Node {

76 return root;

7}

78

79 proc isEmpty() returns rv:bool {

80 return root == null;

81}

82 }

83

g4 impl module Celllist = DLL with Node <- Cell;

Figure 2-2: Doubly-linked list implementation, part 2

35

s5 impl module KeyedObject {
format Node { key:int; }

86

87

95

96

}

proc equals(a : Node; b : Node) returns rv:bool {
return a.key == b.key;

¥

proc lessthan(a : Node; b : Node) returns rv:bool {
return a.key < b.key;

}

o7 impl module KeyedCell = KeyedObject with Node <- Cell;

Prog

Fd

wl <

rNmS

Figure 2-3: Formats example

M*

impl module m {F*V*P*} | impl module m = M with T'<-T [, T <-T[*
format tid {Fd*}

[T

var v: T,

[private] pn(fn : T[; fn: T1")[returns r: T] { Ld* St* }

TI;

(St} | Ei=F;| [m] pn(E) | return [E] |

if (B) then St; else Sty | while [A] (B) St |

assert A | assume A

L|Lf]ov

E; | new t | null | [m.]pn(E], ET)

int | bool | float | string | char | byte | tid

analysis plugin-specific syntax for asserts, assumes and loop invariants

Figure 2-4: Grammar for Hob implementation language

36

Statement Transition Constraints

p: x = null; (Ip,]o.s HW{{r,x, _)}) —
([p’, 7] o s, H W {{r,x,null} })
p: X = Y; ([p,rJos, HW {(r,x,), (r,v,0)}) — type(p, x) = type(p, v)
{[p's] 05, H & {{r,x0), (1, v, 0)})
p: X = new t; ([p,'r“]o.s HU{(T X, >}>*> o fresh
{0/, 7] 0 5, H W (Tr,%,0)}) type(p,x) = ¢
p: x = y.f; (lp,r]os, HW {{r,x,), (r,v,id), (mod(p),id, f,0)}) — t = type(p, V) A hasField(mod(p), ¢, f) A
([p/,r]os, HY {<T x,0), {r,v,id), (mod(p),id, f,0) }) type(p, x) = fieldType(mod(p), t, f)
p: x.f = y; ([p,r] o s, HW {(r,x,id), (mod(p),id, f, _), (r,v,0)}) — t = type(p, x) A hasField(mod(p), ¢, f) A
([P, 7] © 5,1 8 {(r,x,id), (mod(p), 1, £, 0), (r,y,0)}) | fieldType(mod(p), t, £) = type(p, v)
X Mol o5, H® {(r,%), (mod(p), 0,00 1) — pe(p, %) = varType(mod(p),)
{0/, 1) 0 5,7 & {{r,x. 0), (mod(p), v.0)})
T Mol o5, H® {(r,% o), (mod(p), 0, 1) — VarType(mod(p), o) = tpe(p, %)
{[p',] 0 5, M ® {(r, %, 0), (mod(p), v, 0)})
p:_goto pi; (Ip,r]os, H) — <p17"m] H)
p: if (B) goto pl; ([p,r]os, H) — {[pl,r,m], H) eval(H, B) = true
p: if (B) goto pl; ([p,r]os, H) — ([p’,r]os, H) eval(H, B) = false
p: x = m2.proc(a); {[p,r] os, HW {(r,a,id)}) p’” entry point for m2.proc
— {([p"", "o [p',r]0s, r’ fresh
‘H & {(r,a,id) ¥ hProcSetup(r’, m2.proc, id)} argType(m2.proc) = type(r, a)
p: return x; (Ip, 1o [P’ rlos, HW {{r", z,idy),
(r’, retval, X)})
— (P rlos, HW {(r, X,ids)} \ {(r', , O}

where p’ satisfies mod(()p’) = mod(p) A pc(()p’) = succ(pc(()p)) in the control-flow graph,
and:

type(p,x) = declared format of local variable x in p’s context
varType(mod(p

)
),v) = declared format of variable v of module mod(p)
hasField(mod(p), t,f) = true iff format ¢ in module mod(p) declares field £
t,)
)
)

p),v

fieldType(mod(p), ¢,
hProcSetup(r’,m2.proc, id

= declared format of field f in format ¢ of module mod(p)
= {(retval,x), (', fn,id), (', L1, null), ..., (*' £, null)}

argType(m2.proc) = declared type of formal of m2.proc

Figure 2-5: Operational semantics for implementation language

to the control-flow graph node to be executed, while mod(p) indicates the module to
which pc(p) belongs.

The heap contains three types of tuples. These tuples track module variable
contents, field contents, and local variable contents. We write that H contains triples
(m,v,0) to indicate that module variable v in module m points to heap object o.
The tuple (m,o01,f,00) € H means that the field o;.f, encapsulated in module m,
points to object 0s. Finally, the triple (r, ¢, 0) € H means that the activation record
r contains a local variable ¢ pointing to heap object o.

In the Hob implementation language, module variables are always initialized to a
default value appropriate to their type. Numeric variables are initialized to 0, bool
variables to false, string variables to the empty string, and reference variables to
null. Chapter @ will describe how Hob’s static analyses enforce the Hob stationarity
condition by using these known initial values for concrete variables to prevent a
program from carrying out unintended modifications to its abstract state. This set
stationarity condition is central to Hob’s ability to carry out modular verification.

37

2.4 Discussion

We chose to design our own implementation language to enable the best possible fit
between our specifications and implementations. Our use of a custom implementation
language enabled us to experiment with language design issues.

Our custom implementation language allowed us to experiment with the format
construct for distributed type declarations. We found that formats aided the verifica-
tion of our benchmark programs by enabling the modular analysis of programs even
when these programs share objects between different modules.

The Hob implementation language requires modules to be statically instantiated.
Because of static instantiation, Hob programs contain a finite number of modules. The
design of Hob’s specification language then ensures that each module contains a finite
number of specification-level sets. This implementation language feature simplified
the specification language, since it implies that the specification language only needs
to work with a finite number of sets.

The tradeoff involved in using our own implementation language was that we had
to port benchmark programs to our Hob language. We felt that this price was not
overly onerous, especially given that we also had to provide program specifications.
One design decision that was quite useful in the porting process was the choice of
a subset of the Java statement syntax for Hob implementation-language statements.
This decision also simplified the compilation of Hob benchmarks to Java source code
for execution. While our implementation language is a Java subset at the statement
level, the Hob approach provides developers with a different high-level structuring
mechanism than Java does. In particular, the Hob implementation language expects
programs to be structured as a collection of modules (and, for specification purposes,
scopes, as described in Chapter BAZ2). Although techniques for writing specifications
for Java programs do exist [I8], we felt that it was appropriate for the Hob system to
use a simpler and more direct specification approach which avoids the issues involved
in reasoning about specifications in the presence of exceptions and inheritance.

2.4.1 Implications of encapsulating fields

Encapsulation is critical to any modular verification effort, since it converts sound
reasoning about a part of the program into sound reasoning about the whole program
by showing that the rest of the program does not affect the property of interest. Un-
like many standard encapsulation mechanisms |15, 1], our format mechanism works
by encapsulating fields, not objects. Because only the declaring module may access
the fields that it has contributed to an object, formats enable analysis plugins to
reason about the contents of a field by analyzing only the module that defines the
field. In particular, analyses need not analyze any other modules that may access
the same objects, even though the modules may mutate shared objects. Our type
system guarantees that accesses to shared objects operate on disjoint parts of these
objects, so that there is no interference between modules. Formats therefore enable
modules to share objects and yet do not prevent the modular analysis of the modules
that do share objects. Distributed type declarations were first introduced in [14],

38

and Aspect]’s intertype declarations allow developers to write distributed type dec-
larations today. Distributed type declarations are clearly useful in the context of
aspect-oriented programming, since they enable developers to associate data with
the program code, which can be scattered around arbitrarily for aspect-oriented pro-
grams. To our knowledge, formats are a novel application of the idea of distributed
type declarations to the modular verification problem.

2.4.2 Implications of static instantiation

Typically, one of the most difficult issues involved in reasoning about programs is
in reasoning about how they access, and modify, a statically unbounded heap; some
finitization of the program state is required. We felt that the Hob system had to
support reasoning about unbounded heaps, since data structure implementations are
typically engineered to work with unbounded numbers of objects. Hob therefore al-
lows developers to use an unbounded number of data objects in programs. The static
instantiation mechanism, however, encourages developers to structure their programs
so that a finite number of named sets suffices to reason about the program, thereby
simplifying the task of stating and verifying data structure consistency properties.
In particular, the static instantiation mechanism enables developers to define data
structures once and to use these data structures as needed, without forcing imple-
mentations that require the specification language to handle an unbounded number
of sets.

In the Hob system, program modules must be either explicitly declared or stati-
cally instantiated. Each static instantiation creates exactly one additional program
module. The total number of program modules in a Hob program is therefore fi-
nite and known at compile-time. Furthermore, each module’s specification may only
declare a finite number of sets. Hob programs therefore have a finite number of
specification-level sets, and each set in the program has a statically determined name,
which is assigned by the developer. The set specification language enables analysis
plugins to verify that developer-provided constraints on named sets continue to hold
throughout the program’s execution and that procedures carry out changes to set
memberships as stated in their specifications.

While the Hob system bounds the number of sets, it does not bound the number
of objects in each set. Modules may create arbitrary data structures on the heap.
But they may only specify design-level properties for a finite number of sets, where
these sets are somehow related to the data structures on the heap.

As an example, consider a program which processes a sequence of requests and
associates a response—in the form of a set of objects—to each request. This program
could be implemented in the Hob implementation language, but the specification
would not be able to directly represent the set of response sets. One workaround is
to focus attention on only one response set at a time.

Specification-level sets may have a statically unbounded number of members, and
the Hob framework gives analysis plugins complete latitude in assigning objects to
sets. Our Hob modular verification approach succeeds in part because analysis plu-
gins never need to know about how other analysis plugins assign membership for

39

their sets. In the Hob system, each plugin is only responsible for reading set spec-
ifications for external modules, and does not need to inspect the external modules’
implementations.

40

Chapter 3

Hob Specification Language

In this chapter we explain how developers can specify data structure consistency
properties for the Hob system to verify. Hob supports several different types of
specifications, described below.

Procedural (local) specifications. At the most basic level, developers may
provide interfaces for procedures in terms of preconditions and postconditions.
The Hob system allows developers to provide this information in an abstract set
specification language. Developer-provided abstraction sections connect these
abstract set specifications with the concrete implementations we described in
Chapter

Specifications of global properties. Hob is also able to verify global data
structure consistency properties. Global data structure consistency properties
relate states of different program modules. For instance, modules A and B
may maintain sets that are always disjoint (except possibly while A and B are
executing). Global properties therefore enable developers to state and verify
relationships between parts of a program analyzed using very different tech-
niques. It is theoretically possible to manually embed these properties into
procedure specifications. However, such a manual embedding would impose a
heavy burden on the developer and greatly affect the maintainability of program
specifications. The Hob system therefore also supports two higher-level mecha-
nisms that help developers state and verify these global consistency properties:
scopes and defaults. These mechanisms do not impose any additional require-
ments on the specific analyses used by the Hob system; instead, Hob desugars
these mechanisms into local specifications.

Other types of specifications. The Hob system relates the abstract set speci-
fications with concrete program states using abstraction functions and represen-
tation invariants. For instance, a linked list module may export a set Content
representing the objects in the linked list, that is, the objects reachable from
the root of the linked list through next fields. These abstraction functions and
representation invariants are an additional form of specifications which are visi-

41

ble exclusively within their defining modules. Chapter Bl describes these internal
invariants in more detail.

This chapter will discuss the specification language for local and global properties.
Both of these properties use formulas in the boolean algebra of sets to describe desired
properties of the abstract program state.

3.1 Example: Doubly-Linked List Specification

Figure BT contains a complete example of a specification for the doubly-linked list
DLL, which we presented earlier in Figures 2=1l P=2, and Figure BTl also presents
a static instantiation of the DLL list specification module into a specification for the
CellList module.

In general, modules contain declarations for 1) program code and 2) program
data. Chapter Bl described how implementation modules contain procedure imple-
mentations (written in the Hob imperative language) and concrete global variables.
Specification sections contain analogous declarations for procedure specifications and
abstract specification variables.

3.1.1 Specification module definitions and instantiations

Specification sections of Hob modules, like implementation sections, can contain either
explicit module definitions or static module instantiations. Line 1 declares that the
specification of module DLL follows, and line 37 declares that module CellList is a
static instantiation of the DLL module which contains Cell objects rather than Node
objects.

3.1.2 Specification variable definitions

Hob specification sections describe the abstract state of the module using specification
variables. These specification variables can be either sets or boolean variables. Hob’s
set-typed specification variables do not exist at runtime. Instead, they are used exclu-
sively in module specifications to abstractly describe the contents of data structures
(as sets of objects) and hide implementation-level issues of data representation. Line
3 declares the Content specification variable, which contains a set of Node objects.
(Line 2 informs the specification parser that the Node type will be used in this mod-
ule’s specifications; implementations of DLL will use the format construct to define
the Node type.) Other modules may reference this Content set as DLL.Content, and
the static instantiation on line 37 creates set named CellList.Content. For most
modules, abstract boolean variables are linked to concrete boolean variables via the
identity map.

The specification section does not include any information on the concrete meaning
of the abstract sets that it uses. It is the sole responsibility of the abstraction section
to provide a definition for a module’s abstract sets (by relating concrete program

42

states to abstract sets). Our Content set, for instance, is defined in its abstraction
section to be the set of objects reachable from the root module variable through next
fields. Since this definition is completely irrelevant to any clients of the DLL module,
the Hob system hides a module’s set definitions outside that module.

3.1.3 Procedure definitions

The DLL specification module primarily contains procedure specifications for the
remove, removeFirst, addLast, clear, contains, getFirst, and isEmpty pro-
cedures. Analysis plugins are responsible for verifying that each procedure’s imple-
mentation conform to its specification. Procedure specifications contain a requires
clause constraining the states in which it is legal to call a procedure, a modifies
clause giving the sets which are potentially modified in the procedure and its transi-
tive Calleesﬂ, and an ensures clause guaranteeing certain constraints on the program
state upon return from the procedure. We describe each procedure specification in
turn.

remove procedure

The remove procedure removes a given object from the set maintained by this module.
It requires that the object already belong to the set and guarantees that the object
is no longer in the set upon return. More precisely, any successful call to remove will
require that, prior to the call, e must be non-null and must belong to the Content
set. The procedure specification also states that remove modifies the Content set and
that the set Content’, which denotes Content upon return from remove, contains
the objects in Content minus the e parameter.

Our specification language treats procedure parameters as sets. If a parameter
contains null, then we represent it with the empty set, and if it points to a heap
object, then we represent it by a set with cardinality 1. Therefore, the constraint
card(e)=1 in the requires clause ensures that e is non-null.

removeFirst procedure

From the set specification point of view, the removeFirst procedure picks an arbi-
trary element from the nonempty Content set, removes it, and returns it to the caller.
More precisely, the precondition card(Content) >= 1 states that Content must be
nonempty; the postcondition card(n’)=1 ensures that the return value is not null;
and Content’ = Content - n’ states that the Content set upon return is the same
as the Content set upon entry minus the removed object n, and that the object n
belonged to Content prior to the call to removeFirst. Note that the set specification
for the removeFirst procedure does not specify that the return value n was the first
element of the list. Our set specification abstracts away from such details.

'While the Hob analysis tool requires procedures to declare sets modified in transitive callees in
modifies clauses, a simple preprocessor can collect sets modified in transitive callees and add them
to modifies clauses.

43

addLast procedure

This procedure adds the parameter p to the Content set. The specification states that
prior to a legal call to add, the parameter n must be non-null (card(n)=1), and that
n must not belong to Content. The specification also declares that this procedure
modifies only the Content set. Finally, the specification declares that, upon return
from add, the set Content’, which denotes the state of Content after returning from
add, contains the objects initially in Content plus the given object n. Once again,
note that the order of elements of the linked list is abstracted at the level of the set
specification.

clear procedure

The clear procedure modifies the Content set by removing all elements from this
set. In particular, the postcondition states that Content is empty upon return:
card(Content’) = 0.

Other procedures

The contains procedure presents the use of boolean return values in specifications.
Given a non-null e parameter, contains returns true if and only if e is in the Content
set. Note that this procedure does not modify any abstract state. The getFirst
procedure returns an element belonging to the Content set. The isEmpty procedure
is useful for guarding calls to procedures that require Content to be nonempty.

3.2 Example: Global Properties (Scopes)

Section Bl explained how the Hob system allows developers to state specifications for
program modules. These specifications enable developers to state requires, modifies
and ensures clauses for a single procedure at a time.

3.2.1 A global invariant

Some program properties involve sets belonging to multiple modules. Consider three
modules, Worker, Inbox and Outbox. The Worker module maintains a set of jobs
Worker.Jobs, while the Inbox module maintains a set of input jobs Inbox.Input and
the Outbox module maintains a set of output jobs Outbox.Output. These modules
need to work together to preserve the following invariant I:

I: Worker.Jobs = Inbox.Input + Outbox.Output

The Worker module guarantees that the invariant is preserved by properly coordi-
nating updates to the Jobs set with calls to the Inbox and Outbox modules. The
first responsibility of the analysis, in terms of verifying the invariant, is therefore to
verify that the procedures in the Worker module preserve the invariant (and that the
invariant holds in the program’s initial state). Note that Worker may temporarily

44

1 spec module DLL {

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

format Node;
specvar Content : Node set;

proc remove(e : Node)
requires card(e)=1 & (e in Content)
modifies Content
ensures (Content’ = Content - e);

proc removeFirst() returns n:Node
requires card(Content)>=1
modifies Content
ensures card(n’)=1 & (Content’ = Content - n’) & (n’ in Content);

proc addLast(p : Node)
requires card(p)=1 & not (p in Content)
modifies Content
ensures Content’ = Content + p;

proc clear()
modifies Content
ensures card(Content’) = 0;

proc contains(e : Node) returns b:bool
requires card(e) =1
ensures (b’ <=> (e’ in Content));

proc getFirst() returns e:Node
requires card(Content)>=1
ensures card(e’)=1 & (e’ in Content);

proc isEmpty() returns rv:bool
ensures rv’ <=> (card(Content) = 0);

36 spec module Celllist = DLL with Node <- Cell;

Figure 3-1: Doubly-linked list specification

45

violate the invariant; our analysis simply needs to verify that the invariant is restored
upon exit from Worker.

Because the design of the Worker, Inbox and Outbox modules relies on the Worker
module to properly coordinate accesses to the Inbox and Outbox modules, any di-
rect calls to Inbox and Outbox may cause the invariant to be permanently violated.
Because only the modules Worker, Inbox and Outbox may directly modify the sets
involved in 7, external modules can violate the invariant only by calling Worker,
Inbox or Outbox. The second responsibility of the analysis is therefore to prohibit
direct calls to Inbox and Outbox; all calls to Inbox and Outbox must go through
Worker.

In summary, to prove that invariant I holds, the Hob system needs to verify that
the invariant holds initially, that the Worker module preserves the invariant, and
that calls to Inbox and Outbox all originate from the Worker module. Together,
these conditions enable an induction on program traces which permits the analysis
to safely conclude that I holds upon each entry to procedures in the Worker module.

3.2.2 Specifying global invariants

More generally, the Hob system needs the following (developer-supplied) information
to attempt to verify any invariant I: a set of modules where I may temporarily
be violated; the set of exported modules which are responsible for ensuring that
the invariant holds upon exit; and (of course) the invariant I itself. The developer
expresses this information by specifying a scope.

Figure presents the definition of our example scope. Line 1 states that the
scope is named W. Line 2 of the scope definition states that Worker, Inbox and
Outbox are the modules of scope W; the invariant may be temporarily violated inside
these modules. Line 3 declares that the scope W exports the Worker module. This
declaration instructs the Hob system to assume that the scope invariant holds upon
entry to Worker and to show that the invariant is always ensured upon exit from
Worker. Only modules that belong to the scope may invoke procedures in the non-
exported Inbox and Outbox modules of the scope. Line 4 states the invariant itself
using the invariant keyword.

Figure illustrates the scope W and a module which calls W. In our example, the
invariant [may be temporarily violated in the Inbox, Outbox and Worker modules.
In other words, the scope W encapsulates these modules; we say that these modules
belong to the scope. The Worker module ensures that the invariant holds upon exit
from its procedures, so the scope W exports Worker. The scope invariant states that
the set of jobs Worker.Jobs is equal to the union of the sets Inbox.Input and
Outbox.Output. Note that Figure also presents an extra module, Server, which
invokes a procedure inside scope W from outside the scope. The Server module may
only call the exported Worker module and not the Inbox or Outbox modules.

46

1 scope W {

2> modules Worker, Inbox, Outbox;

s exports Worker;

+« invariant Worker.Jobs = Inbox.Input + Outbox.Output;

5 }

Figure 3-2: Scope invariant example

— cCall Edge Server
,,,,,,,,,,,,,, Return Edge

Incoming ‘ Outgoing
Boundary { Boundary
Point /" Point
Scope W \

Worker

Inbox Outbox

Scope Invariant I:
Worker.Jobs = Inbox.Input + Outbox.Output

Figure 3-3: Illustration of scopes example

47

3.2.3 Verifying global invariants

We next discuss how the Hob system establishes whether or not a scope invariant
holds. The Hob system checks that I holds in the initial state of the program.
When verifying the scope’s exported procedures, the Hob system appends the scope
invariant to the preconditions and postconditions of those procedures. By conjoining
the invariant to postconditions of exported procedures, Hob ensures that exported
modules meet their responsibility of ensuring that scope invariants hold when exiting
a scope. When a caller outside the scope invokes an exported procedure, the caller is
responsible for ensuring that the exported procedure’s precondition holds. However,
the Hob system does not require that external callers show that the invariant holds.
Because Hob checks scope invariants upon exit from a scope and because Hob checks
that I holds in the program’s initial state, programs may safely assume that the
invariant holds whenever entering the scope.

Note that scope invariants are not actually appended to preconditions and post-
conditions; in particular, the Hob system can hide scope invariants from calling pro-
cedures. Neither the analysis system nor the developer need to explicitly write out a
scope invariant outside the scope.

3.2.4 Specification aggregation

Consider a program which maintains an invariant /. Without the scope invariant
mechanism, the developer would have to explicitly include the invariant I through-
out the preconditions and postconditions of the entire program (except for when it
is temporarily violated). We call this the specification aggregation problem. Spec-
ification aggregation causes a program’s top-level modules to accumulate invariants
from all of its worker modules. We expect that the number of invariants would grow
roughly linearly with the size of the program, so the total annotation burden would
grow quadratically across the program.

In this case, the scopes mechanism solves the specification aggregation problem by
automatically conjoining the invariant I to the appropriate set of exported modules.
Because the Hob system automatically conjoins I at the appropriate points in the
program, the developer only needs to state I once, in the scope declaration, rather
than throughout the text of the program. This replaces the quadratic number of an-
notations woven throughout the program text (namely, the number of invariants times
the number of procedures) by a linear number of annotations (since each invariant is
only stated once, the overall annotation burden due to invariants is linear).

The defaults mechanism enables developers to give names to properties; defaults
could be used to simulate part of the functionality of the scopes mechanism and
would somewhat mitigate the specification aggregation problem. However, scopes,
when applicable, have two advantages over defaults: 1) scope invariants do not need
to be explicitly added to preconditions and postconditions outside the scope (which
reduces the burden on analysis plugins); and 2) scopes act as a program structuring
mechanism, in that they enable developers to forbid calls to the interior of a scope.

The Hob system properly handles reentrant calls in the presence of scopes. A

48

reentrant call occurs when a module inside a scope calls outside the scope, and the
callee subsequently calls back into the scope. Hob requires that scope invariants hold
at reentrant call sites, and assumes that they hold upon return.

3.3 Example: Global Properties (Defaults)

Scope invariants are program properties that hold in most program states. In our
web server benchmark, the Config module manipulates configuration data for the
webserver and maintains a boolean specification variable ready, which is true as
soon as the module has been initialized and throughout most of the program’s exe-
cution. Unfortunately, since the variable ready is false until the Config module has
been initialized, ready does not hold in the program’s initial state. Scope invari-
ants, however, must be true initially, so ready is not a suitable scope invariant. We
therefore invented the default mechanism for properties that hold in many different
program states and yet are not suitable for use as scope invariants. Defaults and
scopes work well together to enable developers to concisely and accurately specify
program properties.

Developers specify defaults by giving three pieces of information to the Hob sys-
tem: a set of procedures to which the default is applicable; a name for the default;
and the clause to be applied. Hob uses the notion of a pointcut to specify the region
where the default is to apply; a pointcut simply names (syntactically) the proce-
dures or modules to which the default should apply. Procedures may use a default’s
name for fine-tuning of its applicability: if a procedure does not need a particular
default, then the procedure can suspend the default. If a default is applicable to a
procedure, then Hob conjoins the default’s clause to the procedure’s precondition or
postcondition, as specified in the pointcut.

Figure B4 presents a pair of defaults drawn from our web server example. The
StringTokenizer module (not shown) maintains a specification variable S. The de-
fault I (for ‘initialized’) states that the ready boolean variable is true at all precon-
ditions except for those in init procedures (pointcut clause not proc +*.init())
and except before the procedure add in module HostList (pointcut clause not proc
HostList.add(). The default S states that the StringTokenizer.S set is empty
at all preconditions of procedures in the Config module. Note also that the init
procedure explicitly suspends the I default. In this particular case, the suspend and
the default pointcut have the same effect, and the developer may freely choose one
mechanism or the other (or both).

3.4 Specification Language Grammar

This section presents the Hob specification language grammar and the scopes and
defaults extensions to the Hob specification language. The core specification language
uses formulas of the boolean algebra of sets (with cardinality constraints) for requires
and ensures clauses for procedures, which are organized into modules. Hob represents

49

1

2

3

4

oo -~ =] o

10

spec module Config {
specvar ready:bool;

default I : pre(not proc *.init() && not proc HostList.add()) = ready;

default S = card(StringTokenizer.S) = 0;
proc init(argv:string[]) suspends I requires not ready
modifies StringTokenizer .S, Mimetypes.init, ready
ensures ready’;
proc getPort() returns p:int ensures true;
}

Figure 3-4: Defaults example

the abstract state of a module’s encapsulated data structures using specification-level
sets.

3.4.1 Core specification language

In this section we describe Hob’s set-based specification language. Because all analy-
ses ensure that implementations conform to specifications expressed in this specifica-
tion language, Hob’s specification language enables different analyses to communicate
in terms of a common set of program properties. Our core specification language al-
lows developers to express specifications at the level of procedures.

Figure presents the complete syntax for the core module specification lan-
guage. A specification module consists of type and set declarations, procedures, and
module specification-level invariants. Type declarations (format t) declare the types
which will be used in set declarations and procedure parameters. The set declara-
tions (specvar S) name the sets over which the boolean clauses in the specifications
will range. Boolean variable declarations (specvar n;) similarly name the boolean
variables which will be used in specifications. A specification for procedure pn be-
gins with an optional suspends clause (for defaults, discussed later), a requires clause
expressed in boolean algebra with cardinality constraints, continues with a modifies
clauses, and concludes with an ensures clause. Module invariants in specification sec-
tions are a special case of scope invariants (as described in Section BZ2) which apply
to the declaring module. Module invariants differ from abstraction section invariants
(Chapter H) in that they are expressed in the common set specification language,
rather than in an analysis plugin-specific notation.

The expressive power of boolean clauses B is the first-order theory of boolean
algebras, where variables range over sets declared in some module in the program.
The first-order theory of boolean algebras is decidable [88, B3|, and we use this fact
to compute whether implication holds between boolean clauses as well as to perform
dataflow analysis in the flags analysis, as described in Chapter Bl

Boolean clauses operate on set expressions SE. A set expression may name sets S
and procedure parameters p; in Hob, primed sets S’ denote the contents of a set upon

20

M = spec module m {(format ¢)* (specvar (ny : bool | S : ¢ set))* P* I*}
P == proc pn(py:t1,...,pn :ty) [returns r: {
[suspendsd™| [requires B] [modifies ST| ensures B
I = invariant B
B = ny | SE{1 = SE5 | SE1 C SE | card(SE):k: | diSjOint(SEl,SEQ)
| BAB|BVB|-B|3S.B|VS.B
SE = ®|p|[m]5|[m]S,|SE1USE2|SElﬁSE2|SE1\SE2

Figure 3-5: Syntax of the Module Specification Language

return from a procedure in the context of requires clauses. Developers may combine
set expressions using the set union, intersection and difference operators.

Requires/Ensures Clauses. Our specification language allows procedure effects
to be specified using requires and ensures clauses in boolean algebra clauses B. When
a procedure specification includes a modifies clause m, the Hob analysis framework
adds some extra terms to the ensures clause e to give an effective ensures clause
eefr, Which is used as the summary of that procedure’s effects. In particular, in the
presence of a modifies clause m, we use this augmented ensures clause to analyze the
procedure:
Coff 1= €N /\ S=SA /\ n<&n

S¢m ngm

3.4.2 Scopes

Figure B=l presents the syntax of scope declarations. A scope declaration contains
three parts: it declares a set of modules belonging to the scope; a subset of these
modules—exported modules—which are visible outside the scope; and (optionally)
a scope invariant, which is a formula preserved by the scope. Outside a scope, the
scope’s non-exported modules are invisible: modules which do not belong to a scope
may not invoke procedures in, or refer to sets of, that scope’s non-exported modules.
Only the exported modules and their sets may be used outside the scope. The scope
invariant is a formula which Hob verifies for the program’s initial state and upon exit
from the scope (assuming that the invariant always holds upon entry to the scope).

Handling Reentrant Calls. In general, a call site inside a given scope may (po-
tentially transitively) call an exported procedure from the same scope (which will
assume the scope invariant). We call such a call site a reentrant call site. When
control reaches a reentrant call site, the scope invariant may be temporarily violated
at that point. However, since the call site is a reentrant site, the flow of control may
then reach a scope entry point again. At a scope’s entry points, the analysis assumes
that the scope’s invariants hold.

Our system therefore requires scope invariants to hold at all reentrant call sites.
Combined with the verification of scope invariants upon exit from a scope, this en-

ol

sures that scope invariants always hold upon entry to a scope. It is the developer’s
responsibility to identify reentrant call sites. (It would also be possible to auto-
matically detect such call sites). A simple link-time check performed in the overall
program verification described in Chapter B3 the call reentrancy check, ensures that
the developer has correctly identified all reentrant sites.

Public and Private Scope Invariants. Our system supports two kinds of scope
invariants. Public scope invariants are visible throughout the program. In particular,
the verification system may simply (potentially under developer guidance) assume the
public scope invariant at any point in the program outside the scopﬂ. To ensure that
this verification strategy is sound, the system requires the public scope invariant to
hold whenever the program may exit the scope (either at the exit point of an exported
procedure or at an external call site).

In contrast, private scope invariants are not visible outside the scope. It would be
possible for the verification system to require private scope invariants to hold at the
same program points as public scope invariants. But because private scope invariants
are not visible outside the scope, the verification system applies a less restrictive
policy. Specifically, it only requires private scope invariants to hold at exit points of
exported procedures and at reentrant call sites. Note that this policy allows the scope
invariant to be (temporarily) violated across non-reentrant calls outside the scope.
The fact that private scope invariants are not visible outside their scope ensures that
this policy is sound. Private scope invariants are useful because they help the Hob
system reduce the size of the overall analysis task. They are especially useful when
the scope invariant mentions private sets: invariants on private sets should always be
hidden.

Finally, the verification system assumes that the sets and boolean variables of a
given scope invariant (and more generally, all sets and boolean variables defined in the
modules in the scope) do not change across non-reentrant calls. Hob’s set stationarity
check ensures that only the procedures in the scope can affect the values of the sets
and boolean variables of the invariant.

Set Stationarity Check: A scope invariant may use only sets and boolean
variables that are defined in the scope’s modules.

Because of the set stationarity check, it is sufficient to verify that the invariant holds
in the initial state and at scope exit points to ensure that the invariant always holds
at scope entry points.

Entering and Exiting Scopes. A program can exit a scope in two places: at the
exit point of an exported procedure, or at a call site that invokes either a procedure
outside the scope or an exported procedure in the same scope. Such a call site is an

2The Hob system currently conjoins public scope invariants to all preconditions outside the scope.
This is not necessary in general. For instance, a scope invariant mentioning modules A and B should
not be conjoined to a precondition on sets in modules C and D.

o2

S = scope C {
modules M™ ;
exports M* ;
[[public] invariant B;]*

Figure 3-6: Syntax of Scope Declarations

A

K \
4 Entr3\ . Exit Entry " Exit N\

Point Point Poi nt." Point
Scope C
Exported Module M
Local Module P Local Module Q
Exit A Entry Exit > Entry
\\Point .+~ Point Point s, Point J
4
—— Call Edge ------ » Return Edge

Figure 3-7: Scope Entry and Exit Points

external call site. The program can enter a scope in two places: at the entry point of
an exported procedure, or at the return point of an external call site.

Figure B=7 presents an example that illustrates the possible cases. The entry point
of each procedure in the exported module M is an entry point for the scope C. The exit
points of these procedures are scope exit points. Call sites from procedures inside C (in
the example, from procedures in the non-exported module Q) to procedures outside
C are scope exit points. The corresponding return points after the call sites are
scope entry points. Finally, call sites from procedures inside C (in the example, from
procedures in the non-exported module P) to procedures in exported modules in C
are also scope exit points. The corresponding return points after the call sites are
also scope entry points.

Controlling Access to Non-exported Modules. The scopes mechanism enables
Hob to use properties of a program’s structure to eliminate the need to check the
associated scope invariants outside a scope. In particular, the Hob system only needs
to ensure that scope invariants hold at certain key points, namely scope exit points.
One key reason that this works is that a scope’s exported procedures control the
operation of non-exported modules: no non-exported module may be called from
outside the scope. The Hob system ensures that non-exported modules remain private
to the scope by using a scope call check, as described below.

23

Scope Call Check Consider a procedure call from module M to module M’.
Then for each scope C' that the target module M’ belongs to, either: 1) M must
also belong to scope C, or 2) M’ must be exported in scope C.

Note that this definition conjoins the calling restrictions from all relevant scopes: if
M is a non-exported module in some scope C, only modules that are also in C' can
call M.

Scopes and Set Visibility. The sets and boolean variables of non-exported mod-
ules are not visible outside the enclosing scopes. In particular, the preconditions and
postconditions of procedures in exported modules, the modifies clauses of such pro-
cedures, and public scope invariants must not contain sets or boolean variables from
non-exported modules.

This design decision means that modifies clauses have a slightly different meaning
in the presence of scopes with non-exported modules. Sets and boolean variables
from non-exported modules will be absent from the modifies clauses of all exported
procedures, even if the procedures may modify some of the sets or boolean variables.
To ensure that this absence does not cause soundness violations, the analysis must
assume that the procedure invoked at any reentrant call site may modify all sets and
boolean variables from the non-exported modules of the scopes to which the module
containing the call site belongs.

General Modification Semantics A set S of module M’ is out of scope for
module M if there exists a scope C which does not export M’, and M does not
belong to C.

Consider a call from module M to procedure p of module M’, and let set T of
module M be out of scope for p.

1. If the call to p is labelled as a reentrant call (that is, if p includes a call
back to the caller module M), then the caller must deduce, upon return
from p, that 7" may be arbitrarily modified.

2. Otherwise, the non-reentrant call to p preserves the contents of set T

It is sound to preserve out-of-scope sets T' across non-reentrant calls: because T
is defined in the calling module M, it may only be modified in M. Furthermore,
since the call is non-reentrant, then 7" must be unmodified upon return from the call.
Because the caller module’s set T is out of scope for callee procedure p, the Hob
system ensures that p does not explicitly mention the caller module’s set 7' in its
specification.

Verifying Scope Invariants. Having described what scopes do and how they
structure the program, we next describe how Hob verifies that scope invariants hold.
We have designed the Hob system so that Hob analysis plugins do not need to under-
stand scopes or other global properties. This simplifies the design and implementation

o4

of analysis plugins, which are solely responsible for verifying local data structure con-
sistency properties. Briefly, Hob translates global scope invariants into requires and
ensures clauses suitable for verification by analysis plugins.

e Reentrant Call Sites. Since potentially-reentrant sites are scope exit and
entry points, the Hob framework conceptually adds an assert statement con-
taining the invariants of all potentially-reentered scopes before that call site
and an assume statement with the same invariants after the call site.

e Private Scope Invariants. Private invariants do not appear in formulas out-
side the scope. Private scope invariants are therefore conjoined to requires and
ensures clauses for public procedures of exported modules when analyzing the
bodies of these procedures. However, private invariants need not be conjoined
to these procedures when checking validity of calls to those procedure. This is
equivalent to adding an assume statement at the head of each exported proce-
dure containing the scope invariant and an analogous assert statement at the
tail of each exported procedure.

e Public Scope Invariants. Public invariants are known to hold throughout
the program’s execution, and can conceptually be conjoined to all preconditions
and postconditions in the program outside the scope, as well as preconditions
and postconditions of exported procedures. One possible optimization would
conjoin public invariants to only those outside procedures that refer to sets and
boolean variables used in the scope invariant.

An Alternate Treatment of Scope Invariants. It is possible to generalize the
preceding treatment of scope invariants. Specifically, the system could require the
developer (or an analysis) to identify, at each external call site, all of the scope
invariants that any potentially (transitively) invoked procedure may assume. The
verification system would then require these scope invariants to hold at the call site.
A simple link-time check (similar to the link time check for reentrant call sites) would
verify the correctness of the scope invariant usage information. This more general
treatment eliminates the distinction between public and private scope invariants,
gives the developer more control over when scope invariants are required to hold, and
supports a wider range of scope invariant placement policies. The potential drawback
is that it might require the developer to interact more closely with the verification
system.

Expressive power of scopes.

Hob’s scopes mechanism enables developers to specify invariants which hold across
a set of modules. Scopes are more powerful than defaults: while defaults could con-
join invariants to appropriate program points, defaults do not enable the developer
to forbid calls to internal modules. The scopes protection mechanism therefore in-
creases the expressive power of the Hob language by enabling developers to ensure
that, in the maintenance phase of program development, program modifications do

95

not inadvertently introduce calls to scope-internal modules which result in invariant
violations.

Non-hierarchical program decompositions.

Our scopes mechanism furthermore enables a module to participate in multiple scopes
simultaneously. This multiple participation enables modules to be grouped into scopes
along orthogonal axes. By using scope invariants, developers can express properties
that are common to multiple procedures belonging to multiple modules, providing
a decomposition of the program layered on top of the module-based decomposition.
The scope-based decomposition permits developers to encapsulate invariants that cut
across modules. Scopes also enable developers to separate the underlying analysis
task (as carried out, for each module, by Hob’s various analysis plugins) from the
set of program units that maintain a certain global invariant: many different analysis
plugins can cooperate to establish a global invariant, as expressed in terms of a scope.

Invariants and Regions Where They Hold. Given any region of code expressed
as a set of modules, and any invariant I, a developer can introduce a scope exporting
these modules. This scope will serve to precisely indicate where the invariant [/
should hold, without imposing any unwanted additional constraints on the program
structure.

Enforcing Arbitrary Calling Restrictions. Consider the set of all modules
My, ..., My in a program, and suppose that we wish to ensure an arbitrary set of
restrictions on whether module M; can call module M;, given by a boolean matrix
a;; (with the natural property that a;; is true). Then we can always define at most &
scopes that precisely encode the call matrix a;;. Indeed, it suffices to introduce one
scope C; for module M;, make M; be the sole local module of C;, and make the set of
modules {M; | aj; = true}, that are allowed to call M;, be the set of exported modules
of the scope C;. The set of scopes Cy,...,C; then ensures the desired call matrix a;;.
In practice, programs exhibit non-trivial (even if not hierarchical) structure, which
implies that many fewer than %k scopes suffice to define the desired calling restrictions.

Exposing Various Interfaces to a Module. Finally, note that scopes can encode
the situation where a module M exposes different subsets of its functionality to differ-
ent modules, providing more or less restrictive interfaces to different clients [39]. To
model this situation, write M by exposing a wide (flexible) interface, and define the
proxy modules M;, ..., M,, each of which calls M but propagates only a subset of the
functionality of M. Then create a scope with M as a local module and M;, ..., M,
as exported modules.

3.4.3 Defaults

The default construct enables developers to state that a specific property holds at a
set of procedure preconditions and postconditions unless explicitly suspended. Devel-

o6

P:=P—-PB ‘ Pi&Ps ’ P1’P2 ’ not P
| pre S| post S | prepost S

S =851 — 59 | S1&59 | 51|52 | not S
| proc pn(tni,...,tn,) returns tn,
| exported (module ms) | exported (scope ss)
| local (module ms) | local (scope ss)
| all (module ms) | all (scope ss)
| all

pn, tn, ms, ss::=identifier | identifier*

Figure 3-8: Pointcut Language for Defaults

opers may specify the applicability of a default syntactically, by naming the modules
and procedures to which the default should apply. Default declarations have the form,

default N(Ay,...,A;): C =P (3.1)

where N is the name of the default, the A; are a set of optional parameter names, C'
is an optional pointcut specification (specifying where the property should be added),
and P is a property expressed in the Hob set specification language. One common use
of defaults is to capture initialization constraints, which always hold once a program
has completed its initialization phase.

Our current system implements defaults by conjoining P to procedure precondi-
tions and postconditions that 1) match the pointcut specification C' and parameter
names A; (discussed below) and 2) do not explicitly suspend the default N with a
specification clause “suspend N”.

Pointcut Specification Language. The two pieces of information defining a de-
fault are: (1) what is the property; and (2) where should it hold? Since Hob has
a common set specification language to specify program properties, it makes a lot
of sense for developers to use this set specification language to specify properties in
defaults as well. Figure presents the syntax for Hob’s pointcut language, which
enables developers to specify where a property should hold. The developer can use
the pointcut language to identify a set of procedures S to which the default applies,
then specify that the default applies to the preconditions (pre S), postconditions
(post S), or both preconditions and postconditions (prepost S) of all procedures in
S. The developer may select procedures by name, by membership in modules, or by
membership in scopes. An omitted pointcut for a default specified inside a module
indicates that the default should apply to all preconditions and all postconditions of
all procedures of that module; for a default specified outside any module, an omitted
pointcut means that the default should apply to all preconditions and postconditions
in the program.

Defaults and Modules. Defaults are often coupled to a specific module—for ex-
ample, a data structure initialization default is typically coupled to the module that

57

encapsulates the data structure. In such cases the developer should define the default
within the corresponding module so that the instantiation of the module correctly
includes the instantiation of the default (and the constraint that it enforces). Devel-
opers may also declare defaults on their own outside of any module—such declarations
are typically appropriate when the default property involves multiple modules.

Default Parameter Names. If the default includes parameter names, these pa-
rameter names further constrain the set of procedures to which the default applies—if
the default has a list of parameter names Ay, ..., Ay then it applies only to proce-
dures that have at least k parameters with formal parameter names Ay, ..., Ax. The
parameter names may appear in any order in the procedure’s parameter list. For
example, in the Water benchmark (Section [[2), the default

default padRead(p) : pre(all(module Reduce)) = card(p)=1 &
(p in Reduce.Read)

applies only to preconditions of procedures in the Reduce module that have (at least)
a parameter named p. When conjoined with the precondition of such a procedure,
the default constrains p to have cardinality 1 (i.e. it must not be null) and to be a
member of the Reduce.Read set.

Defaults as Formula Transformers. Conceptually, defaults are formula trans-
formers. The defaults we have discussed so far transform preconditions and postcon-
ditions by conjoining the default property P to these formulas. The default concept
can generalize to include arbitrary formula transformers that may transform formulas
in more sophisticated ways. We have implemented one instantiation of such general
formula transformers in the Hob system. However, one issue is that multiple trans-
formers may apply to a single precondition or postcondition. If the transformers do
not commute, different application orders may produce different final formulas (and
our current implementation does not guarantee a deterministic result in such a case).
One way to eliminate any such nondeterminism is to group formula transformers into
classes (so that all transformers in the same class commute), then prioritize the classes
to fix an application order for transformers that may not commute.

3.5 Discussion

In this section, we discuss various consequences of our particular choice of specification
language and its features. We first discuss the specification aggregation problem that
motivated our scopes mechanism. Next, we discuss the expressive power of the scopes
mechanism, as well as the advantages and disadvantages of the defaults mechanism.
We then move on to the general problem of choosing a specification language and
justify our choice of a set specification language. Finally, we compare our experience
with the Hob static analysis approach with the testing approach for the purpose of
validating program properties.

o8

3.5.1 Scopes and specification aggregation

Assume/guarantee reasoning, as used in the Hob system, comes at a cost: it requires
specifications at boundaries of code fragments such as procedures. Consider a proce-
dure p. Any caller of p must be able to guarantee that p’s preconditions r; Ara A« - - ATy,
hold prior to its invocation. These preconditions can hold either because they are
true in the program’s initial state, or because they are guaranteed by the postcondi-
tion of a procedure which has been executed in the past; the preconditions, of course,
must have not been subsequently violated. In principle, the developer must therefore
thread conditions r; to 7, through all procedure preconditions and postconditions,
up and down the call chain, from where they are established to where they are used.
Additionally, any transitive callee ¢ invoked from p adds its own specification burden
to the preconditions of p, such that p might in fact specify preconditions r; through
rn and 1,1 through ry.

Note that these preconditions may, in particular, propagate up the call chain to
a procedure’s callers. Of course, some callee preconditions must be established at
caller sites; however, many callee preconditions are purely internal and should not be
visible to the caller. Requiring callers to explicitly guarantee internal preconditions
would often result in modularity violations: callers should not need to know about
irrelevant details of a callee’s internal state. Forcing the developer to constrain the
callee’s state at all callers makes reuse more difficult, since the caller must be aware
of required (yet irrelevant) preconditions.

In general, developers must therefore either deal with a set of procedure postcon-
ditions, each of which potentially increases at least as fast as the size of the program;
or choose some subset of these postconditions to manually propagate throughout the
program specifications. If the subset is deficient, then (due to the limitations of as-
sume/guarantee reasoning) Hob may declare that it is unsafe to call some needed
procedure, or Hob may fail to prove some desired postcondition for the program as
a whole. This phenomenon—the specification aggregation problem—forces the devel-
oper to include undesired, but mandatory, specification clauses representing future
callee invariants. Such clauses cut across system specifications, yet are irrelevant
to most program points: they should only appear at those program points which
specifically need such clauses.

Our scopes mechanism was motivated by the specification aggregation problem.
Scopes mitigate the cost of assume/guarantee reasoning: when providing specifica-
tions for a code fragment, the developer should only need to specify properties of
that fragment. The developer should not need to specify any globally true properties
which are irrelevant to that fragment: if the fragment cannot possibly affect the va-
lidity of the property, then the property will inevitably be preserved by the fragment.
Scopes allow developers to specify regions in which globally true properties—scope
invariants—are temporarily violated. Outside a scope, its invariant will generally be
true.

Scopes combat specification aggregation by hiding irrelevant sets and clauses from
callers. Furthermore, they enable the specification and verification of cross-module
invariants by allowing developers to identify the subset of a program in which an

29

invariant is expected to hold. Scopes are key to our system’s verification of invariants
containing sets from different modules: by designating certain modules as public
access points, we ensure that scope invariants always hold outside their declaring
scope by verifying the scope invariant at each of a scope’s exit points. Scopes also
shield callers from irrelevant detail: only sets from exported modules may occur as
free variables in specifications for modules in different scopes. This constraint serves
to bound the detail required in procedure specifications: the specification of procedure
p belonging to scope C need only contain the effects of procedures on sets in C and
exported sets outside C. In other words, procedure specifications omit all effects on
sets that are private to a scope (a set is private to a scope if it is declared in a
module that is not exported from that scope). Moreover, note that this irrelevant
detail causes real problems for modularity. In the absence of this mechanism, a caller
outside a scope would need to indicate (at the very least) that the callee’s internal
sets are non-deterministically modified, which is unreasonable because the outside
caller has no way of knowing about the callee’s private modules.

3.5.2 Advantages and disadvantages of defaults

Defaults are useful for several reasons: they reduce the size of program specifications,
eliminate the specification aggregation that would otherwise occur when default con-
ditions would propagate up the procedure call hierarchy from procedures that require
the default (in situations where scopes are not applicable), and eliminate specifica-
tion errors that would otherwise occur when developers inadvertently omit default
properties. Developers often appear to unconsciously assume that a default holds
(which is understandable as many defaults do, in fact, hold almost everywhere in a
correct program) and therefore tend to write specifications that omit required default
properties. Defaults can transform these incomplete, unsound, but intuitively correct
specifications into complete, sound specifications. A disadvantage of using defaults
is that when they do not hold and, for instance, cause a formula to become unsatis-
fiable, developers may find it difficult to debug the specification, since the offending
clause was added by the default mechanism and is not immediately visible. Better
tool support would mitigate this problem.

3.5.3 Implications of using a set specification language

We next discuss the advantages and disadvantages of using a set specification lan-
guage to provide module interfaces. We first discuss the power of a set specification
language and compare it to other possible specification languages. We then compare
set specifications with less powerful alternatives, including type and typestate sys-
tems. We next justify our choice of a set specification language. The choice of a
set specification language did have some drawbacks, and we outline some of them.
Finally, we describe some advantages and limitations of using more powerful specifi-
cation languages.

60

Expressive power of set specifications

Set interfaces lie somewhere in the middle of the spectrum of possible module inter-
face languages. Less expressive interface languages include standard type systems,
which fix the type of an object at instantiation time, and typestate systems |91}, 90],
which augment the fixed type of an object with a varying state component depending
on the operations that have been performed on the object. More expressive inter-
face languages could allow developers to specify relations between objects, as in the
Jahob project. The interface language can be as detailed as the implementation
language, and indeed, JML [I2] permits developers to use full Java expressions in
their specifications. Finally, one could permit the use of higher-order logic (as in, for
instance, [42, [78]) in procedure interfaces. Each of the interface languages in this para-
graph is strictly more powerful than the ones listed before it. The tradeoff is that a
more powerful interface language is also more difficult to reason about; some interface
languages will be undecidable. Furthermore, well-designed interface languages should
enable developers to cleanly abstract away from the underlying implementation and
state just the important properties of the system.

Less expressive specification languages

Our modular analysis approach needs more information than standard type systems
make available, since these type systems do not permit developers to specify any
but the most basic data structure properties. In particular, standard type systems
are incapable of expressing the fact that objects move in and out of a program’s
data structures as the program executes. Typestate systems [9T), O0, 24] do allow
developers to express membership of objects in data structures and permit static
analyses to check usage protocols, but they do not allow developers to discuss the
contents of data structures in their interfaces. In other words, using a typestate
system, it is only possible to discuss a program’s abstract state one object at a time.
For instance, developers can only verify that a given object does not simultaneously
have typestates X and Y; typestate systems are not expressive enough for developers
to state that no object has typestate X and typestate Y.

We next discuss the specification aggregation problem in the context of standard
type systems and typestate systems. In standard type systems, the type of an object,
as well as the set of type definitions, is fixed once and for all. Because type constraints
cannot be violated in the course of a computation, specifications do not need to be
reiterated up and down the call chain from where a property is established to where
it is used.

However, in type systems which include subtyping, an object may be cast to a
supertype and later back down to its actual type (the downcast problem). Standard
type systems use run-time checks to ensure safety in the presence of downcasts. These
run-time checks are much more tractable in the context of type systems than in the
context of our set specification language, because a standard type system (which uses
run-time checks) needs a much weaker safety property than does our set specification
language: the fact that type definitions do not change implies that the program only

61

needs to verify the identity of the type, and not its definition. Recovery from type
errors, however, is still challenging, since there might be no appropriate action when
a precondition is violated. Parametric polymorphism enables developers to statically
avoid the downcast problem, since the language will then keep the complete type
information around; however, this leads to a restricted form of specification aggre-
gation problem, because the type information must be woven through the program’s
execution. Because type information is more limited than our set specifications, the
magnitude of the specification aggregation problem is smaller for standard type sys-
tems.

In typestate systems, objects can change typestate during the course of a pro-
gram’s computation. As with standard type systems, the program can easily verify
at run-time that an object has the appropriate typestate. However, the fact that the
program may carry out a typestate change using an alias of an object complicates
static checking, and designers of typestate systems resort to various mechanisms to
ensure safety, including linear type systems for objects which may change types [24].
In any case, the magnitude of the specification aggregation problem for typestate
systems is similar to that for type systems.

Justification for a set specification language

Set specifications are particularly natural for developers to use because they enable
developers to state object membership properties and relationships between data
structures [B9]. After all, many data structures are simply implementations of sets
which optimize certain set operations. We feel that set specifications can express
many key data structure properties and, in particular, consistency properties which
relate the contents of different data structures. Such consistency properties are often
crucial design properties for a system which ought to hold throughout its lifecycle; set
specifications provide a concise and easy-to-understand way for developers to express
and verify these properties. Our experience using set specifications has been positive.

Limitations of a set specification language

Note that our set specification language does not support the standard set theoretic
construction of the integers, because our sets only contain uninterpreted elements. At
a more practical level, we cannot express relations between objects in our system. For
instance, our modelling of maps (e.g. hashmaps) can only discuss the set of objects
which act as keys and the set of objects which act as values. While Hob can state
and verify relationships between the set of keys and the set of values (for instance,
no object should be both a key and a value simultaneously), Hob cannot state that
a particular key is related to a particular value. Hob also cannot express properties
of objects belonging to sets of sets. The set specification language does have the
advantage of being decidable; the MONA tool [51] can decide formulas written in our
set, specification language.

Another limitation of Hob’s specification language stems from the fact that our
specification language supports only a bounded number of sets. While this language

62

design dramatically simplified the specification language and the resulting specifica-
tions, such a language design makes it difficult to specify properties of dynamically
instantiable data structures like Java’s LinkedList utility class. One potential solu-
tion is to use a more powerful specification language; relations enable the verification
of instantiable data structures. Note that it is possible to work around the limita-
tions of the specification language to some extent: developers could use an unbounded
number of data structures in the implementation while only specifying properties of a
bounded number of these data structures. Furthermore, it would be possible to “swap
in” data structures and specify properties of only these “active” data structures. By
carefully constructing the implementation, it would be possible to verify invariants
that actually constrain an unbounded number of data structures.

More powerful specification languages

A specification language based on relations goes beyond our set specification language.
In the above example, it would permit particular keys to be related to particular val-
ues. Binary relations are sufficient to encode sets and general n-ary relations. Because
a relation-based specification language is more powerful, in general an interactive the-
orem prover might be required to reason precisely about interfaces expressed using
relations. Going even further, a specification language which enables developers to
state the full range of program properties, like JML [T2], makes it tempting to express
detailed implementation-level properties which ought to remain hidden to a module’s
clients. Such interfaces also are potentially as difficult to check conformance against
as the original implementation, which would obviate the advantage of using a speci-
fication language to aid modular analysis.

3.5.4 Comparison: Static analysis and testing

In our experience, testing is a valuable complement to the static analysis provided
by the Hob tool; since it is easy to test a program component, we found a number
of straightforward errors using testing. Testing discovers many errors in implemen-
tations, and a well-tested implementation may well behave properly on the vast ma-
jority of (common) program inputs. However, Hob’s static analyses guarantee that
data structure consistency properties hold on all executions of a program, which is
in general impossible to achieve using testing. One common weakness of testing, for
example, is in detecting the faulty treatment of errors and exceptions.

Furthermore, the abstractness of Hob’s specification language encourages devel-
opers to think at a higher level of abstraction and enables them to express deeper
properties of programs. Such properties can easily be obscured in a program’s imple-
mentation. At the implementation level, design information is hidden behind a mass
of details, which are necessary for implementing the design, but not useful for under-
standing the underlying design. We believe that the set specification language exposes
design information more effectively than imperative implementation languages, since
set specification languages abstract away from the details of how the program carries
out its tasks and instead say what the program does. This is especially true as a pro-

63

gram moves through its development lifecycle through the maintenance phase: the
design information may become outdated, and the original developers may move on to
other projects. The Hob system enables developers to use data structure consistency
properties as verified documentation. Our analysis tool verifies that these properties
hold, not just at any one point in the program’s life, but throughout changes by suc-
cessive developers, who may not understand the program’s original design at all. Our
experience with Hob suggests that it is capable of recording design decisions taken by
the original developers and ensuring that this design information remains up-to-date.

64

Chapter 4

Hob Abstraction Languages

Hob specifications are written using the Hob specification language, which enables
developers to express program properties by describing changes to abstract sets of
objects. Each abstract set in a specification denotes a set of concrete heap objects.
Hob abstraction modules enable developers to state abstraction functions, which de-
fine the contents of abstract sets in terms of concrete heap objects. Abstraction func-
tions therefore provide a connection between specifications (which use abstract sets)
and implementations (which manipulate the concrete heap). This connection enables
both developers and the Hob system to reason soundly about an implementation in
terms of its higher-level set specifications.

Procedure implementations assume that certain properties of the concrete state
hold upon entry and guarantee that (potentially different) properties hold upon exit.
There are two main types of such properties: invariant properties and precondition-
s/postconditions. In the Hob approach, developers specify preconditions and post-
conditions using the previously-described set specification language. Because these
properties are expressed in terms of sets, they constrain the abstract program state
at procedure entry and exit points.

Many implementations maintain specific constraints on the concrete program
state. The Hob system allows developers to specify these concrete representation
invariants in abstraction sections. Analyses may then use these representation invari-
ants as they verify the procedure implementations. In particular, they may assume
that the invariants hold at the beginning of each procedure and must guarantee that
the invariants hold at the end of each procedure. (Hob also supports set specification-
level invariants in specification sections).

Because developers use a variety of techniques to implement sets, the Hob ap-
proach supports arbitrary static analysis techniques for analyzing these techniques.
In the Hob system, we have implemented a number of static analysis techniques. Each
analysis verifies whether or not a class of implementations conform to their set-based
specifications, using a specific class of abstraction functions customized for that anal-
ysis. We have designed the Hob system so that each static analysis only needs to
process abstraction functions corresponding to the class of implementations that it
is analyzing. All of Hob’s static analysis techniques are implemented in the context
of analysis plugins, which establish that procedure implementations conform to their

65

specifications. Furthermore, we have designed the Hob system to be extensible: re-
searchers may add their own analysis plugins to verify new classes of implementations,
and the Hob system enables researchers to use any static analysis techniques that are
appropriate for a desired class of implementations.

4.1 Analysis Approach

The Hob system delegates the central data structure consistency property analysis
task—a proof that a procedure’s implementation conforms to its specification, as
interpreted with the provided abstraction function—to a set of analysis plugins. The
Hob system currently contains four analysis plugins: the flags plugin, the Bohne and
PALE shape analysis plugins, and a theorem proving plugin.

e The Hob flags plugin supports set definitions stated in terms of object field
values.

e The PALE and Bohne shape analysis plugins use the monadic second-order logic
for their definitions. Note that this logic is more powerful than the first-order
set specification language. Bohne additionally supports nondeterministic field
constraints, which enable it to verify a broader class of data structures than the
PALE plugin.

e The Hob theorem proving plugin enables developers to generate verification
conditions which must be manually discharged using the Isabelle interactive
theorem prover. (Note that Hob can support arbitrarily powerful abstraction
functions—even ones that are based on undecidable logics—by relying on de-
velopers to manually discharge the resulting verification conditions. While such
a strategy is always possible, the Hob approach generally focusses on applying
static analysis techniques to the program verification problem).

Once the analysis plugins have verified a program’s implementations, the Hob sys-
tem must somehow combine the analysis results from the different analysis plugins.
We have designed the Hob set specification language specifically to enable different
analyses to communicate, and the developer always states procedure preconditions
and postconditions in the common set specification language. This chapter describes
Hob abstraction modules, which allow analyses to link the set specifications and im-
plementations. Hob abstraction modules contain abstraction functions and invariants.
Note that abstraction modules contain yet another kind of specification information,
besides the procedure specifications, scopes, and defaults that we have seen in Chap-
ter

Analysis plugins communicate information in terms of the set specification lan-
guage. Set definitions are always private to a module. There are therefore two
implications for analysis interoperability: any analysis plugin only needs to 1) pro-
cess specifications written in the common set specification language and 2) parse its
particular syntax for abstraction functions. The Hob approach enables the modular

66

design and implementation of analysis plugins because plugins are not responsible for
processing the abstraction functions used by other modules in the program.

Conceptually, an analysis plugin verifies local data structure consistency proper-
ties for a module M by first translating references to sets belonging to module M in
a procedure’s precondition and postcondition into the internal representation used by
the plugin, adding the appropriate invariants, and finally verifying that the implemen-
tation satisfies the (translated) postcondition on all executions through the procedure,
assuming that the (translated) precondition holds. At procedure call statements, the
analysis converts the internal analysis representation back into the common set spec-
ification language and verifies that the precondition of the callee is satisfied at that
program point.

Some modules exclusively coordinate the activities of other modules through pro-
cedure calls. Such coordination modules may not define any concrete sets themselves.
(Consequently, they may not manipulate any concrete sets either). These modules
work at a fully abstract level and rely on other modules to access the program’s
concrete data structures; it is sufficient to investigate the set specifications of these
modules’ callees to understand what these coordination do.

However, many modules—particularly implementations of data structures—do not
depend on other modules and contain mainly leaf procedures. Leaf procedures do
not make further procedure calls; they perform concrete data structure manipulations
themselves rather than delegating the work to callees. Analysis plugins that are
targeted towards analyzing particular classes of data structures may therefore decline
to handle procedure calls.

The Hob system also requires all analysis plugins to verify that named abstract
sets are always empty in the initial state of the program. This constraint makes
it possible for Hob to know the initial contents of all sets in the program without
inspecting all of the abstraction modules.

Analysis plugin obligations
In summary, when analyzing a module M, an analysis plugin must:
e verify that the procedures of M satisfy their postconditions (and module in-

variants) assuming that their preconditions (and module invariants) hold upon
entry;

e verify that preconditions for all procedure calls originating inside M are satisfied
(if the analysis plugin handles procedure calls); and

e verify that all sets declared in M are empty in the initial program state.

Stationarity condition. We designed the Hob analysis approach to support the
modular verification of data structure consistency properties. Modular verification
requires that changes to a program’s state be somehow localized. Hob plugins must
therefore ensure that only the implementation module defining a set may directly

67

manipulate that set. One way to do so is by using the format construct: the imple-
mentation language definition guarantees that any fields that a module contributes
to a format may only be accessed by that module. Therefore, if a module M’s set
definitions rely only on the fields that M contributes to formats, then M’s sets may
only be modified by module M. In general terms, the Hob system requires plugins to
verify that the following stationarity condition holds:

e 1o set or invariant may be defined in such a way that it would be modifiable
outside its defining module.

This condition ensures that, even upon return from a procedure call to another mod-
ule, a module’s named sets do not surreptitiously gain or lose members. As a conse-
quence of this condition, modules only mutate sets that they define; all such mutations
are declared in ensures and modifies clauses.

4.1.1 Specifying Hob abstraction functions

Hob abstraction functions exist in the context of abstraction modules. The primary
purpose of an abstraction module is to enable developers to specify abstraction func-
tions, which identify sets of concrete heap objects satisfying some property. The
anatomy of Hob abstraction modules is therefore as follows.

e Because the set of properties (for naming sets) available to the developer de-
pends on the analysis plugin used, the developer must identify which analysis
plugins to apply.

e The developer provides set definitions in a notation suitable for that analysis
plugin.

e The developer identifies the implementation-level boolean variables that appear
in the module’s specification sections.

e The developer may optionally state invariants on the concrete heap which the
associated implementation module must preserve; analysis plugins are required
to verify that these invariants hold upon exit from each procedure, and may
assume that these invariants hold upon entry to each procedure.

4.1.2 Common abstraction module grammar

The Hob system uses a single grammar for all of its abstraction modules. However,
because different analysis plugins define sets and invariants differently, each analysis
needs to be able to support its own syntax for set definitions and invariants. Figured=Tl
presents the part of the abstraction module grammar that is common to all analysis
plugins. Each analysis plugin n must define its own sub-grammar for the D,, and I,
productions.

68

M = abst module m {M; |Myu* }

M, ::= use plugin “n”; B
Mypai ::= use plugin “n”for { procs pn*; B }
B = D*I* P*
D = d=D,;
D, == D,UD,|D,ND,|id|{z:T|“D,"}
P = predvar p;
I := nvariant “I,”;

Figure 4-1: Abstraction Language Grammar

An abstraction module contains one or more abstraction module bodies. Each
abstraction module body selects an analysis plugin and specifies invariants, set defini-
tions, and boolean variable declarations. If an abstraction module only uses one anal-
ysis plugin, then the module itself contains the abstraction module body. Otherwise,
the abstraction module must be divided into a number of sub-modules. Each sub-
module chooses an analysis plugin and contains an abstraction module body. When
multiple analysis plugins are used, each procedure in a module must be claimed—and
therefore analyzed—by exactly one analysis plugin.

The Hob system supports two kinds of set definitions: base set definitions and
derived set definitions. Each analysis plugin n must specify a syntax for base set
definitions by defining the production D,,. Derived set definitions define a set by
combining previously-defined sets (or “anonymous” set definitions, which are given
on-the-fly during a derived set definition) using union and intersection.

Abstraction module bodies may also contain declarations of predvars. In the cur-
rent version of Hob, these predicate variables are tied to boolean variables in the
implementation on a one-to-one basis. Although it would be possible to support ar-
bitrary definitions for these variables, we have not yet encountered a situation where
we needed to do so.

An analysis plugin n may also specify a syntax for module invariants by defining
the I, production. Not all analysis plugins define a syntax for module invariants.

Using Multiple Analysis Plugins in a Module. In our experience, we have
found that some implementation modules are best analyzed by multiple Hob analysis
plugins. For instance, a given module may contain both leaf and coordination proce-
dures, which require different static analysis techniques in general. The Hob system
enables developers to analyze these kinds of implementation modules by including
multiple abstraction bodies within a module’s abstraction section. When an abstrac-
tion section includes multiple abstraction bodies, then each abstraction body must
specify which procedures it applies to. Each procedure must be analyzed by exactly
one Hob analysis plugin.

We have implemented a doubly-linked list which uses multiple analysis plugins.
Figure presents the relevant abstraction section. Lines 2 through 28 contain
the Bohne decaf abstraction body for the DLL module, while lines 29 through 32

69

contain the flags abstraction body for that module. Our example abstraction module
declares that the clear procedure is to be analyzed with the flags plugins, while all
other procedures are to be analyzed with the Bohne decaf plugin.

4.2 Flags Abstraction Module Language

Hob’s flag analysis plugin implements a typestate analysis. This typestate analysis
is more general than the traditional typestate formulation [91), 90| because it uses its
sets to represent all objects with a given typestate. The flag analysis plugin uses the
values of integer and boolean object fields (flags) to define the meaning of abstract
sets. It verifies set specifications by first constructing set algebra formulas whose
validity implies the validity of the set specifications, then verifying these formulas
using an off-the-shelf decision procedure [52).

The flag analysis plugin is important for two reasons. First, the flag analysis plu-
gin can propagate constraints between abstract sets defined in external modules using
arbitrarily sophisticated abstraction functions. The plugin can therefore analyze mod-
ules that, as they coordinate the operation of other modules, indirectly manipulate
external data structures defined in those other modules. This enables the flag analy-
sis to perform the inter-module reasoning required to verify global invariants relating
different data structures, e.g. inclusion and disjointness of data structures. Because
the flags plugin uses the boolean algebra of sets to internally represent its dataflow
facts, it can propagate and verify these constraints without any loss of precision.

Second, flag field values often reflect the high-level conceptual state of the entity
that an object represents, and flag changes correspond to changes in the conceptual
state of the entity. One way to visualize this second use of the flag plugin is as
follows: the plugin is, in general, responsible for tracking object membership in sets.
While most sets are defined externally—that is, the flag plugin is only responsible for
tracking changes to those sets by using preconditions and postconditions—some sets
are defined using a specific simple class of abstraction functions, and these sets are
handled directly by the plugin.

By using flags in preconditions of object operations, the developer can specify
key object state properties required for the correct processing of objects and the
correct operation of the program. Standard typestate approaches excel at enforcing
temporal operation sequencing constraints. The use of a set specification language
additionally enables developers to express, for instance, relationships between sets
of objects with various typestates. Our flag analysis plugin therefore goes beyond
temporal sequencing constraints and successfully verifies the more general properties
which are expressible in our set specification language.

Our flags plugin supports loop invariants for reasoning about procedures that
contain loops. It can either use developer-provided explicit loop invariants or infer
loop invariants from available information.

70

1 abst module DLL {

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

use plugin "Bohne decaf" for {
Content = { n : Node |
"rtrancl (lambda vl v2. next vl = v2) (next root) n" };
Iter = { n : Node |
"rtrancl (lambda vl v2. next vl

v2) current n" };

invariant "ALL x vy.
prev X =y -—> (x ~= null &
(EX z. next z = x) -—> next v = x) &
((x = null | (ALL z. next z ~= X)) ——> y = null)";

invariant "init --> (ALL x. ~(next x = root))";
invariant "(~init --> root=null & current=null)";

invariant "(init --> (root ~= null & (current=null |
rtrancl (lambda vl v2. next vl = v2)
(next root) current)))";

invariant "ALL x. x ~= null &
~(rtrancl (lambda vl v2. next vl = v2) root x) —-->
~(EX e. e ~= null & next e = x) & (next x = null)";

procs init, add, remove, removeFirst, getFirst,
isEmpty, openlter, nextIter, islLastIter,
closelter, contains, removeAtIter;

}
use plugin "flags" for {
procs clear;

¥

Figure 4-2: Example List Abstraction Module

71

4.2.1 Example: Flag abstraction module

The Board module of our minesweeper example maintains the overall state of the
minesweeper game board and coordinates with the data structures which are respon-
sible for maintaining sets of exposed and unexposed cells. Figure presents an
abstraction section for the Board module. The Hob system verifies this module us-
ing the flags analysis, which allows developers to assign membership in abstract sets
based on an object’s concrete field values. Line 1 of the example states that an ab-
straction section for the Board module follows; lines 1-9 will provide definitions for
the set and boolean variables used in the specification section of the Board module in
terms of that module’s concrete program state. This module does not contain any in-
variants. The use plugin declaration on line 2 states that the Board module should
be analyzed by Hob’s flags plugin. Line 3 defines the set U (for Universe) as the set
of all Cell objects in the concrete heap which have the field init set to true. All
other sets in this module are defined as intersections with the U set (the cap operator
denotes intersection). Lines 4 through 7 define the MarkedCells, ExposedCells,
UnexposedCells and MinedCells sets as derived sets. Line 4, for instance, states
that the MarkedCell set contains those objects that are members of the U set and
have their isMarked field set to true; the other set definitions are similar. Finally,
line 8 declares that the gameOver, init and peeking boolean variables from the
implementation are visible as specification-level boolean variables.

Protecting Sets from External Changes. The Hob implementation language
definition specifies that new Cell objects always isExposed set to false, the default
initial value for boolean fields. If we define the UnexposedCells set to contain all
objects whose field isExposed is set to false, then this set would gain a new element
whenever any part of the program instantiates a new Cell object. In such a situation,
it would be very difficult to reason modularly about the UnexposedCells set: any
part of the program could modify this set! The implication would be that any plugin
that wished to soundly analyze a procedure call would need to analyze all potential
callees from that site. Any modular analysis technique must, of course, somehow avoid
the analysis of all of a procedure’s transitive callees. The Hob stationarity condition
avoids this potential barrier to modular analysis by requiring plugins to prevent such
pathological set definitions. The set U satisfies the stationarity condition, since it
contains those objects with field init set to true, and new objects have init set to
false. Therefore, the subset UnexposedCells of U, as we’ve defined it, also satisfies
the stationarity condition.

Initial Program State. In general, developers may not define sets that contain
newly-initialized objects—objects that hold the initial field values assigned by the
Hob implementation language. Chapter [stated that in the Hob implementation
language, integer fields are initially initialized to 0, while boolean fields are initialized
to false. The flag plugin uses this property of the implementation language to
enforce the constraint that named sets must always defined to be initially empty.
The format construct guarantees that these sets remain empty until a flags module

72

abst module Board {
use plugin "flags";
U={x: Cell | "x.init = true" };
MarkedCells = U cap { x : Cell | "x.isMarked = true" };
ExposedCells = U cap { x : Cell | "x.isExposed = true" };
UnexposedCells = U cap { x : Cell | "x.isExposed = false" };
MinedCells = U cap { x : Cell | "x.isMined = true" };
predvar gameOver; predvar init; predvar peeking;

Figure 4-3: Example Flag Abstraction Module

executes: due to the format construct, no other module may modify an object’s flags,
as long as modules only define sets using the fields that they have contributed to a
type. Our flags plugin ensures that a module’s set definitions use only the object
fields that the module has contributed.

4.2.2 Loop invariant inference

Loops are typically problematic for static analyses, as they introduce a unbounded
number of execution paths that need to be analyzed. A standard approach for dealing
with loops is by using loop invariants. Loop invariants state a condition that holds
regardless of the number of times that the loop iterate. Loop invariants tame the
verification task by eliminating the need to reason about an unbounded number of
execution paths. Because the Hob flags plugin analyzes procedures by propagating
formulas in the boolean algebra of sets, it can use loop invariants expressed in that
logic to verify properties of loops. In particular, Hob’s flags plugin can either verify
developer-provided loop invariants or synthesize loop invariants from the program
source code and specifications. The loop invariant synthesis algorithm is a novel
contribution of this thesis.

Explicit Loop Invariants. If the developer provides an explicit loop invariant, the
flags plugin verifies that the loop invariant: 1) holds on entry to the loop; and 2) is
preserved by the loop body. At the exit of the loop, the loop invariant conjoined with
the loop exit condition characterizes the post-loop program state.

Our loop invariant verification algorithm uses information from the loop’s context
to automatically augment the explicit loop invariant with properties that are known
to be invariant over the loop. In particular, the loop’s containing procedure will have
a requires clause, which states the procedure precondition. This clause involves
only the initial values of sets at the beginning of the procedure (which appear as
unprimed set variables in our set specification language). Therefore, the clause holds
throughout the procedure’s execution, and this clearly includes the interior of the
loop body. We also use the containing procedure’s implementation, as well as its

73

modifies clause, to identify all non-modified sets, and construct a conjunct which
states that these non-modified sets are preserved by the loopﬁ. We then conjoin both
the original procedure precondition and clauses guaranteeing the preservation of non-
modified sets to all explicit loop invariants. Developers therefore need not provide
these two pieces of redundant information, which helps to make explicit invariants
more concise and easier to understand.

Inferred Loop Invariants. If the developer does not provide an explicit loop in-
variant, the flag analysis plugin attempts to automatically synthesize one. The syn-
thesis starts with the boolean algebra formula characterizing the program state at
the entry of the loop and weakens the formula by iterating the analysis of the loop
until it reaches a fixpoint. We next present an example of the algorithm in action
and discuss some properties of the algorithm.

Loop Invariant Inference Example. Figure presents the clear procedure,
which iterates through a set, removing each element until the set is empty. We use this
procedure to illustrate our loop inference technique. In this procedure, each execution
of the loop body removes an element from the Content set. Because the precondition
of the removeFirst procedure must hold prior to its invocation, the loop body cannot
execute successfully unless the Content set is non-empty, i.e. card(Content’) >= 1.
Furthermore, to be useful in practice, loop invariants must be strong enough to enable
the verification of the procedures which contain them. In this case, the postcondition
of the clear procedure is card(Content’) = 0. A valid loop invariant must therefore
ensure that executing the loop body in a state satisfying the invariant 1) does not
violate the precondition of removeFirst, and 2) leads to a state that satisfies the
loop invariant. A loop invariant that enables the analysis of clear must also ensure
that, upon termination of the loop, the postcondition of clear holds (since clear
does not contain any statements after the loop).
One possible loop invariant that satisfies these criteria is

I, : ¢ & card(Content’) = 0,

where ¢’ is the return value from the isEmpty() procedure; it is true iff Content’
is empty. Since €’ is always false when execution enters the top of the loop body, I,
expresses the condition that the set is non-empty, thereby guaranteeing that the loop
body can execute correctly; and since €’ is always true when execution exits the loop,
I,, implies that the set is empty at the end of the procedure, satisfying the procedure
postcondition.

! Using the procedure’s modifies clause alone results in an overly-conservative estimate of mod-
ified private sets in the presence of scopes, because scope-public procedures do not declare modi-
fications of scope-private sets. Our use of the modifies clause in conjunction with the procedure
implementation (to identify modifications to scope-private sets), on the other hand, allows the devel-
oper to state more detailed information about public sets than our modified-set inference algorithm
could deduce.

74

specvar Content : Element set;

proc clear() // specification
requires true
modifies Content
ensures card(Content’) = 0;

proc clear() { // implementation
pre: bool e; e = isEmpty();
head: while (!e) {
body: Entry q = removeFirst();
e = isEmpty();
}

post: return;

Figure 4-4: Procedure containing a loop

proc isEmpty() returns b : bool
ensures not b’ <=> card(Content)>=1

proc removeFirst() returns e : Element
requires card(Content)>0
modifies Content
ensures (card(e’)=1) & (e’ in Content) &
(Content’ = Content - e’);

Figure 4-5: Procedures called within the loop

)

The flags analysis plugin analyzes the clear () procedure by starting with the pro-
cedure precondition (in this case, true) and successively computing an approximation
of the strongest postcondition over the statements in the procedure. Eventually, the
analysis reaches the while() statement containing the loop (labelled head), with the
intermediate analysis result f. By construction, f holds for all reachable states at
program counter head that the analysis has explored up to this point. In our example,
f is the formula:

f=3es. mes) N¢ =0 A (¢' & —card(Content’) > 1) A Content = Content’

The formula f states that: 1) at some intermediate stage (represented by es), the
variable e was false (in this case, e was initially false); 2) the variable ¢ points
to null; 3) e’ is true iff the Content set is nonempty; and 4) the Content set is
unchanged from its value on entry to the procedure. Note that es is only defined and
never accessed in the formula. This variable arises from the initial value false for
local variable e, which is never read.

Our inference algorithm next strengthens f by conjoining the loop condition,
producing a formula f; which holds at the start of the loop at the label body after
zero loop iterations. For our example, fyis f A —e':

fo = (Fes. me3) Ad' =0 A (¢ & —card(Content’) > 1) A Content = Content’ A —é

Since any loop invariant I must hold for all such states, it must be the case that
fo = I. However, fy is unlikely to be the desired loop invariant, since it does not
take the effect of the loop body into account. In particular, fy is probably too strong.
Our algorithm therefore computes the strongest postcondition over the loop body,
starting with fy at the top of the loop body, to obtain fj. The formula f} holds for
the set of states that are reachable at the loop entry after executing exactly one loop
iteration. Any acceptable loop invariant I must satisfy the constraints f, = I and
f{ = I. For our example:

fo= (Jes. me3) A (¢! & —card(Content’) > 1)
A (Jes. —es A (e5 < card(Content) = 1))
A Content’ = Content \ ¢’ A card(¢’) = 1 A ¢’ € Content A ¢

The formula f] states that the set Content’ is equal to the set Content minus ¢/,
which points to an object in the heap (since card(q’) = 1). The formula f} also states
that at some previous program state, the variable e was true iff the set Content had
cardinality 1. (Note that e; was formerly ¢’ at the top of the loop; when composing
formulas to take the effects of statements into account, our analysis renames €’ to the
existentially quantified e5.) Finally, f) states that at some previous program state,
the variable e was false, and that at the present state, e is true iff the Content’ set
is empty. Note that these final two conjuncts are common to fo and f}.

Building Potential Invariants. The formula f; summarizes the program state
after zero iterations of the loop body, while f] summarizes the state after one iteration.

76

Our goal is to produce a logical formula which holds after an arbitrary number of
loop iterations. We can start by producing a formula which holds after either zero or
one loop iterations. We take conjuncts from fy which are implied by fj, as well as
conjuncts from f} which are implied by fo. Any such conjuncts will then hold after
both zero and one iterations of the loop body. We conjoin these conjuncts to produce
the formula fi:

fi = (Jes. —e3) A (¢/ & —card(Content’) > 1)
A Content’ = Content \ ¢’ A ¢’ € Content

In formula f;, we dropped the intermediate state e5 and the constraint card(q’) = 1.
We dropped the intermediate state e; because it does not exist after zero iterations
of the loop, and we dropped the cardinality constraint because ¢’ is the empty set
in fo and known to be nonempty in fi; no cardinality constraint in our analysis
representation satisfies both of these conditions. Dropping the cardinality constraint
allows ¢’ to contain an arbitrary number of heap objects; it is no longer required to
point to a single location in the heap.

Our technique then checks whether f; is a loop invariant, using the technique
described above for verifying explicit loop invariants. In our example, f; is not a
loop invariant: it contains the conjunct Content’ = Content \ ¢/, where ¢’ is a free
variable; that is, in all iterations of the loop, Content’ is equal to Content minus
the set ¢/, for all values of ¢’. Here, ¢’ is only constrained to be a subset of Content).
While this conjunct holds for the zeroth and first iterations of the loop, it does not
hold for all iterations of the loop, because ¢’ is free. Therefore, we iterate again,
computing f], the strongest postcondition of f; over the loop body. We combine
conjuncts from f; which are implied by f{ with conjuncts from f] which are implied
by fi, yielding the next estimate f.

The formula f; summarizes the program state after zero, one and two iterations. It
contains the clause Content’ = Content\gs\¢'. Because gs is existentially-quantified
(rather than free), and because gg does not carry any cardinality constraints, the set
gs can be interpreted to represent the difference between the initial Content set and
the intermediate Content’ set after any number of loop iterations. The analysis tests
f2 and finds that it is a loop invariant.

fi = Jeg. (meg A Jgs. (gs € Content A ¢ € Content \ gg
A Content’ = Content \ g3 \ ¢)
A (—eg < card(Content \ ¢g) = 1))
A (Jes. —ez) Acard(q’) = 1 A (¢/ & —card(Content’) > 1)

fo= dgs. (gs € Content A ¢’ € Content \ gs
A Content’ = Content \ ¢z \ ¢)
A (Jes. me3) A ¢ € Content A (¢/ < —card(Content’) > 1)

The general loop invariant inference problem consists of finding a formula that
summarizes all of the possible number of executions of the loop body. This formula is

77

a fixed point (hence “invariant”) that is preserved by executing the loop body. One way
to find such a formula is by starting with a formula that is stronger than the desired
invariant and then weakening it. Formulas may be weakened by using disjunction; this
is how we treat control-flow merges. Disjunction preserves information; it summarizes
what is happening if the loop might execute n times or n 4+ 1 times. On its own,
disjunction will never find a fixed point: without somehow weakening the formula,
disjunction could only summarize the execution of a finite number of executions. Our
approach to weakening formulas is ad-hoc: we drop conjuncts until we do reach a
fixed point. We have designed our approach so that it is guaranteed to terminate,
but the remaining formula might not be strong enough to enable the execution of the
loop body. However, in our experience, our approach found all loop invariants needed
by our benchmarks.

Existential Quantifiers. In our exposition so far, we have ignored the internal
structure of the conjuncts in our formulas, and treated each top-level conjunct as
an atomic unit. However, we found it necessary in practice to decompose top-level
conjuncts, retaining only the parts of the conjunct which are true. In particular,
our algorithm can infer stronger invariants by examining the internal structure of
existentially quantified clauses instead of dropping entire clauses at a time. For
instance, in the formula above, if ¢; is of the form Je. A¢j, then our algorithm
drops sub-conjuncts c,’c that are not implied by f/. Note, however, that even if some
set, of sub-conjuncts K such that c,7g € K are individually implied by f/, it does not
necessarily follow that f/ = A K: in the presence of existential quantifiers, two sub-
conjuncts may conspire to contradict the antecedent. If we do construct such a K
which fails to imply f/, then we drop those conjuncts of K that mention e and try
again.

Comparing our inferred loop invariant f, with the invariant I,, we can observe
that fo has a number of extraneous clauses (e.g. ¢’ € Content A (Jes. —e3), and also
the clause containing gg) which are not required to verify the loop or the procedure in
general. We have found no simple way to automatically produce smaller invariants.
One possible heuristic is to eliminate those conjuncts from an inferred loop invariant
which are not required for the analysis of the loop body to go through. In our
experience, this strategy generates invariants that are sound, but too weak to prove
the postconditions of some procedures, so we do not apply it.

Enforcing Termination. As presented above, our algorithm for generating and
checking trial loop invariants is not guaranteed to terminate; we can construct con-
trived examples on which our algorithm does not terminate. In practice, we are able
to infer all loop invariants in our example programs in at most three iterations.

A small change to the algorithm presented above ensures termination in all cases
where it is possible to construct a loop invariant. We limit the number of iterations
that the original algorithm may execute. Once the limit is reached, the algorithm
subsequently drops any non-preserved conjuncts and does not introduce any new ones;

78

n == flags
D, == x.f=c

Figure 4-6: Grammar for Flag Abstraction Modules

that is,
Jir1 = /\{Cj | fi = ¢}
J

This phase is guaranteed to terminate because it operates on a finite number of
conjuncts; no new conjuncts are added. If no conjuncts are dropped in a given
iteration, then the algorithm has found a loop invariant and terminates. Otherwise,
the size of the formula strictly decreases at each step.

Our algorithm, as amended, is guaranteed to never loop with an infinite sequence
of potential invariants that are too strong. On the other hand, it is possible to
construct an example where our algorithm produces an invariant that is not strong
enough for verifying the loop body. If a loop invariant exists, the developer can
provide a hint to the inference algorithm by inserting the pair of statements assert
C; assume C; inside the loop body.

Implications of Loop Invariant Inference. Hob’s analysis approach relies on
procedure summaries to enable the modular analysis of call sites. Analysis plugins
must somehow analyze loops which occur in module implementations; one way to
analyze loops is by verifying that the loops preserve loop invariants. Like procedure
summaries, loop invariants provide useful information for code understanding; how-
ever, unlike procedure summaries, they are not essential for modular analysis. Our
loop invariant inference technique therefore reduces the annotation burden on devel-
opers, which simplifies the tasks of developing programs and verifying relevant data
structure consistency properties for these programs. We found that our loop invariant
inference technique was successful in inferring all loop invariants in our benchmarks.

4.2.3 Using the flag analysis plugin

Figure presents the grammar for flag abstraction modules. The flags plugin
accepts base set definitions of the form x.f = c¢ and derived set definitions which
combine such base set definitions. The set definition S = { x : T | x.f = ¢ }
denotes all objects of type T in the concrete heap with field f equal to integer or
boolean value c.

A module M’s set definitions must satisfy the following conditions:

e Any field f used in a set definition must be defined by module M.

e Named sets may not contain uninitialized (i.e. newly-instantiated) objects.

These conditions allow the flags plugin to satisfy the stationarity condition. Note
that the second condition is needed to ensure that arbitrary external modules cannot
modify a flags module’s sets by executing new statements.

79

Because the flags plugin analyzes procedures by propagating formulas in the
boolean algebra of sets, it would not gain any additional expressive power by sup-
porting invariants at the level of abstraction modules: Hob’s specification module
invariants have the same expressive power as would plugin-specific flags abstraction
module invariants. We therefore do not provide a syntax for flags analysis abstraction
module invariants.

To use the flags plugin, a developer must give relevant flag set definitions and en-
sure that the implementation always ensures the specified postconditions. When the
postcondition for a flags procedure ranges only over sets defined in that procedure’s
module, the flags analysis plugin starts with the procedure precondition and com-
putes the strongest postcondition of the implementation by tracking changes in flag
values. The analysis then uses the MONA decision procedure to verify that the imple-
mentation’s strongest postcondition implies the procedure’s specified postcondition.
Otherwise, the flags plugin relies on the design of the Hob system and incorporates
the postconditions of called procedures into its computed strongest postcondition to
verify that flags procedures satisfy their postconditions. We found the flags plugin
to be especially useful for analyzing modules that delegate data structure manipula-
tions to worker modules—coordination modules—due to its loop invariant inference
algorithm; in the case of a coordination module, the developer only needs to specify
the preconditions and postconditions of procedures in that module (as well as the
information needed to verify the worker modules) to verify data structure consistency
properties.

4.3 Bohne Abstraction Module Language

Shape analysis is a family of static analysis techniques for showing consistency of
linked data structures [71), B8, 84]. Shape analysis is a promising technique for general
data structure consistency checking, because it can reason about statically unbounded
sets of objects and relations between them. As a result, shape analysis has great po-
tential for improving software reliability. Unfortunately, precise shape analyses tend
to lack scalability, greatly limiting their impact, despite significant recent progress in
improving shape analysis efficiency [95], [69, [70].

Hob’s Bohne plugin enables developers to use field constraint analysis [93], a
particular instantiation of shape analysis, for verifying consistency properties of linked
data structures. Field constraint analysis supports recursively-defined data structures
which have a tree-like backbone plus nondeterministic field constraints. Bohne can
handle a range of data structures, from singly-linked lists to two-level skip lists. Like
the flags plugin, the Bohne plugin can also use developer-supplied loop invariants
or infer them itself. Bohne uses symbolic shape analysis based on boolean heaps to
deduce loop invariants.

Field constraint analysis uses set definitions stated in the monadic second-order
logic over trees augmented with nondeterministic field constraints, which allow de-
velopers to constrain non-tree fields in the heap. Second-order logic permits quantifi-
cation over predicates, namely functions and relations, as well as base objects in the

80

logic; monadic second-order logic restricts quantification over predicates to quantifi-
cation over one-place predicates (i.e. sets). Due to this restriction on quantification,
monadic second-order logic is decidable.

Because Bohne’s underlying logic is second-order, it is sufficiently powerful to ex-
press the concept of transitive closure, which enables predicates in the logic to describe
tree backbones; nondeterministic field constraints (stated in terms of invariants) then
enable developers to describe properties of non-tree edges in the heap whose structure
is constrained by the tree backbone.

4.3.1 Example: Bohne abstraction module

We designed the flags plugin to analyze relatively simple modules which rely on
other modules to carry out sophisticated data structure manipulations. Hob’s Bohne
plugin, on the other hand, uses shape analysis techniques to statically analyze the
worker modules that actually carry out data structure manipulations. Such worker
modules often do not contain procedure calls. The Bohne plugin therefore supports
only leaf procedures—procedures which do not call other procedures in turn.

Figure B=7 presents the Bohne abstraction body for the doubly-linked list module
with header (DLL) used in the minesweeper example. The Hob system verifies the DLL
module with the Bohne decaf and flags plugins. “Bohne decaf” refers to a variant
of the Bohne [93] shape analysis which relies on developer-provided loop invariants;
the full Bohne plugin infers loop invariants using predicate abstraction. In this thesis,
we discuss only the Bohne decaf plugin.

Linked list set definitions

The first part of the Bohne abstraction sub-module for the DLL module contains
set definitions. The Bohne plugin allows developers to specify set contents using
monadic second-order logic (MSOL). Lines 2-3 use MSOL to define the Content set,
while lines 4-5 define the Iter set. In Bohne’s interpretation of MSOL, fields in the
heap are represented as relations between objects, so that next x vy is true iff the field
x.next points to y. Therefore, the central lambda-expression lambda vl v2. next
vl = v2 is a predicate which relates its formal parameter vl (a heap object) with
formal parameter v2, a candidate linked-list successor; that is, the lambda expression
is true when vl.next = v2. Next, Bohne’s built-in rtrancl higher-order function
takes a function and returns its reflexive transitive closure. This causes the lambda
predicate to be true for those objects v2 reachable from v1 by following zero or
more next fields. Finally, we supply arguments to the rtrancl lambda expression:
Content is the set of all objects n reachable through next fields from root.next,
and Iter is the set of all objects n reachable from current.

Linked list invariants

Lines 7 through 22 state invariants for the doubly-linked list. These invariants must
hold initially, are assumed to hold upon entry to linked list procedures and verified

81

upon exit. They enable the Bohne analysis to focus its attention only on reachable
concrete states; otherwise, pathological (and unreachable) program states would pre-
vent Bohne from successfully verifying the linked list. We next present all of the
invariants of this module.

Field constraints. The invariant on lines 7-10 is an example of a field constraint
on the prev field. In this case, the constraint on the prev field states that if x.prev
points to y for x non-null, and if there exists another object z such that z.next points
to x, then it must be the case that y.next points to x. In other words, prev is the
inverse of next whenever next has an inverse. The constraint also states that x.prev
must be null if x is null or if no object points to x through its next field.

Field constraints enable developers to give interpretations for derived fields. De-
rived fields are important because monadic second-order logic can only support tree-
like heap structures; even a doubly-linked list is not a tree structure due to the
prev fields. Our definitions of the Content and Iter sets fall within the monadic
second-order logic over trees because they only discuss the subgraph of the heap which
consists of the heap objects and the tree-structured next fields. In the presence of
field constraints, the Bohne shape analysis tool must verify 1) that mutations to the
Content and Iter sets are consistent with their specifications, and 2) that the prev
field continues to satisfy the appropriate field constraints. In return, the field con-
straint tells Bohne how to interpret references to prev in the implementation. Note
that this particular field constraint is deterministic, since prev is a deterministic func-
tion of next. The Pointer Assertion Logic Engine [71] supports deterministic field
constraints. The Bohne system also supports nondeterministic field constraints [93],
which state (partial) conditions that must hold on derived fields; nondeterministic
field constraints enable developers to express data structures like two-level skip lists.

Only one pointer to root. The invariant on line 13 states that, if the module
has been initialized (i.e. init is true), then for all objects in the heap, no object
has a next field pointing to root. No static analysis could conclude that the next
backbone remains acyclic upon addition to the list without using some form of this
invariant.

Sets initially empty. The invariant on line 14 ensures that Content and Init
are both empty if init is false. This invariant holds by the definition of the Hob
implementation language: variables are initialized to null or false, as appropriate.

Constraints on variable values. Lines 16-18 give more well-formedness con-
straints on initialized concrete states. First, root must always be non-null if the
program has been initialized. Furthermore, either current is null or it is reachable
from root through the next field.

Orphan objects. Finally, lines 20-22 constrain objects that are not in the Content
set. If an object x is not in Content, then it must not be reachable through the next

82

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

use plugin "Bohne decaf" for {

Content = { n : Node |

"rtrancl (lambda vl v2. next vl
Iter = { n : Node |

"rtrancl (lambda vl v2. next vl

v2) (next root) n" };

v2) current n" };

invariant "ALL x vy.
prev X =y -——> (x ~= null &
(EX z. next z = x) ——> next v = x) &
((x =null | (ALL z. next z ~= x)) --> vy = null)";

invariant "init --> (ALL x. ~(next x = root))";
invariant "(~init --> root=null & current=null)";

invariant "(init --> (root ~= null & (current=null |
rtrancl (lambda vl v2. next vl = v2)
(next root) current)))";

invariant "ALL x. x ~= null &
~(rtrancl (lambda vl v2. next vl = v2) root x) —-->
~(EX e. e ~= null & next e = x) & (next x = null)";

procs init, add, remove, removeFirst, getFirst,

isEmpty, openlter, nextIter, islLastIter,
closelter, contains, removeAtIter;

Figure 4-7: Bohne abstraction body for doubly-linked list

field. Furthermore, x.next must be null. This invariant enables Bohne to conclude,
for instance, that adding an object to the linked list adds precisely that object to the
list, and no others.

4.3.2 Using the Bohne analysis plugin

Figure presents the grammar for the Bohne abstraction language. As with other
analysis plugins, Bohne abstraction modules contain set definitions and invariants.
In the case of the Bohne plugin, set definitions must be expressed in monadic second-
order logic over trees. The Bohne plugin uses a subset of the Isabelle abstraction
language as its abstraction language; this design decision allowed us to leverage our
pre-existing parser for the Isabelle abstraction language.

The Bohne plugin natively supports the rtrancl higher-order function for reflex-

83

ive transitive closure. A typical Bohne set definition uses the
S ={n : Node | rtrancl (lambda vl v2. f vl v2) r n };

formulation to denote the set of objects starting at module variable r and reach-
able through the f field. In principle, Bohne also supports more sophisticated set
definitions in the monadic second-order logic over trees; however, in our work, we
have focussed on exploring applications of the richer properties expressible as Bohne
invariants rather than on exploring applications of more sophisticated Bohne set def-
initions.

Note that because the Isabelle grammar is quite general, rtrancl does not need
to appear explicitly in the Bohne abstraction module language’s grammar; during
parsing, rtrancl is treated as an uninterpreted function. rtrancl is given the proper
interpretation in the Bohne verification stage.

Nondeterministic field constraints enable developers to state properties of fields
which do not belong to a data structure’s tree backbone. Field constraints are a spe-
cific kind of invariant which enable the verification of implementations which traverse
non-tree fields by stating the relationship between the non-tree fields and the tree
backbone fields which occur in set definitions. As with invariants in general, non-
deterministic field constraints are also useful for stating properties of non-tree fields
that the developer expects to hold upon exit from all procedures (assuming that these
properties hold upon entry). A nondeterministic field constraint has the form

FC.(xz,y) =ALL x y. n xy —-> f(x, vy)

where n is the constrained field; this constraint states that property FC,(x,y) holds
whenever x.n points to heap object y. We have implemented an elimination algo-
rithm for converting modules which use nondeterministic field constraints into mod-
ules which use formulas expressible in the monadic second-order logic over trees; the
idea is to replace the occurrence G(f(x)) by the implication Vy. G(f(x)) = FCs(x,y).
Our elimination algorithm is sound in all cases and complete when field constraints
are nondeterministic; please refer to [93| for further details on field constraint analysis.

Bohne also supports general monadic second-order formulas as invariants. Invari-
ants enable modular analysis by identifying certain concrete states as being unreach-
able by the implementation; without invariants, the analysis must assume the worst
at each procedure entry point, and this may include program states which are too
pathological for verification to succeed. In general, the developer must provide suffi-
ciently strong invariants to enable the analysis to conclude that the tree-like backbone
remains tree-like after executing each implementation procedure. Such invariants usu-
ally include prohibitions on pointers to the root of the data structure and prohibitions
of pointers to and from objects not in the data structure; in our doubly-linked list
example, these invariants were on lines 13—-22.

Additionally, if a developer intends to maintain relationships between a module’s
concrete data structures, Bohne can verify that these relationships are, in fact, pre-
served by verifying that developer-provided invariants always hold upon exit from

84

::= Bohne | Bohne decaf

F

F

ALL T.F | EX T.F | lambda T.F' | G

A|lA* | ~G|GNG|GVG|G=G|G&G|G=G|G#+G
(F[,F)*) | id | id[F] | null | true | false | O | {id : F} | [|F[; F]*|]
id* | (id = Y)*

m= Y — Y | Y set|id ref | void | universe | id

%Hk@ﬁ?‘?:
i

Figure 4-8: Grammar for Bohne Abstraction Modules

the module’s procedures. These invariants—stated at the abstraction module level—
enable developers to state low-level properties of the concrete state. The Hob system
also accepts high-level relationships between data structures. Such relationships are
expressed in the set specification language and given in a module’s specification sec-
tion.

For the Bohne analysis, a module M’s invariants may only use fields that module
M contributes to a format. Note how formats contribute to modular verification:
it is safe for other modules to remain oblivious of M’s invariants, since they cannot
possibly violate them.

4.4 Theorem Proving Abstraction Module Language

The Hob system enables the use of arbitrarily powerful static analysis techniques for
reasoning about module implementations. Shape analysis, for instance, is one of the
most precise static analysis techniques known today. However, sometimes developers
reason about programs using techniques that lie beyond the capabilities of the current
state of the art in automated program analysis. We believe that if a developer is
willing to expend the effort needed to formally prove a particular data structure
consistency property, then the Hob system should seamlessly accept such proofs in
its program verification methodology. Theorem proving techniques can in principle
verify arbitrarily complicated consistency properties; interactive theorem provers such
as Isabelle [8T] and Athena [4] allow writing general mathematical statements about
program state. The difficulty in using theorem proving tools is that their application
may require manual effort and familiarity with their behaviour. Because manual effort
is expensive, theorem proving is effective only if it is focused on relevant parts of a
program; the assumptions used during theorem proving must then be guaranteed by
the rest of the program. Hob’s theorem proving plugin [99] shows how it is possible
to apply interactive theorem proving technology to the verification of data structure
consistency properties. Using this plugin, we verified implementations of a set in
terms of a linear array, as well as a partial specification of a priority queue (heap)
implemented as a binary search tree stored in an array.

85

abst module Arrayset {
use plugin "vcgen";
Content = { x : Node | "exists j. 0 <= j & j <s & x : d[j]1"};
predvar setlnit;
invariant "0 < s";

Figure 4-9: Example Theorem Proving Abstraction Section

The theorem proving plugin takes set definitions and invariants in the Isabelle
formula syntax. It then converts procedure specifications into Isabelle and computes
weakest preconditions from procedure implementations. The theorem proving plugin
splits the resulting proof obligations into subgoals, which it attempts to prove auto-
matically using Isabelle. It then saves the proof obligations that cannot be proven
automatically for the developer to discharge manually. Essentially, a user of the the-
orem proving plugin must show that the procedure’s precondition (plus invariants)
implies the weakest precondition needed to imply that the procedure’s postcondition
(plus invariants) holds at the end of the procedure. Note that, unlike the other plug-
ins we have described, the theorem proving plugin does not include a loop invariant
inference algorithm. Instead, the developer must always supply explicit loop invari-
ants in code to be verified with the theorem proving plugin, which then generates the
appropriate verification conditions for these annotated loops.

4.4.1 Example: Theorem proving abstraction module

Figure E=9 presents an abstraction module for Arrayset, one of the set implementa-
tions used in the minesweeper example. The Hob system uses the theorem proving
(vegen) plugin to analyze the Arrayset module; currently, the theorem proving plu-
gin is the only Hob plugin that can analyze properties of array-based data structures.
The theorem proving plugin generates verification conditions in Isabelle. Once a de-
veloper discharges the relevant verification conditions, the module is known to satisfy
the specified data structure consistency properties. A key point of the Hob system
is that clients of this module, or any module in general, do not need to understand
how the module is verified. The effort of verifying a module can be amortized over
all potential uses of the module.

Line 3 of the abstraction module gives the definition of the Content set. It first
states that the Content set consists of the objects x of type Node for which there exists
some integer j between 0 and s, the array’s upper bound, such that d[j] contains x.
Line 4 states that the setInit boolean variable is visible in specifications. Finally,
line 6 states that the implementation-level variable s is always non-negative.

86

4.4.2 Using the theorem proving analysis plugin

All analysis plugins must first conceptually compute weakest preconditions from
a module’s implementations, specifications, set definitions, and invariants; plugins
then verify that procedure preconditions imply the computed weakest preconditionﬂ.
Hob’s theorem proving plugin conforms to the general Hob analysis plugin scheme by
computing weakest preconditions. However, the theorem proving plugin differs from
other plugins because it does not promise to discharge the resulting proof obligations
(that is, it is not complete): when using the theorem proving plugin, the developer is
ultimately responsible for guiding the theorem prover to the appropriate proofs.

To use the theorem proving plugin, the developer must first provide set definitions
and invariants for the module under verification. Our current implementation of
the theorem proving plugin supports Isabelle/HOL, so developers may express set
definitions and invariants in terms of Isabelle/HOL clauses. Figure presents the
concrete grammar for the theorem proving plugin’s abstraction language.

Given implementation, specification, and abstraction parts of a module, the theo-
rem proving plugin computes weakest preconditions for the procedures in that module.
Each procedure’s weakest precondition takes the form of a set of conjuncts. The the-
orem proving plugin then attempts to verify each conjunct in turn. First, it verifies
if a conjunct belongs to the library of proved lemmas; if not, it attempts to discharge
the conjunct using proof hints included (with assert statements) in the procedure
code; finally, if that verification fails, it attempts to prove the conjunct using Isabelle’s
built-in simplifier and classical reasoner with array axioms.

In our experience, most generated verification-condition conjuncts are discharged
automatically using array axioms. For the remaining conjuncts, the fully automated
verification fails, and the plugin reports that these conjuncts are “not known to be
true”. After the developer interactively proves these difficult cases in Isabelle, our
system stores these cases in its library of verified lemmas and subsequent verifica-
tion attempts pass successfully without assistance. Our system compares conjuncts
against the library of proved lemmas by comparing abstract syntax trees of formulas,
taking into account some basic properties of logical operations. This enables the reuse
of existing lemmas even when the verification conditions have changed slightly.

4.4.3 Expressive power of the theorem proving plugin

The theorem proving plugin allows developers to state and prove set definitions and
invariants by writing higher-order logic predicates for the Isabelle/HOL theorem prov-
ing system. In general, higher-order logic is more powerful than the first-order logic
used in our common set specification language [64]. In our examples, we have used
second-order logic, which allows quantification over relations. Second-order logic is
necessary for naturally expressing the transitive closure relation, which enables rea-
soning about heap reachability (as needed for linked data structures). More generally,

2Recall that the flags plugin actually computes strongest postconditions rather than weakest
preconditions. Nevertheless, the flags plugin satisfies the general contract of an analysis plugin; it
just uses a different analysis technique to do so.

87

n = vcgen

D, = F

I, == F

F = ALLT.F|EXT.F |lambda T.F' | G

G = A|A*|~G|GANG|GVG|G=G|G&G|G=G|G#G
| G<G|GLG|G>G|G>G|G:G|G~G|GUG|GNG
| G+G|G-G|GxG|G+G|G:G

A = arrayread | arraywrite | newarray | arraysize | fieldread | fieldwrite | (F'[, F']*)
| id | wd[F] | null | true | false | nat | 0| {id : F'} | [|F[; F]*|]

T == 4d" | (id:Y)*

Y = Y —>Y |Ylist|Y set|Y array | id ref | bool | int | void | universe | id

Figure 4-10: Grammar for Theorem Proving Abstraction Modules

second-order logic enables the user to define structures which are constrained to hav-
ing a finite number of elements.

Our use of Isabelle/HOL also enables developers to state internal constraints which
rely on integer (or potentially floating-point) values. For instance, a developer could
define a set which contains all elements of an array at prime indices. Because the
theory of integers with addition and multiplication is undecidable, we chose to not
include integer constraints in our common set specification language.

The Hob approach enables developers to combine arbitrarily expressive theorem
proving invariants with more tractable logics for more straightforward parts of the
program. When using the theorem proving plugin, developers may use basically
arbitrarily expressive invariants and set definitions. But procedure preconditions and
postconditions must always be given using Hob’s set specification language. Upon exit
from any procedure, Hob must verify that the program state satisfies that procedure’s
postcondition conjoined with any applicable invariants. Because Hob ensures that
procedure postconditions always hold upon exit, the analysis of a module may rely
on the validity of other modules’ high-level set specifications without needing to see
how these specifications are verified.

Limits of Isabelle/HOL’s expressive power. Isabelle/HOL allows users to write
any logical statement for which it can compute the type; in particular, it allows quan-
tification over relations. Such quantification appears to be sufficient for expressing
a large number of concepts used in modern mathematics. Isabelle/HOLCF [73] is
an extension to Isabelle/HOL which adds support for domain theory, thereby aiding
the reasoning process for functional programs. Isabelle/HOLCF does not increase
the expressive power of Isabelle/HOL, but it does make some definitions and proofs
easier to write. Finally, Isabelle/HOLZF supports the full axiom of choice, unlike
Isabelle/HOL. Isabelle/HOL only supports a restricted form of the axiom of choice
(and this, of course, appears to have no impact on its usefulness).

88

Comparing the theorem proving plugin and the Bohne plugin. The the-
orem proving plugin might appear to be quite similar to the Bohne shape analysis
plugin. Indeed, the Bohne plugin accepts a subset of the theorem proving’s abstrac-
tion module syntax, and both the theorem proving plugin and the Bohne plugin use
the semantics of the implementation language to produce weakest preconditions from
the source module.

The primary difference between these plugins is that, after generating verification
conditions, the Bohne plugin applies the MONA decision procedure to automatically
verify these verification conditions. The theorem proving plugin subsumes the Bohne
plugin in terms of expressive power, since it supports a superset of Bohne’s abstraction
module syntax. However, because we designed it to accept a restricted input language,
the Bohne plugin will generate a restricted domain of verification conditions. This
domain is decidable. That is, procedures which are specified using Bohne can be
shown to satisfy (or not) their specifications without user interventionfl. Contrast the
two-part Bohne plugin—it generates verification conditions (for MONA to process),
then decides them—with the theorem proving plugin, which just generates the verifi-
cation conditions (for Isabelle/HOL). While the Isabelle/HOL theorem prover might
successfully prove some parts of the proof obligation resulting from the verification
condition, users of Isabelle have no guarantees. Any user of the theorem proving
plugin is obliged to prove any subgoals that Isabelle cannot prove automatically.

In any case, once the developer manually verifies the needed verification condi-
tions, the Hob system enables the developer to productively use the analysis results.
The broader implication of the theorem proving plugin is that it allows the composi-
tion of verification results obtained through theorem proving with verification results
obtained from static analysis techniques. We have successfully used the Hob system
to establish global data structure consistency properties by combining these different
verification results.

4.5 How Abstraction Modules Enable Checking of
Global Properties

The Hob system allows developers to state and verify global data structure consistency
properties using the scopes and defaults mechanisms. Figure presents a scope
used in our minesweeper example. The scope invariant states that, outside the scope,
the set Board.ExposedCells is always equal to the set ExposedList.Content; sim-
ilarly, Board.UnexposedCells is equal to UnexposedList.Content. But the Board
module is analyzed with the flags plugin, while the ExposedList and UnexposedList
modules are both analyzed with the Bohne plugin. Hence the Board sets and the
ExposedList sets are defined using completely different formalisms and verified us-
ing different static analysis techniques; despite this, the Hob system can successfully
verify a statement that relates the two different kinds of sets.

3The developer does have to specify loop invariants for Bohne if the loop invariant inference fails,
however.

89

scope Model

2 {

modules Board, ExposedlList, UnexposedList, List, Arrayset;

exports Board;

invariant (Board.ExposedCells = ExposedList.Content) &
(Board.UnexposedCells = UnexposedlList.Content) &
(Board.init => ExposedList.setInit) &
(Board.peeking | (card(UnexposedList.Iter) = 0));

Figure 4-11: Model scope from Minesweeper example

The Hob framework manages to divide the verification task among analysis plu-
gins by using abstraction functions throughout the analysis task. Due to the use
of abstraction functions, analysis plugins may safely assume that implementations of
procedures in other modules implement their contracts, as expressed in the set specifi-
cation language. Analysis plugins therefore never need to inspect implementations or
abstraction functions of other modules. In the context of global program properties,
the Hob approach enables the overall program verification task to guarantee that, for
instance, the Board.UnexposedCells set always equals the UnexposedList.Content
set, without requiring the flags plugin used for the Board module to read the code
for the UnexposedList module. Note that the analysis of the UnexposedList module
does not require the specifications for the Board module, because the UnexposedList
does not call the Board. Figure illustrates this situation: it shows the modules
that the flags and Bohne analyses see in the context of verifying the Board and
UnexposedList modules.

90

"flags" plugin uses below
information to analyze Board:
(board.sl, board.al, board.fl, list.sl)

Board specification UnexposedList specification
(spec module Board) (spec module UnexposedList)
Board abstraction UnexposedList abstraction
(abst module Board) (abst module UnexposedList)
Board implementation UnexposedList implementation
(impl module Board) (impl module UnexposedList)

"Bohne" plugin uses above information
to analyze UnexposedList
(list.sl, list.al, list.fl)

Figure 4-12: Module visibility by various analysis plugins

91

92

Chapter 5

Ensuring Consistency Properties

The Hob system verifies two broad classes of data structure consistency properties:
local properties and global properties. Developers use local properties to establish the
validity of Hob’s set abstraction by guaranteeing that data structure implementations
conform to their set interfaces, and then use global properties—expressed in terms
of abstract sets—to guarantee that domain-specific consistency properties hold. Be-
cause Chapter Bl has already described how Hob converts global properties into local
properties, it remains only to verify local data structure consistency properties.

The Hob system uses a suite of analysis plugins to ensure that various implemen-
tations conform to their interfaces. Each plugin is especially designed to verify data
structure consistency properties for a particular class of implementations. It is the
developer’s responsibility to select an analysis plugin which can verify the desired
data structure consistency properties. Section Bl explains the general contract of
Hob analysis plugins; Chapter [l presents one plugin, our Hob flags plugin, in detail.
Figure b=Tl presents a schematic diagram illustrating what analysis plugins do. Briefly,
analysis plugins read the implementation, specification and abstraction sections of a
module M as well as the specifications for any modules that M calls, and decide
whether the module’s implementation conforms to its specification or not.

Global consistency properties, unlike local properties, are not necessarily related
to any particular program module. Developers must therefore inform the Hob system
about the complete set of global consistency properties to get sound analysis results.
Section describes our verification driver, which ensures that all necessary external
module declarations and scope declarations are included in the analysis of any given
module, and also ensures that Hob verifies all of the modules in a program.

5.1 Analysis Plugin Responsibilities

Each Hob analysis plugin is responsible for verifying that some target class of pro-
cedures conform to their specifications. To verify that a procedure implementation
conforms to its specification, modular program verification tools—including Hob—
typically assume that the procedure’s precondition holds upon entry to the procedure
and attempt to show that the postcondition holds upon exit from the procedure.

93

implementation specification
for module M for module M

specifications
for M’s callees

abstraction Hob analysis plugin
for module M

VALID/INVALID

Figure 5-1: Overview flowchart for generic analysis plugin. Boxes represent data.
Hexagons represent actions.

In the Hob approach, procedure specifications contain preconditions (requires
clauses) and postconditions (ensures clauses) expressed in the boolean algebra of
sets, which we presented in Chapter B. Hob implementations are written in the Hob
implementation language. This language is formally defined by its operational seman-
tics, which we presented in Chapter Bl Abstraction modules, discussed in Chapter @,
mediate the relationship between the concrete states of the operational semantics and
the abstract set-based specifications.

Hob analysis plugins therefore use a module’s abstraction module to convert pro-
cedure preconditions from the boolean algebra of sets into a suitable internal repre-
sentation. Plugins then construct a summary of the possible program states upon
exit from the procedure (which are defined by reference to the Hob implementation
language’s operational semantics). Finally, plugins must verify that each of the pos-
sible states upon exit imply the procedure postcondition. Figure sumimarizes this
textual description by presenting a more detailed view of the internal workings of
analysis plugins.

The Hob system includes the flags, Bohne and theorem proving plugins. Chapter Bl
describes the Hob flags analysis plugin. The flags analysis plugin supports abstrac-
tion modules which assign set membership based on field values; because it can infer
loop invariants, it is also useful for analyzing high-level coordination modules. Coor-
dination modules call upon other modules to manipulate data structures but do not
directly maintain any data structures themselves. The Bohne plugin allows developers
to use shape analysis techniques to reason about program properties in the presence of
pointer-linked heap data structures. Specifically, the Bohne plugin implements field
constraint analysis [03], a particular instantiation of shape analysis. The theorem
proving plugin enables developers to state and prove arbitrary program properties—

94

specification for M:

implementation
for module M * precondition

* postcondition

m Spedﬁcaﬁons
for M’s callees

internal
representation

abstraction l

for module M 7 2
\ analysis

internal
representation

implication checker

v

VALID/INVALID

Figure 5-2: Detailed flowchart for generic analysis plugin. Boxes represent data.
Hexagons represent actions.

95

including those that are beyond the reach of current static analysis techniques—by
constructing weakest preconditions from the implementation and relying on the de-
veloper to discharge the resulting verification conditions using the Isabelle theorem
proving system [99].

5.2 Developing New Analysis Plugins

A key design goal of the Hob framework was to support the development of a variety
of analysis plugins. We next explain how to extend Hob with new analysis plugins.

Hob analysis plugins are responsible for verifying procedure postconditions. Be-
cause developers write these postconditions using the common set-based specification
language, analysis plugins must implement a mapping between the specification-level
set-based abstract state and the implementation-level concrete state. The first step in
developing a new analysis plugin is therefore to choose a family of abstraction map-
pings for the plugin; for instance, the Bohne shape analysis plugin enables its users to
map pointer-linked heap data structures (e.g. linked lists) to abstract sets. Analysis
plugins may also support implementation-level invariants, which help make the anal-
ysis problem more tractable by constraining the set of possible concrete heap states.
Because different analyses require markedly different types of abstraction mappings
and invariants, it is the responsibility of each analysis plugin to translate abstraction
mappings and invariants from strings into some suitable internal representation.

The designer of a Hob analysis plugin should next decide whether or not to handle
procedure calls. Some Hob plugins, such as the Bohne plugin, are designed for leaf
procedures, and do not handle procedure calls. We believe that many program designs
modularize intricate data structure manipulations rather than intermingling such ma-
nipulations with procedure calls. Analysis plugins may therefore decline to handle
procedure calls, saving some implementation effort. Note that all of the machinery
for handling procedure calls will be present (in some form) in any analysis plugin:
to handle procedure calls, an analysis plugin needs to integrate the precondition and
postcondition of the called procedure. But any analysis plugin must already integrate
the precondition and postcondition of the procedure under analysis. Handling proce-
dure calls is therefore just an issue of hooking up the appropriate machinery at the
appropriate program points. Nevertheless, in our experience, it was not necessary for
all plugins to handle procedure calls.

Most analysis plugins include some provision for handling loops. The key challenge
in supporting loops is in handling the potentially unbounded number of execution
paths through the loop; many analyses use loop invariants to summarize the possible
effects of these paths. Existing Hob plugins support both developer-supplied loop
invariants and (in some cases) loop invariant inference. Loop invariant inference
makes it easier for developers to verify programs at the cost of plugin development
effort. Even if a plugin supports invariant inference, the fact that inference may be
computationally expensive (and possibly an open question, depending on the analysis
plugin’s internal representation) implies that it is almost always useful for analysis
plugins to support developer-supplied loop invariants. A plugin developer might

96

choose to support developer-supplied loop invariants written in either, or both, the
set specification language and the plugin’s concrete invariant notation. The Hob
framework passes any provided loop invariants to the plugin as a string. If invariants
contain set specifications, the plugin may call back into the Hob framework to parse
the set specifications into abstract syntax trees.

Having made these design decisions, a developer must next implement the analysis
plugin. The Hob framework provides the plugin with abstract syntax trees (ASTs) for
the module’s implementation, specification, and abstraction sections. Whenever the
Hob framework cannot provide an abstract syntax tree because the interpretation of
the input depends on the analysis plugin (e.g. abstraction mappings, assertions), an
analysis plugin developer must instead parse the strings into a suitable format inside
the plugin itself.

The analysis plugin must accept the provided ASTs and decide whether, given
the provided implementation, the postcondition is guaranteed to hold at all procedure
exits (assuming that procedure preconditions hold upon procedure entry). Recall that
the Hob framework has processed the preconditions and postconditions to include any
necessary global consistency conditions and the effect of the procedure’s modifies
clause; at this point, the provided preconditions and postconditions can be verified
without reference to any other part of the program. The Hob framework has also
arranged for all implementation-level invariants to hold at entry points for public
procedures; the analysis is responsible for ensuring that these invariants hold upon
exit.

The Hob framework does not impose any particular methodology for the core
verification task. Existing plugins have taken a number of different approaches. Many
existing plugins translate the procedure precondition into an internal representation
and perform some kind of verification condition generation, passing an implication
to a decision procedure for each procedure exit point (and call site, if appropriate).
The PALE plugin, however, translates an entire procedure (both its specification
and implementation) into a notation suitable for the PALE tool and delegates the
verification task to the PALE tool.

Once a plugin has decided whether or not an implementation conforms to its
specification, the plugin must report success or failure to the analysis tool. Analysis
plugins are also encouraged to provide meaningful error messages in the event of
failure.

5.3 Hob Analysis Driver

To verify a program module M, the Hob system clearly needs the implementation,
specification and abstraction modules for M. However, this does not suffice: Hob
also needs specifications for M’s dependencies—the modules that M calls, as well as
scope definitions for scopes that M belongs to. Note that overlooking scope definitions
can result in soundness problems, because scopes impose additional requirements for
modules to satisfy (in the form of scope invariants). This section describes how the
Hob analysis driver ensures that Hob’s analyses see all needed components when

97

List

Main

ArraySet

Board Controller

View

Figure 5-3: Hob analysis driver state after parsing minesweeper files. Boxes represent
implementation /specification/abstraction triples. Ovals represent scopes.

analyzing a module. It also presents a sample run of the Hob analysis driver on our
minesweeper example.

Parse all files. The Hob analysis driver first parses all Hob abstraction, implemen-
tation, and specification files in a directory, as well as all scope declarations. Once
the Hob analysis driver has parsed all relevant files, it can compute inter-file depen-
dencies. Figure presents the state of the Hob analysis driver after parsing the
modules in our minesweeper example.

Instantiate modules. The Hob analysis driver next expands static module in-
stantiations (as described in Chapters B and B), since modules may have instantiated
modules as dependencies. Figure b4l presents the state of the Hob analysis driver
after instantiating the List module as UnexposedList and ArraySet as ExposedSet.

Add dependencies. The Hob analysis driver must next add dependencies between
different program components. The analysis driver first adds dependencies between
scopes and their contained modules. Figure illustrates the state of the Hob anal-
ysis driver after adding dependencies from scopes to their contained modules. Next,
the analysis driver adds dependencies between modules and their callees. Figure
presents the state of the Hob analysis driver after adding inter-module dependencies.

Topological sort and command generation. Having computed all of the de-
pendencies, the Hob analysis driver performs a topological sort to determine 1) a

98

List : UnexposedList !
I

- o o = Main

ArraySet

Board Controller

View

Figure 5-4: Hob analysis driver state after processing minesweeper static module in-
stantiations. Solid boxes represent implementation/specification/abstraction triples.
Dashed boxes represent instantiated modules. Ovals represent scopes.

List : UnexposedList !
[
Main
ArraySet
Board Controller
=== - - -
: ExposedSet
It o om om e e o 1
View

Figure 5-5: Hob analysis driver state after adding minesweeper scope dependen-
cies. Solid boxes represent implementation /specification /abstraction triples. Dashed
boxes represent instantiated modules. Ovals represent scopes. Lines represent scope
containment.

99

List : UnexposedList !
I

Main

ArraySet

Board Controller

View

Figure 5-6: Hob analysis driver state after adding minesweeper inter-module de-
pendencies. Solid boxes represent implementation/specification/abstraction triples.
Dashed boxes represent instantiated modules. Ovals represent scopes. Lines represent
scope containment. Curved lines represent module dependencies.

set, of invocations of the Hob analysis tool which guarantees that all modules are
checked; and 2) the set of relevant files to pass to the Hob analysis tool for each
invocation. This set of relevant files includes the implementation, specification, and
abstraction sections of a particular module, plus any scopes that the module belongs
to, and finally all specification modules for the module’s callees. Figure B=1 presents
the analysis tool invocations which, together, verify the minesweeper benchmark.

100

$../../bin/verify all
Verifying module Arrayset...
-> analyze ./arrayset.fl ./arrayset.sl ./arrayset.al
Verifying module List...
-> analyze ./list.fl ./list.sl ./list.al
Verifying module View...
-> analyze ./view.fl ./view.sl ./view.al ./board.sl
Verifying module Board...
-> analyze ./board.fl ./board.al ./model.scope ./view.sl
./arrayset.sl ./board.sl ./list.sl
Verifying module Controller...
-> analyze ./controller.fl ./controller.sl ./controller.al
./board.sl ./view.sl
Verifying module Main...
-> analyze ./main.fl ./main.sl ./main.al ./board.sl ./controller.sl

Figure 5-7: Commands generated by Hob analysis driver

101

102

Chapter 6

Flags Analysis Plugin

The Hob flags analysis plugin verifies modules in which integer or boolean flags in-
dicate abstract set membership. The developer specifies (using the flags abstraction
language) the correspondence between the implementation’s concrete flag values and
the specification’s abstract sets, and additionally identifies the concrete boolean vari-
ables which also appear as abstract specification-level boolean variables. The flags
plugin is also suitable for analyzing coordination modules, which do not maintain any
sets themselves, but instead coordinate the sets of other modules; in analyzing such
modules, the flags plugin keeps track of set contents for externally-defined sets and
updates them at procedure call sites.

Section presented the abstraction language for the flags plugin. The abstrac-
tion language allows developers to specify what properties to verify. This chapter
explains how the flags plugin verifies properties. The flags plugin uses the MONA de-
cision procedure [oI] to verify whether or not procedures satisfy their postconditions.
MONA was built to process formulas expressed in monadic second-order logic so by
compiling formulas into automata and analyzing these automata. Our flags plugin
only emits formulas in the weak monadic second-order theory of 1 successor, a subset
of the logic that MONA supports, and our examples verify in dozens of seconds. The
weak monadic second-order theory of 1 successor suffices for the flags plugin because
this plugin only manipulates statements in first-order logic over uninterpreted sets.

6.1 Flags Analysis Example

Figure presents the implementation and specification of a short procedure, as well
as the relevant part of its abstraction section. This procedure either adds or removes
an object from the MarkedCells set by mutating its isMarked boolean-valued field.
To analyze the procedure, the flags analysis plugin generates boolean formulas for
each program point and verifies whether or not the formulas at procedure exit points
imply the stated postcondition.

103

impl module Board {
proc setMarked(c:Cell; v:bool) {
c.isMarked = v;
¥
}

spec module Board {
proc setMarked(c:Cell; v:bool)
requires (c in U) & (card(c)=1)
modifies MarkedCells
ensures (v <=> (¢ in MarkedCells’)) &
(MarkedCells’ <= MarkedCells + c);
b

abst module Board {
use plugin "flags";
U={x: Cell | "x.init = true" };
MarkedCells = U cap { x : Cell | "x.isMarked = true" };

Figure 6-1: Minesweeper Board specifications, implementations, and abstractions

At the start of the procedure, the flags plugin generates the following formula
by reiterating the procedure precondition and stating that all sets and variables are
unmodified.

VoM Nop NoM' Nop'. - - -
(M=UnM)AN3IM;. M'"=U"n M
cCUAcard(c) =1
AN M=MANU=UANC"=CApespA---

The formula ranges over the set variables and boolean predicates in the program.
Procedure parameters occur as free variables of the formula, while the program’s
abstract state is given in terms of universally quantified variables. Note that this
formula is a relation between unprimed (initial) sets and boolean variables and primed
(current) sets and boolean variables. (For brevity, we refer to the MarkedCells set by
the abbreviation M. We also omit unused variables except for peeking, abbreviated
as p. We chose to leave p in our example to illustrate our treatment of unmodified
variables.)

Line contains universal quantifiers for abstract variables. V5 denotes universal
quantification over sets while V, denotes universal quantification over boolean vari-
ables. Line states definitions for derived sets; M is a derived set because it is
defined as the intersection of the universal set U with the base set M; of objects with

104

isMarked set to true. These definitions are repeated twice, once for unprimed vari-
ables and once for primed variables. Line BE3states the procedure precondition, which
holds throughout the procedure, since it states constraints on unmodifiable unprimed
sets. Finally, line constrains sets and boolean variables that are unmodified by
the procedure. Initially, all sets and variables are unmodified. Each modification of
state removes a variable from this line.

The flags plugin next processes the statement c.isMarked = v, using the assign-
ment statement transfer function, to obtain the following relation.

VoM Nop oM Nop'. - - -
(M =UnNM)ANIM;. M'=U"NnM,
AN (M] =M Uc)Av)V ((M] =M\ c)A-w)
AN c¢CUAcard(c) =1
ANU=UNC=CApepA---

R S
© 0o N O Wt

DN~~~ —~

1

[a)
~— N N N N~ N

(

The transfer function updates the value of the implicit base M; set by adding the
object c iff the v variable is true (line E1).

Having reached the end of the procedure, the flags plugin then generates the
following formula to submit to the MONA decision procedure.

VoM Nop oM Nop'. - - - (6.11)
(M =UnM)AIM,. M =U"nM (6.12)

A ((M] =M Uc)Av)V ((M] =M\ c)A-w)(6.13)

A c¢CUAcard(c) =1 (6.14)
ANU=UNC=CApepA--- (6.15)

— (6.16)

C'=Chrpsyp (6.17)

AN (vesecMYANM C MUc) (6.18)

The formula contains two parts. Lines through specify the program
state after symbolic execution of the procedure, while lines and state the
requirements on the program state needed by the procedure’s postcondition. To verify
that the procedure satisfies its specification, MONA'’s decision procedure must prove
that lines through imply lines and The known state at procedure
exit (lines through B.T0)) simply contain the relation that the transfer function
computes; this relation captures the effect of the assignment to the isMarked field,

Lines and contain the requirements that the flags plugin must ensure.
No executions of the procedure’s implementation may modify any sets that are not
declared to be modified, as stated in line BT7 Also, the procedure’s implementation
must cause its postcondition to hold; line states that constraint.

Once the flags plugin generates the appropriate formula, it passes the formula on
to the MONA tool. In this case, the verification succeeds because the antecedent is

105

sufficiently strong. The flags plugin may therefore conclude that the procedure indeed
implements its specification.

6.2 Flags Analysis Algorithm

To verify a procedure, the flags analysis performs abstract interpretation [20], using
the space of boolean formulas as the abstract domain. It attempts to show that
procedure postconditions are implied by the analysis domain element computed for
each procedure exit points. Figure illustrates the operation of the flags analysis
algorithm. Starting with the procedure precondition, the analysis’s transfer functions
manipulate boolean formulas and modify these formulas following assignment state-
ments and procedure calls. The analysis treats loops by using developer-provided
loop invariants or by inferring the invariants itself. We call the key technique for ma-
nipulating formulas incorporation. This technique updates a boolean algebra formula
by incorporating the effect of a second boolean algebra formula. Whenever the anal-
ysis creates a new formula (mostly during incorporation), it also applies some simple
optimizations to the formula before it is created. We found that these optimizations
were crucial to the successful verification of our benchmark programs.

More formally, our analysis associates a quantified boolean formula F' with each
program point. A formula F' is a relation between two collections of variables.
Unprimed set variables S (or boolean variables b) denote initial values of sets (or
booleans) at the entry point of the procedure, while primed set variables S’ (or primed
boolean variables b') denote the values of these sets (or booleans) at the current pro-
gram point. In general, set and boolean variables are defined in their containing
module’s abstraction sections; Section described how developers may define set
and boolean variables for the flags plugin. The use of primed and unprimed variables
allows the flags analysis to represent, for each program point p, a binary relation on
states that overapproximates the reachability relation between procedure entry and
point p |48, 19, B6].

The flags analysis also tracks (object-typed) local variables using sets. For each
local variable, the corresponding set contains the object to which the local variable
refers; such a set comes with a cardinality constraint that restricts the set to have
cardinality at most one (null references are represented by the empty set). This
approach automatically disambiguates some local variable and object field accesses;
if a formula contains a constraint stating that two local variables are disjoint, then
these variables are unaliased. Other static analyses often rely on a separate pointer
analysis to provide this information.

The initial dataflow fact at the start of a procedure is the precondition for that
procedure, transformed into a relation by conjoining S = S for all relevant sets and
b’ < b for all relevant boolean variables. Clearly, at the beginning of a procedure, all
sets and boolean variables have their initial values. At merge points, the analysis com-
bines boolean formulas with disjunction. The analysis also performs loop invariant
verification and inference if necessary (Section B.6l). After running the dataflow anal-
ysis, our analysis checks that the procedure conforms to its specification by checking

106

implementation: abstraction specification:

* loops »
* precondition

* statements
* postcondition

* procedure calls

[/

callee
specifications

pd

verify
callee
precondition

compute
transfer function
(incorporation)

use or infer
loop
invariant

OR OR

boolean
formula

optimize
formula

boolean
formula

create
implication

boolean
formula

call MONA
decision
procedure

VALID/INVALID

Figure 6-2: Flowchart for flags analysis plugin. Boxes represent data. Hexagons
represent actions.

107

that the effective postcondition (which includes the ensures clause and any required
representation or global invariants) holds at all exit points of the procedure. In par-
ticular, the flags analysis checks that for each exit point e, the computed formula B,
implies the procedure’s postcondition.

6.3 Incorporation

The transfer functions in the dataflow analysis update boolean formulas to reflect
the effect of each statement. Recall that the dataflow facts for the flags analysis are
boolean formulas B which denote a relation between the state at procedure entry and
the state at the current program point. Let B, be the boolean formula describing the
effect of statement s. Our flag analysis uses the incorporation operation to update B
with the effect of B,. The incorporation operation B o By computes the composition
of the relations defined by the formulas B and B;.

Incorporation example. Let B=y =yA2' =x2AS =SAS =2z We explain
how the flags plugin abstractly executes the statement s: vy = x. To execute this
statement, the plugin must incorporate By =y’ =z A 2’ =x A §' = S (representing
the effect of s) into B (the state before s executed). Incorporation proceeds by

quantifying over hatted sets v, substituting © for v in B and ¢ for v in By and
applying quantifier elimination. This gives the formula

35,48,9. W=y
Yy T

which simplifies to S’ = S A2’ = x Ay = x, as desired.

Definition of incorporation. The flags plugin computes B o B, by applying
equivalence-preserving simplifications to the formula

Hgl,...,gn,[;l,...,gj. B[SZ, — Sz,b; — b;] /\BS[SZ' — Sz',bj = 6]]

Incorporation computes the abstract state after executing s in state B for the following
reason. The desired abstract state is the relation between the sets upon entry to the
procedure (expressed in terms of unprimed, unhatted sets and booleans S; and b;)
and after s has executed (expressed in terms of primed sets and booleans S; and bf).

Incorporation creates (using existential quantification) the hatted sets S; and hatted
booleans b;, and uses them to represent the abstract state after B by substituting
primed variables of B by hatted variables. Since B, describes the relation between the
program’s abstract state before executing s (represented in B, by unprimed variables)
and after executing s (represented by primed variables), incorporation substitutes the
unprimed variables of B with hatted variables. Conjoining the substituted B and
B, formulae therefore gives a relation which expresses the program’s abstract state
after executing s from state B.

108

6.4 Transition Relations

Our flags analysis handles each statement in the implementation language by pro-
viding appropriate transition relations for these statements. The generic transfer
function is a relation of the following form:

[st](B) := B o F(st),

where F(st) is the formula symbolically representing the transition relation for the
statement st, as expressed in terms of abstract sets.

Frame condition generator. Before providing transfer functions for implementa-
tion language statements, we define a generic frame condition generator. This frame
condition generator will show up in most of our transfer functions. The generator
creates a boolean formula which states that a particular variable may potentially be
modified, but that all other sets and booleans are unmodified. Let

frame, := /\ S'=SA /\(b' < b),

S#x, S not derived b#x

where S ranges over sets and b over boolean variables.

Recall that the set specification language enables developers to define base sets
and derived sets. A base set definition has the form {x:T | ... }. Base set definitions
may be named (S = {x:T | ... }) or anonymous (when a base set definition occurs
as part of a larger derived set definition). Derived set definitions combine named sets
and anonymous set definitions using set operations.

Note that our definition of the frame condition explicitly omits derived sets. In-
stead, the flags analysis creates a formula stating that the anonymous base sets used
in the derived set definitions are preserved and conjoins derived set definitions before
applying the decision procedure. This treatment automatically works for derived sets
and helps avoid inconsistency: as long as the base sets making up a derived set are
preserved, then the derived set is preserved as well.

We continue by presenting transition relations for the statements in our imple-
mentation language.

Assignment statements. Our flags analysis tracks values of boolean variables:

F(b=true) := b’ Aframe,
F(b = false) := (—b') Aframe,
Fo=y) = (b <y)Aframe,
F(b = (if cond)) := (b’ < fH((if cond))) A frame,
Fo=le) = F(b=¢c)o((t' & —b)Aframe,)

where f*(e) is the result of evaluating e, defined below in our analysis of conditionals.

109

The analysis also tracks local variable object references:

Fx=y) = (¥ =y)Aframe,
= (¥ =0) Aframe,
Flx=newt) = = =0)AAg(x'NS=0)Aframe,

We next present the transfer function for mutating set membership. If R = {x :
T | z.f = ¢} is a set definition in the abstraction section, we have:

Flxf=c):=R =RUxA /\ S"=S\x A framegryuans(r)
Sealts(R)

where alts(R) = {5 | abstraction module contains S ={z: T |z.f =c1},¢1 #c.}
The rules for reads and writes of boolean fields are more detailed than those for
field variables because our analysis tracks the flow of boolean values:

Flxf=b) = (bAB+/:B+UX)
' ' A Nseasery S = S\ %
<ﬁb/\B_':B_Ux)
A /\Sealts(B*) S'=5\x
N frame(piuais(p)
Fb=y1f) := (V& ye BT)Aframe,.

where Bt ={x: T | z.f = true} and B~ = {z : T | .f = false}.

The rules presented above do not overlap in their applicability. However, they
do not cover all statements in the Hob implementation language. We therefore use a
pair of default rules to conservatively account for expressions not otherwise handled,

Flx.f =x%) = frame, Flx==x) := frame,.

Procedure calls. For a procedure call x=proc(y), our transfer function checks
that the callee’s requires condition holds, then incorporates proc’s ensures condition:

F(x = proc(y)) := ensures; (proc) A /\ S'=5
s

where both ensures; and requires; substitute caller actuals for formals of proc (in-
cluding the return value), and where S ranges over all local variables.

Conditionals. The analysis produces a different formula for each branch of an if
statement if (e). We define functions f*(e), f~(e) to summarize the additional
information available on each branch of the conditional; the transfer functions for the
true and false branches of the conditional are thus, respectively,

[if (]*(B) = f*(e)AB [if ()] (B) = f(e)AB.

110

For constants and logical operations, we define the obvious f*, f~:

ft(true) := true [~ (true) := false
fT(false) := false (false) = true
fr(le) = f(e) f(le) = fT(e)
[Txl=e) = [~ (z==¢) [(zt=e) = [T(z==¢)
frler&&es) = fr(en) A fT(e2) [T(e1&&ea) = [f(er)V [(e2)
We define f*, f~ for boolean fields as follows:

ffaf) = 2CB f(xf) = =ZB
fT(x.f==false) = ¢ B [~ (z.f==false) := xC B

where B = {x : T | x.f = true}; analogously, let R = {z : T | 2.f = c}. Then,
fH(x.f==c) = zCR f(z.f==c) = =< R.

We also predicate the analysis on whether a reference is null or not:
ffle==null) = =0 f~(z==null) = z#0.

Finally, we have a catch-all condition,

fT(x) = true f(x) := true

which conservatively captures the effect of unknown conditions.

Assertions and Assume Statements. We analyze a statement s of the form
assert A by verifying that the formula for the program point s implies A. Assertions
allow developers to check that a given set-based property holds at an intermediate
point of a procedure. assume statements enable the developer to specify properties
that are known to be true, but which have not been shown to hold by the analysis.
Our analysis prints out a warning message when it processes assume statements, and
conjoins the assumption to the current dataflow fact. Assume statements have proven
to be valuable in understanding analysis outcomes during the debugging of procedure
specifications and implementations. Assume statements may also be used to commu-
nicate properties of the implementation that go beyond the abstract representation
used by the analysis.

Return Statements. Our analysis processes the statement return x as an as-
signment rv = X, where rv is the name given to the return value in the procedure
declaration. For all return statements (whether or not a value is returned), our anal-
ysis checks that the current formula implies the procedure’s postcondition and stops
propagating that formula through the procedure.

111

6.5 Verifying Implication of Dataflow Facts

Our flags analysis verifies implication when it encounters an assertion, procedure call,
or procedure postcondition. In these situations, the analysis generates a formula of
the form B = A where B is the current dataflow fact and A is the claim to be
verifiedd. The implication to be verified, B = A, is a formula in the boolean algebra
of sets. We use the MONA decision procedure to check its validity [51].

6.6 Loop Invariant Inference

Section described our loop invariant inference algorithm; we next describe its
implementation. The synthesis starts with the formula characterizing the transition
relation at the entry of the loop and weakens the formula by iterating the analysis of
the loop until it reaches a fixpoint. Figure presents pseudocode for the algorithm.
COMPUTE-POSTCONDITION is the algorithm that we have presented in the preceding
section. This algorithm takes a boolean formula f and a statement s and outputs the
boolean formula corresponding to the program state after executing s, if f was the
state before executing s. The top-level function INFER-LOOP-INVARIANT therefore
attempts to find invariants by taking those conjuncts which are common to both
the pre-state f and the post-state f’ of the loop (technically, it identifies conjuncts
¢ which are implied by both f and f’). If loop invariant inference takes too long,
then our algorithm enforces termination by dropping conjuncts from f’. The GET-
IMPLIED-CONJUNCTS subroutine finds those conjuncts of its first parameter f; which
are implied by the second parameter f,, while the HANDLE-EXISTENTIAL subroutine
handles existential quantifiers by dropping sub-conjuncts (underneath the existential
quantifier) that are not implied by the source formula.

6.7 Boolean Algebra Formula Transformations

In our experience, applying several formula transformations drastically reduced the
size of the formulas emitted by the flags analysis, as well as the time needed to
determine their validity using an external decision procedure; in fact, some bench-
marks could only be verified with the formula transformations enabled. This section
describes a number of useful transformations that we discovered.

Smart Constructors. The constructors for creating boolean algebra formulas ap-
ply peephole transformations as they create the formulas. Constant folding is the
simplest peephole transformation: for instance, optimizing B A true gives B. Our

!Note that B may be unsatisfiable. This often indicates a problem in a procedure precondition.
The flags analysis can, optionally, check whether B is unsatisfiable every time it invokes the decision
procedure, and emit a warning if it is. This check enabled us to identify errors in preconditions
sooner; of course, it also slowed down the flags analysis by a factor of 2. Without such a check,
unsatisfiable preconditions become visible only at calls to affected preconditions, which are analyzed
separately—and possibly much later—due to modular verification

112

INFER-LOOP-INVARIANT(fo, loop-condition, loop-body, maz-iterations)
1 i<0

2 f<fo
3 f' < Cowmpure-PostconpITION(f A loop-condition, loop-body)
4 while i < maz-iterations and f' # f
5 do f «— Ger-ImpLiED-CoNyuNcTs(f, f/, []) A GeET-IMPLIED-CONJUNCTS(f/, f, [])
6 f' < ComPUTE-POSTCONDITION(f A loop-condition, loop-body)
7 i—1+1
8 if i > maz-iterations
9 then while f/ % f
10 do f <« Ger-ImpLiED-CoNyuNncTs(f, f/,[])
11 f' < ComPUTE-PosTCONDITION(f A loop-condition, loop-body)

12 return f

Ger-ImpLIED-CONJUNCTS(f1, f2, [Z0, - - ., Zn])
1 result < True
2 foreach c in Conyuncrs(f1)
3 if fo = 3xo,...,zn.c
4 then result < c A result
5 else if ¢ has the form 3z.e
6 then result «— HANDLE-EXISTENTIAL(e, f2, [Zo, . - ., Tn, x]) A result
7 return result

HanDLE-EXISTENTIAL(E, f, [Z0, . . ., Zn])
g «— GEer-IMPLIED-CONJUNCTS(€, f, [20, - - - , Tn])
if f = 3xo,...,2n.g

then return Jz,.g
g < True
foreach ¢ in ConyuncTs(e)

if ¢ does not contain x,

then g« cAg

return GeT-IMPLIED-CONJUNCTS(9, f, [0, ..., Zn—1])

W~ OU R WN

Figure 6-3: Pseudo-code for Loop Invariant Inference Algorithm

113

constructors fold constants in implications, conjunctions, disjunctions, and negations.
Similarly, when there is a quantification over a variable that is not subsequently
used, we simply drop the quantifier: dz.F becomes just F' as long as z does not
occur free in F'. Most interestingly, we factor common conjuncts out of disjunctions:
(AANB)V (ANAC) is optimized to AA (B V(). Conjunct factoring greatly reduces the
size of formulas tracked after control-low merges, since most conjuncts are shared
on both control-flow branches following a conditional. The effects of the conjunct
factoring transformation appears to be similar to the effects of SSA form conversion
in weakest precondition computation [37, 63].

Basic Quantifier Elimination. The flags analysis plugin symbolically computes
the composition of statement relations during the incorporation step by existentially
quantifying over all state variables. However, most relations corresponding to state-
ments modify only a small part of the state and contain the frame condition that
indicates that the rest of the state is preserved. The result of incorporation can
therefore often be written in the form Jz.x = 21 A F(z), which simplifies to F'(z).
This transformation reduces both the number of conjuncts and the number of quan-
tifiers in a formula. Moreover, this transformation can reduce some conjuncts to the
form ¢ =t for some Boolean algebra term ¢, which can then be eliminated by further
simplifications.

It is instructive to compare our technique to weakest precondition computation [37]
and forward symbolic execution [I6]. These techniques are optimized for the com-
mon case of assignment statements and perform relation composition and quantifier
elimination in one step. Our technique—using incorporation and then performing a
range of ad-hoc formula optimizations—achieves the same result in practice, but is
easier to implement and also enables the optimization of general boolean formulas.
Our technique can therefore also take advantage of equalities in transfer functions
that are not a result of analyzing assignment statements, but are given by explicit
formulas in ensures clauses of procedure specifications. Such transfer functions may
specify more general equalities such as A = A’ U x A B' = B U x which do not
reduce to simple backward or forward substitution.

Leveraging Quantifier Elimination in Implications The flags analysis rewrites
Ve.f = g as =(Jz.f A —g). Once the analysis expresses implications this way,
the quantifier-elimination optimization applies to the existential quantifier inside the
negation, which can greatly reduce the size of the formulas that need to be verified.
Since formulas with explicit implications are easier to understand, we have added a
runtime flag which specifically disables this optimization for debugging purposes.

Quantifier Nesting. We have experimentally observed that the MONA decision
procedure works substantially faster when each quantifier is applied to the smallest
scope possible. We have therefore implemented a quantifier nesting step that reduces
the scope of each quantifier to the smallest possible subformula that contains all free

114

variables in the scope of the quantifier. For example, our transformation replaces the
formula Vz. Vy. (f(z) = ¢(y)) with (Fz. f(z)) = (Vy. 9(y)).

To take maximal advantage of our transformations, we simplify formulas after
applying incorporation and before invoking the decision procedure. Our global sim-
plification step rebuilds formulas bottom-up and applies simplifications to each sub-
formula.

6.8 Evaluating Formula Optimization Impact

We analyzed our benchmarks on a 2.80GHz Pentium 4, running Linux, with 2 gi-
gabytes of RAM. Table summarizes the results of our formula transformation
optimizations. Each line summarizes a specific benchmark with a specific optimiza-
tion configuration. A v'in the “Smart Constructors” column indicates that the smart
constructors optimization is turned on; a X indicates that it is turned off. Similarly,
a v'in the “Optimizations” column indicates that all other optimizations are turned
on; a X indicates that they are turned off. The “Number of nodes” column reports
the sizes (in terms of AST node counts) of the resulting boolean algebra formulas.
Our results indicate that the formula transformations reduce the formula size by 2 to
60 times (often with greater reductions for larger formulas); the Optimization Ratio
column presents the reduction obtained in formula size. The “MONA time” column
presents the time spent in the MONA decision procedure (up to 73 seconds after
optimization); the “Flags time” column presents the time spent in the flags analysis,
excluding the decision procedure (up to 477 seconds after optimization). Without op-
timization, MONA could not successfully check the formulas for the compiler, board,
view, ensemble and h2o modules because of an out of memory error.

115

Optimizations Smart Number Optimization MONA Flags
Constructors of nodes ratio time (s) time (s)

prodcons v v, X 12306 2.46 0.17 0.03
X v, X 30338 1.00 0.27 0.04

compiler v v 15854 32.06 0.45 5.10
v X 28003 18.15 0.60 6.19

X v, X 508375 1.00 N/A 60.27

scheduler v v, X 442 2.44 0.05 0.04
X v, X 1082 1.00 0.12 0.14

ctas v v, X 2874 3.18 0.21 0.12

X v, X 9141 1.00 12.79 0.33

board v 28658 41.43 1.92 18.89

v X 106550 11.14 11.45 29.27

X v 926321 1.28 N/A 134.94

X X 1187379 1.00 N/A 151.46

controller v v 6759 4.23 0.41 0.18
v X 7101 4.02 0.41 0.18

X v, X 28594 1.00 3.08 0.54

view v v 15878 59.08 1.07 12.38

v X 53925 17.39 1.45 18.88

X v, X 938000 1.00 N/A 263.15

atom v v 9677 3.14 0.53 0.13

v X 10244 2.97 0.54 0.13

X v, X 30447 1.00 40.95 0.43

ensemble v v 120279 20.60 50.90 34.15
v X 148748 16.66 105.59 47.06

X v, X 2478004 1.00 N/A 464.52

h2o0 v v 205933 4.32 73.80 477.01

v X 206167 4.31 81.85 475.86

X v, X 889637 1.00 N/A 1917.99

Table 6.1: Formula sizes before and after transformation. The entry v/, X in a Smart
Counstructors column indicates that the smart constructors did not affect the results
in that row.

116

Chapter 7

Experience

We have implemented our modular pluggable analysis system, populated it with sev-
eral analyses (including the flags, Bohne shape analysis, and theorem prover plugins),
and used the system to develop several benchmark programs and applications.

7.1 Data Structure Implementations

We have verified a number of data structure implementations using the Hob sys-
tem. Our experience confirms the hypothesis that the Hob system can successfully
verify that data structure implementations preserve local invariants and conform to
their interfaces. A data structure implementation conforms to its interface when all
of the procedures in the implementation satisfy their postconditions upon exit, as-
suming that those procedures’ preconditions held upon entry. As we have described
earlier, abstraction functions mediate between the concrete heap operations of the
implementations and the abstract set operations of the interfaces.

Using the Bohne shape analysis plugin, we have successfully verified singly-linked
lists, doubly-linked lists with and without iterators and header nodes, and two-level
skip lists. Section explained how developers specify and verify properties with the
Bohne plugin. We have also verified properties of queues, stacks, trees and priority
queues using the PALE shape analysis plugin, a forerunner to the Bohne plugin.
When the developer supplies loop invariants, Bohne verifies data structure consistency
properties in times ranging from 1.7 seconds (for the doubly-linked list) to 8 seconds
(for insertion into a tree). Bohne automatically infers loop invariants for insertion
and lookup in the two-level skip list in 30 minutes total.

7.1.1 Tree data structure

We have used the Bohne plugin to verify insertion into a binary search tree. This
tree maintains an abstract set S of objects representing the contents of the tree data
structure. The following definition gives the translation of the concrete heap state
into the abstract set S. In words, it states that S contains the set of objects reachable
from the root module-level variable through left and right fields.

117

S = {x : Entry |
"rtrancl (lambda vl v2. left vl = v2 | right vl = v2) root x"};

The Bohne plugin automatically verifies that the tree’s backbone is acyclic and
that the backbone forms a tree along the left and right edges. In addition, we
explicitly instruct Bohne to verify the following two invariants:

invariant "ALL x. x ~= null &
~(rtrancl (lambda vl v2. left vl = v2 | right vl = v2) root x) -->
~(EX y. v ~=null & (left v = x | right v = x)) &
(left x = null) & (right x = null)";

invariant "ALL x y. parent x =y —-—>
(x ~= null & (EX z. left z = x | right z = x) -->
(left v = x | right yv = x))
& (((ALL z. left z ~= x & right z ~= x) | x = null)
--> vy = null)";

The first invariant states that that all heap objects x (except null) that do not
belong to the tree are not pointed to by any other object y in the heapﬂ, and addition-
ally that such objects x have 1left and right fields set to null. This invariant ensures,
in particular, that there are no “loose” tree fragments (in terms of this module’s left
and right fields) in the heap that exist independent of the main tree. Such fragments
are potentially problematic because they may cause insertions to add unanticipated
extra objects to the tree.

The second invariant is a field constraint on the parent field, which is a derived
field—that is, the parent field can be defined in terms of the left and right fields.
In particular, this field constraint states that the parent field is the inverse of the
left and right fields. More precisely, if a heap object x’s parent pointer points to
y (again, for x non-null), and if there is some object z which has x as a child, then
v has x as a child. The second invariant additionally states that if x has no parent
(quantifying over the entire heap), then x’s parent field must be set to null.

Note that these two invariants describe the pointer structure of the tree, and do
not discuss any sortedness properties for tree elements. Sortedness properties, which
are properties of integers, are beyond the scope of the Bohne shape analysis plugin.
The Hob analysis approach enables developers to state and verify partial properties of
data structures and programs. Developers who are concerned with the sortedness of
the tree could invent and use a specialized plugin that could reason about properties
of integers. Alternatively, developers could use the theorem proving plugin, which
can handle arbitrarily complicated properties at the cost of developer effort, to verify
the desired sortedness properties.

One drawback of verifying partial properties is that such partial properties might
not, by themselves, be strong enough to enable the verification of other desired prop-
erties. The two invariants stated above are too weak to enable the verification of any

!Note that this reachability relation is defined by only the left and right edges. Hob’s format
mechanism enables the Bohne plugin to safely ignore all other fields in the heap.

118

interface for a remove procedure that states that the procedure removes its parameter
from the tree. The issue is that any efficient implementation of a remove procedure—
which would remove its parameter from the tree, assuming that the parameter is in
the proper position—must rely on the ordering of elements in the tree. If the concrete
tree in the heap were to contain improperly sorted elements, then efficient implemen-
tations of remove would not be able to correctly remove the requested object, which
would make it impossible to guarantee the procedure’s desired postcondition. Note
that a stronger invariant language would enable the verification of remove.

We can, however, verify the add procedure for trees. This procedure’s specification
states that the procedure adds its parameter e to the set S.

proc add(e:Entry; v:int) requires card(e) = 1 & not (e in S)
modifies S
ensures S’ = S + e;

Figure [[=1 presents the complete implementation of the add procedure. This
procedure implements a standard search for e in the tree, removing it if present. The
procedure is remarkable only for its loop invariant. Bohne is, in principle, capable
of inferring this loop invariant given suitable abstraction predicates. However, the
verification finishes in dozens of seconds rather than dozens of minutes if the developer
supplies the invariant explicitly. The invariant for add states the following properties:

e The parameter e is non-null and remains unchanged.
e The objects e, n and p are all reachable in the tree.
e If local variable p is non-null, then n is the child of p.

e If p and n are both null (indicating an empty tree), then root also contains
null.

e The definition of the set S continues to hold: an object x belongs to the abstract
set *SH if and only if x is reachable from the root through left and right fields.

e For all non-null objects x in the heap that do not belong to the tree, no non-null
object y points to x, and that x’s 1left and right fields are null.

Note that we restate the module’s invariants within the loop invariant. In general,
module invariants must be stated explicitly in the loop invariant because they might
be temporarily violated during the execution of the add procedure; stating them
explicitly guarantees that they are not violated across loop iterations.

2The prime indicates that the statement is about the current value of S; Bohne expects the prime
before the set name, rather than after it, as in the general Hob convention.

119

1 proc add(e:Entry; v:int) {

2 e.v = v;

3 e.left = null; e.right = null; e.parent = null;
4+ Entry n = root, p = null;

5 bool wentLeft;

¢ while "e ~=null & e = ’e &

7 ~(rtrancl (lambda vl v2. left vl = v2 | right vl = v2) root e) &
8 rtrancl (lambda vl v2. left vl = v2 | right vl = v2) root n &

9 rtrancl (lambda vl v2. left vl = v2 | right vl = v2) root p &

10 (p ~= null --> (left p = n & wentLeft | right p = n & ~wentLeft)) &
11 (p = null & n = null --> root = null) &

12 (ALL x. (x : ’S) <=

13 rtrancl (lambda vl v2. left vl = v2 | right vl = v2) root x) &
14 (ALL x. X ~= null &

15 ~(rtrancl (lambda vl v2. left vl = v2 | right vl = v2) root x) -->
16 ~(EXy. v ~=null & (left v = x | right v = x)) &

17 (left x = null) & (right x = null))"

18 (n '= null) {

19 p = n;

20 wentLeft = (v < n.v);

21 if (wentLeft)

22 n = n.left;

23 else

24 n = n.right;

25}

26 if (p == null) {

27 root = e;

28 t else {

29 e.parent = p;

30 if (wentLeft) {

31 p.left = e;

32 } else {

33 p.right = e;

34 }

35}

36 }

Figure 7-1: Implementation of TreeSet insert procedure

120

7.1.2 Stack data structure

We next describe one aspect of our experience verifying a stack implemented as a
doubly-linked list. The PALE shape analysis plugin (a predecessor to our current
Bohne shape analysis plugin) discovered an invariant violation in the course of veri-
fying the stack’s implementation. Like our tree, our stack data structure maintains
an abstract set S representing the contents of the stack. The Hob system verifies that
stack insertions actually insert the given object into the stack (the insert procedure
ensures that S = S + e), and that removals actually remove an object from the
stack, if possible (the removeFirst procedure ensures that card(S) = 0 | (exists
e:Entry. (S8’ =S - e) & card(e) = 1)).

Hob’s shape analysis plugins use developer-provided invariants to check that ob-
jects that belong to a set have consistent values for navigational fields (e.g. next,
prev), and that objects that do not belong to the set have their navigational fields set
tonull. Our experience suggests that is not difficult to write implementations that in-
advertently violate these invariants. Our initial implementation for the removeFirst
procedure was as follows:

proc removeFirst() returns e:Entry {
Entry res = root;
if (root !'= null) root = root.next;
pragma "removed res";
return res;

}

where the pragma statement indicates to the PALE analysis plugin that it is verifying
a set removal. We found that the analysis reports an error while verifying this imple-
mentation. Careful inspection of the above code reveals that the removed object, res,
retains a reference to an object in the stack even after its removal. Such an implemen-
tation violates the invariant that objects not belonging to the data structure must
have their next and prev fields set to null. Unexpected field values for “orphan”
heap objects may in turn lead to non-list structures appearing in the heap. Adding
res.next = null to this procedure satisfies the PALE plugin: setting each object’s
next field to null on exit enables PALE to verify the invariant that all objects passed
in to the insert procedure will have their next field set to null.

7.2 Water

Having described the verification of a few data structures using the Hob analysis sys-
tem, we continue by describing applications of Hob to verifying complete applications.
Our first application is water, a port of the Perfect Club benchmark MDG [I0].

Benchmark description. The water benchmark evaluates forces and potentials in
a system of water molecules in the liquid state using a predictor/corrector method.
The central loop of the computation performs a time step simulation. Each step

121

predicts the state of the simulation, uses the predicted state to compute the forces
acting on each molecule, uses the computed forces to correct the prediction and obtain
a new simulation state, then uses the new simulation state to compute the potential
and kinetic energy of the system.

Our implementation of the water benchmark includes the simparm, atom, H20,
ensemble, and main modules, as well as a number of helper modules. Figure
presents the module dependency diagram for the water benchmark, with an arrow
between the box for module A and the box for module B indicating that module A
calls module B. These modules contain 2000 lines of implementation and 500 lines of
specification.

main

/ ensemble \
» \ / consts

simparm

skratch_pad

W\

vec |[&€— H20 |—0u _

/ \ \
acc_double
atom

Figure 7-2: Module dependency diagram for water benchmark

The main module initializes the program state, calls the main loop (which is in the
ensemble module), and prints out the final program state. The ensemble module
captures the state of the entire computation and calls the other modules to actually
carry out the computation. The simparm module stores inputs to the computation
and values that are computed once at the beginning of the computation, while the
related consts module stores physical constants used by the simulation. The H20
module stores collections of atoms, which are tracked by the atom module. The
helper modules skratch_pad, vec, acc_double and util perform auxiliary tasks.

Consistency properties. We verified the following properties for the water bench-
mark. These properties can be characterized mainly as typestate properties; for the
most part, they do not describe data structure properties, since the water benchmark
does not maintain specific relationships between different objects in the heap.

e Space for simulation parameters is always allocated and the parameters always
loaded before accesses to the simulation parameters.

122

e The predic and correc actions on atom objects are always interleaved: no
atom is corrected unless it has just been predicted, and vice-versa.

e Actions on molecules are properly sequenced: for instance, a molecule always
has its kinetic energy calculated before the boundary box is applied to it.

e Global computation state transitions are consistent with the transition order
declared by the developer.

The Hob system verifies that the program does not load simulation parameters
before it allocates arrays for holding these parameters, and that the program does not
access the simulation parameters until they have been loaded from the disk and stored
into the arrays. The simparm module is responsible for storing simulation parameters,
which are loaded from a text file at the start of the computation. To track the current
state, this module defines two boolean variables, Init and ParmsLoaded. If Init is
true, then the module has been initialized, i.e. the appropriate arrays have been
allocated on the heap. If, additionally, the variable ParmsLoaded is true, then the
simulation parameters have been loaded from disk and written into these arrays.

One important property of the main computation concerns atoms (handled by
the atom module); atoms are the fundamental unit of this simulation. Atoms cycle
between the predicted and corrected states, which are distinguished by values of the
predic and correc flags on atoms. The predic and correc procedures perform the
computations necessary to effect these state changes. Only atoms in the “corrected”
state may have their position predicted, and only atoms in the “predicted” state may
have their position corrected. To enforce this property, we define two sets, Predic and
Correc, and populate them with predicted and corrected atoms, respectively. The
correc procedure operates on a single atom; its precondition requires this atom to
be a member of the Predic set. The correc procedure’s postcondition ensures that,
upon exit, the atom is no longer in the post-state of the Predic set, but is instead
in the post-state of the Correc set. The predic procedure has the corresponding
symmetric specification.

The next step up from the atom is the molecule. Molecules (handled by the H20
module) contain three atoms, tracking their position and velocity. We verify that
when a molecule is in the predicted or corrected state, the atoms in the molecule
are also in the same state. Molecule states indicate not only whether the program
has predicted or corrected the position of the molecule’s atoms, but also whether the
program has applied intra-molecule force corrections, whether it has scaled the forces
acting on the molecule, and other similar properties. The interface of the H20 module
can therefore ensure that the program performs the operations on each molecule in the
correct order—for example, the bndry procedure may only be called with molecules
in the Kineti set, which have had their kinetic energy calculated by the kineti
procedure.

Finally, the ensemble module manages the collection of molecule objects. This
module stages the entire simulation by iterating over all molecules and computing
their positions and velocities over time. The ensemble module uses boolean predicates
to track the state of the computation as a whole. When the ensemble’s boolean

123

predicate INTERF is true, for example, then the program has completed the inter-
force computation for all molecules in the simulation. By encoding allowable state
transitions into procedure preconditions and postconditions, our analysis verifies that
the program’s state progresses in only the following order:

Init ~» INITTA ~» PREDIC ~» INTRAF ~» VIR ~» INTERF ~» - - -

For example, the benchmark has a procedure INTRAF. This procedure requires that
the boolean flags INITIA and PREDIC be true upon entry, and ensures that the flag
INTRAF’ is true upon exit.

Unsoundness. Hob’s successful verification of the water benchmark depends on
an implication from the simulation’s global boolean predicates to properties ranging
over the collection of molecule objects. We do not currently verify this particular
implication; instead, we currently use assume statements to let the verification go
through. In the short term, the developer can manually verify all of a program’s
assume statements by inspecting the code. We foresee two possible longer-term so-
lutions: the developer may use a theorem prover to verify the properties that are
beyond the reach of Hob’s current analysis plugins, or a new analysis plugin that can
verify the relevant properties could become available.

Discussion. The properties that we verify for the water benchmark ensure that
the computation’s phases execute in the correct order; such properties are especially
valuable in the maintenance phase of a program’s life, when the original designer, if
available, may have long since forgotten the program’s phase ordering constraints.
Incidentally, Hob specifications’ set cardinality constraints also prevent empty sets
(and null pointers) from being passed to procedures that expect non-empty sets or
non-null pointers.

7.3 HTTP Server

The HT'TP 1.1 server implements a server which responds to requests for web pages.
We have used this server to host the Hob project homepage.

Benchmark description. Our web server reads configuration data from disk and
then listens for HTTP requests on the port specified in the configuration file. It serves
responses to these requests by transmitting the appropriate headers and content to
the client. If the client’s request indicate that it supports compression, the server
uses library routines to compress the data using the gzip algorithm, and then sends
the compressed version to the client. Furthermore, we optimized our HI'TP server
by caching the results of previous requests (both uncompressed and compressed) in
memory and serving results from the cache whenever possible.

Figure presents a module dependency diagram for our web server. The
HTTPServer module receives connections and sends responses to the client. It uses the

124

[Config] {H'I'I'PServer] l Cache]

StringTokenizer

[HTTPRequest] l H'I'I'PResponse

HeaderEntry

Figure 7-3: Module dependency diagram for web server

HTTPRequest and Sendfile modules to process the request and send the response,
respectively. The Sendfile module takes a filename and a connection and serves the
appropriate response to the client, using the Cache module to store file contents in
memory for later requests. In all, the Hob webserver contains 14 modules, 1229 lines
of implementation, and 335 lines of specification.

The HTTP server includes the following sets of objects. HTTPRequest.Headers
stores a set of HI'TP request headers. The related HTTPResponse.C set stores
HTTP response headers. The cache uses a pair of sets, CacheSet.Content and
CacheBlacklist.Content, to store past requests and (if appropriate) their corre-
sponding responses. The CacheSet.Content set stores objects that point to re-
sponses to certain requests, while the CacheBlacklist.Content set contains infor-
mation about objects that must not be placed in the cache (typically because they
are too large).

Data structure consistency properties. Our implementation of the web server
maintains the following consistency properties. Some of these properties constrain
the heap and prevent corruption in the program’s heap-based data structures. Other,
more interesting, properties, summarize design decisions that we made during our
implementation of the web server.

e The linked list making up the cache set maintains its list invariants (e.g., the
linked list prev field is the inverse of its next field).

e The server configuration is loaded before any requests are served.
e Response headers are always cleared between requests.

e Responses are always either served from the cache or blacklisted from the cache.

Serving a request. When serving an HT'TP request, the server first reads data
from the client describing the request and the form of response that the client is
expecting. The server then creates an HT'TP response header and populates the
set HTTPResponse.C with the proper header entries. Next, it searches the cache

125

blacklist CacheBlacklist.Content and the cache content CacheSet.Content for
cached versions of the response; if no cached content is available, and the content is
not blacklisted, then it adds the content to the cache. The program then consults
the sendHead and sendBody procedure parameters (which depend on the request) to
determine whether it should serve the header and content, and serves the relevant
parts of the response to the client.

Response headers. The usual structure of an HI'TP response occurs in two parts:
response header and content. A response header is a list of colon-separated strings,
each string containing a key and a value. In our implementation, we build up an
HTTP response in the HTTPResponse module. The HTTPResponse module also con-
tains a procedure which sends the response, as constructed, over the network to a
client.

Our use of sets allows us to document and statically enforce the usage pattern
of the HTTP response module: we represent the current response header as a set,
HTTPResponse.C, and add header entries to this set. Since we do not wish to emit
stale header information from previous requests, the precondition of the sendFile
procedure includes the condition that card(HITPResponse.C) = 0. When serving
any HT'TP request, the web server always emits a basic header, including mandatory
fields like the Date field; such fields enable us to guarantee that the HTTPResponse.C
set is non-empty. We ensure that this precondition always holds by restoring it upon
exit from sendFile; in particular, we ensure that card(HTTPResponse.C’) = 0.

Note that this specification does not constrain the membership of C during the
execution of the procedure. In fact, the HTTPResponse.emit procedure requires that
C be non-empty; clearly, it is inconsistent with this particular design to transmit
empty responses. A different (and in our opinion inferior) design might only populate
the set C if the client had requested that headers be transmitted. Our specifications
clearly document the design decision that we took in this particular implementation
and prevent maintainers from inadvertently violating this design in the maintenance
phase of the program’s lifecycle.

Transmitting files to clients. The sendFile procedure coordinates the task of
sending a file to a client, serving the file from the cache if possible. Content is generally
stored in the cache before being served. To avoid undesirable cache effects, however,
our server blacklists cache entities that are too large (greater than 1 megabyte in
our current implementation). To simplify the implementation, we chose to have our
web server always load the content into the cache and then serve the content from
the cache, as long as the content is not blacklisted. Our implementation reflects this
design decision. In the absence of any reliable information about the design, the devel-
oper would have to glean this design decision from the implementation, in particular
by locating and understanding the following code in the sendFile procedure:

if (!Cache.hasEntry (c)) {

/* ... [load content into t_array] ... */
Cache.setEntryContent (c, t_array);

126

if (!blacklist)
Cache.addEntry (c);

}
else

Cache.loadEntryContent (c);
VEIE Y

Cache.sendEntry(oc, c);

and observing that the entry c is always loaded from the cache or populated from
disk and, if not blacklisted, added to the cache.

Our approach makes this design decision explicit and much more accessible. We
declare the sets CacheSet.Content and CacheBlacklist.Content. We defined these
sets using instantiated linked lists, and Hob’s ability to combine the shape analysis
for the cache sets with the simpler typestate analysis used for this module is crucial
for obtaining a global design conformance result. The sendEntry procedure, which
transmits an entry to the client, relies on membership information for these two
sets. This membership information propagates from postconditions of calls to the
mediating Cache module. The specification for the sendEntry procedure therefore
reads as follows.

private proc sendEntry (oc:out_channel; n:Entry) returns c:int
requires (n in CacheSet.Content) |
(n in CacheBlacklist.Content)
ensures true;

Discussion. The specification of the sendEntry procedure makes it absolutely
clear that the content to be transmitted will either be in the CacheSet.Content
or CacheBlacklist.Content sets. The Hob analysis engine establishes the precon-
dition for the sendEntry procedure by inspecting the rest of the sendFile procedure
and observing that either the entry is already in the cache or newly added to the
cache, so that n in CacheSet.Content; or the entry is blacklisted, in which case n
in CacheBlacklist.Content. In this way, the sendEntry specification clearly and
accessibly documents this design decision, and the Hob analysis system automatically
verifies that the implementation correctly conforms to this design.

7.4 Minesweeper

Our next benchmark, minesweeper, shows how Hob can verify data structure consis-
tency properties that span multiple modules.

Benchmark description. The minesweeper benchmark implements the standard
model-view-controller (MVC) design pattern. Figure [l presents a module depen-
dency diagram containing the modules which make up the minesweeper implementa-
tion. The game board module (Board) represents the game state and plays the role of
the “model” part of the MVC pattern; the controller module (Controller) responds

127

to user input; the view module (View) produces the game’s output; the exposed cell
module (ExposedSet) uses an array to store the cells that the player has exposed
in the course of the current game; and the unexposed cell module (UnexposedList)
instantiates a linked list to store the set of cells that have not yet been exposed. There
are 750 non-blank lines of implementation code in the 6 implementation sections of
minesweeper and 236 non-blank lines in its specification and abstraction sections.

The Board module stores one representation of the game state. (Game state infor-
mation is also stored in the ExposedSet and UnexposedList modules, which must re-
main consistent with the Board.) At an abstract level, the board’s sets MarkedCells,
MinedCells, ExposedCells, UnexposedCells, and U (for Universe) represent sets of
cells with various properties; the U set contains all cells known to the board. The
board also uses a global boolean variable gameOver, which it sets to true when
the game ends. Concretely, the Board stores an array of Cell objects and the global
boolean variable. The Board module represents state information for each Cell using
the isMined, isExposed and isMarked fields of Cell objects.

Main

ExposedSet \/ \l

Board & Controller
UnexposedList \
View

Figure 7-4: Module dependency diagram for Minesweeper implementation

Data structure consistency properties. The minesweeper application uses a
variety of data structures and verifies a range of important consistency properties
both within and between these data structures. Among the data structure consistency
properties that the Hob system verifies are the following:

1. The set of unexposed cells in the UnexposedList module form an acyclic
doubly-linked list with all prev references being inverses of next references.

2. The iterator pointer of the UnexposedList module is either null or points inside
the list.

3. If the board is initialized, then the ExposedSet module storing the exposed
cells is also initialized.

128

4. The set of unexposed cells maintained in the Board module (using flags) is
identical to the set of unexposed cells maintained in the linked UnexposedList
data structure.

5. The set of exposed cells maintained in the Board module (using flags) is identical
to the set of exposed cells maintained in the ExposedSet array.

6. Unless the game is over, the set of mined cells is disjoint from the set of exposed
cells.

7. The sets of exposed and unexposed cells are disjoint.

8. At the end of the game, all cells are revealed; i.e. the set of unexposed cells is
empty.

Notice that the list of minesweeper properties contains two different kinds of prop-
erties: i) data structure consistency properties that involve the implementation of a
single data structure, such as Property [, and ii) more abstract properties involving
relationships between objects stored in multiple data structures, such as Properties H,
B B and B One somewhat unusual feature of these abstract properties is that they
are outward-looking: they capture important features of the system that are directly
meaningful to the users of the system, and not just the implementors. To the best of
our knowledge, the Hob system is the only currently existing system that supports
and promotes the explicit identification and guaranteed checking of these kinds of
outward-looking, application-oriented properties.

Verifying data structure use. Our minesweeper implementation uses iterators to
process the list of unexposed cells in two contexts; both of these contexts are shown
in Figure [[Z3. One use of iteration is the revealAllUnexposed procedure, which is
executed at the end of the game. This procedure causes the implementation to expose
all of the Board cells. The second use is in a peek procedure which we added to our
minesweeper implementation. The “peek” command allows the player to peek at all
unexposed cells. We implemented this command by iterating twice over the set of
unexposed cells, first exposing them, then hiding them.

Figure contains loop invariants for our examples. These invariants help to
explain how the flags analysis can analyze each of these examples. It turns out
that our flags analysis plugin can successfully infer these loop invariants [59], thereby
eliminating a potential source of annotation burden on the programmer. Furthermore,
this invariant inference executes relatively quickly, in a number of seconds. We believe
that one reason for the success of our loop invariant inference technique is that the
technique operates at the level of abstract set variables.

Note that users of the linked list module always use the list through its interface;
such users cannot directly manipulate the list itself. In other words, users of the
linked list do not have access to the next and prev pointers making up the linked
list structure. In general, verifying consistent interface use is simpler than verifying
consistency of data structure operations, and our Hob system therefore uses the sim-
pler but more efficient flags plugin to verify the consistency of data structure uses. In

129

// in Board specification
proc setExposed(c:Cell; v:bool) returns causedGameOver:bool

ensures (v => (ExposedCells’ = ExposedCells + c)
& (UnexposedCells’ = UnexposedCells - c)
& (UnexposedList.Iter’ = UnexposedList.Iter - c))
& ((not v) => ((ExposedCells’ = ExposedCells - c)
& (UnexposedCells’ = UnexposedCells + c)))

© 00 N O O W N

& ...

o e
o= O

proc revealAllUnexposed()

13 requires gameOver

14 modifies ExposedCells, UnexposedCells
15 ensures card(UnexposedCells’) = 0;

16

17 // in Board implementation

18

19 proc peek() {

20 peeking = true;

21 Cell c;

22 UnexposedList.openlter();

23 bool b = UnexposedList.isLastIter();
24 while "(b’ <=> (UnexposedList.Iter’ = {})) & peeking’"
25 ('b) {

26 ¢ = UnexposedList.nextIter();

27 View.drawCellEnd(c);

28 b = UnexposedList.isLastIter();

29 }

30 // ... wait for key press ...

31 UnexposedList.openIter();

32 b = UnexposedlList.isLastIter();

33 while "(b’ <=> (UnexposedList.Iter’ = {})) & peeking’"
34 ('b) {

35 ¢ = UnexposedList.nextIter();

36 View.drawCell(c);

37 b = UnexposedList.isLastIter();

38 }

39 peeking = false;

40 }

41

42 proc revealAllUnexposed() {

43 UnexposedList.openIter();

44 bool b = UnexposedList.isLastIter();
45 // loop invariant in quotes below:

46 while "... & (b’ <=> (UnexposedlList.Iter’ = {})) &

47 (UnexposedList.Iter’ = UnexposedList.Content’)" (!b) {
48 Cell c = UnexposedList.nextIter();

49 setExposed(c, true);

50 b = UnexposedList.isLastIter();

51 }

52 }

Figure 7-5: Doubly-Linked List Client. An optional loop invariant appears in quotes
after the while keyword.

130

this example, we use the flags plugin to verify that the precondition for nextIter —
namely, that the Iter set is nonempty—is always satisfied before calls to nextIter.
Our implementations satisfy this constraint by first calling the isLastIter procedure
and ensuring that it returns false.

The peek example nondestructively iterates over the UnexposedList set with-
out changing the backing Content set, whereas the revealAllUnexposed procedure
removes all elements from the list during iteration. The revealAllUnexposed pro-
cedure guarantees that the unexposed set is empty at the end of the procedure as
follows. The procedure maintains the invariant that the Iter set equals the Content
set during every loop iteration, because nextIter removes an element from the
Iter set and setExposed removes the same element from Content. Note that the
revealAllUnexposed loop runs until isLastIter returns true, which implies that
Iter is true as well. Because of the equality between Iter and Content, the flags
analysis plugin may conclude that, upon loop exit, Content is empty as well.

Hob’s set abstraction supports typestate-style reasoning at the level of individual
objects (for example, all objects in the ExposedCells set can be viewed as having
a conceptual typestate Exposed). Our system also supports the notion of global
typestate. (Note that we have used both of these sorts of typestates—local and
global typestates—in the earlier water benchmark as well.) The Board module, for
example, has a global gameOver boolean variable which indicates whether or not the
game is over. The Hob system uses this variable and the definitions of relevant sets
to ensure the preservation of the following scope invariant,

gameOver V disjoint(MinedCells, ExposedCells).

This scope invariant connects a global typestate property—is the game over?—
with a object-based typestate state property evaluated on objects in the program—no
mined cells are also exposed. As described in Chapter B, the Hob system asks analysis
plugins to verify these scope invariants by conjoining the invariants to procedure
preconditions and postconditions. Note that scope invariants must be true in the
initial state of the program. If some initializer must execute first to establish an
invariant, then the invariant can be guarded by a global typestate variable which the
initializer sets to true. Note the similarity between such a initialization guard and
the gameOver guard that appears above.

A second scope invariant states equalities between sets:

(Board.ExposedCells = ExposedSet.Content) A
(Board.UnexposedCells = UnexposedList.Content).

This property ensures that the state of the board is consistent—in other words, that
the ExposedSet and UnexposedList heap data structures and the Board do not con-
tain contradictory information. The Hob system verifies this property by conjoining
it to the ensures and requires clauses of appropriate procedures. In this case, it
turns out that the Board module becomes responsible for maintaining this invariant.

131

Yet the analysis of the Board module does not, in isolation, have the ability to com-
pletely verify the invariant: the flags analysis cannot reason about the concrete state
of ExposedSet.Content or UnexposedList.Content (which are defined in other
modules). Instead, relying on the ensures clauses of Board’s callees, in combination
with its own reasoning that tracks membership in the ExposedCells set, enables our
analysis to verify the invariant (assuming that ExposedSet and UnexposedList work
correctly).

7.5 Implications of Modular Analysis

While the Hob system was designed to verify both that modules preserve internal data
structure consistency properties and that modules preserve consistency properties
relating data structures, Hob’s modular analysis approach approach often allows the
two kinds of properties—properties of coordination modules and of leaf modules—
to be verified separately. Coordination modules are those that define few, or no,
abstract sets of their own, but instead coordinate the activity of other modules to
accomplish tasks. In the minesweeper benchmark, the View and Controller modules
are examples of such modules. The View module has no state at all; it simply queries
the board for the current game state and calls the system graphics libraries to display
the state. Conversely, leaf modules such as ExposedSet and UnexposedList often
implement a single data structure and ensure that the data structure remains in a
consistent state. Such modules do not coordinate the actions of other modules and
usually state no inter-data structure consistency properties.

Because coordination modules coordinate the actions of other modules—and do
not encapsulate any data structures of their own—the analysis of these modules only
needs to operate at the level of abstract sets. Our flags analysis is capable of ensuring
the validity of these modules since it can track abstract set membership, solve formulas
in the boolean algebra of sets, and incorporate the effects of invoked procedures as
it analyzes each module. Note that for these modules, our flags analysis need not
reason about any correspondence between concrete data structure representations
and abstract sets; it instead assumes that the modules which implement the sets
properly implement the correspondence between implementations and specifications.

7.6 Summary and Reflections

We have used the Hob system to verify a number of data structures, including those
based on linked lists and arrays, using theorem proving and shape analysis tech-
niques. Furthermore, we have verified consistency properties for three complete ap-
plications: the water molecule simulation, a web server, and an implementation of the
minesweeper game. These implementations include up to 2000 lines of implementa-
tion and 500 lines of specification. The specifications that we have checked using Hob
include a number of properties that reflect applications’ design information, enabling
developers to verify that programs conform (and that they continue to conform) to
their designs.

132

Reflections on the Hob specification approach. Our design decision limiting
the expressive power of our specification language made this language especially suit-
able for specifying properties related to a program’s design. The fact that Hob’s set
specifications focus on sets as abstractions of data structures—which are central to
a program’s operation—implies that such specifications can more effectively expose
design information than full functional specifications. As an example, consider again
the scope invariant about the disjointness of mined cells and exposed cells:

gameOver V disjoint(MinedCells, ExposedCells).

This invariant is remarkably concise. It states that either the gameOver boolean flag
is true, or that the sets MinedCells and ExposedCells are disjoint. The invariant
therefore constrains the program’s state in a highly domain-specific way. Note that
this invariant is not a generic property that holds for all programs, but rather a
property specialized to this particular application. Additionally, this invariant states
a fact that is relevant to end users: users expect that a minesweeper implementation
should not expose a mined cell unless the game is over.

Furthermore, this invariant has a precise meaning: given any state of the concrete
heap, it is possible to decide whether or not the invariant holds in that state. The
Hob system decides whether or not an invariant holds by using the definitions of
the MinedCells and ExposedCells sets. In this particular case, we defined both
the MinedCells and ExposedCells sets using the flags plugin; for instance, the
MinedCells set consists of the heap objects with fields init and isMined both set
to true. Note that these set definitions have been factored out of the invariant itself
and into the appropriate abstraction modules (as described in Chapter Hl). Developers
may therefore swap out set definitions and replace them with different definitions,
even definitions which are to be verified using different analysis plugins. Invariants
such as this one therefore illustrate how the Hob system enables developers to verify
properties of arbitrarily complicated data structures and relationships between such
data structures.

If we view invariants as distilled design information, then set definitions are ir-
relevant to the invariants, and the invariants are better expressed without inline
set definitions. Consider the minesweeper invariant above. For the purposes of the
minesweeper application’s design, it is unimportant that the ExposedCells set con-
sists of those Cell objects with field isExposed set to true. It is only important that
the ExposedCells set and the MinedCells sets are disjoint. Of course, developers
do need to agree on a common vocabulary before they can communicate using these
sets; the need to assign meaningful names to sets is similar to the need to assign
meaningful names to procedures and classes.

Our decision to use a set specification language also—unexpectedly—enabled us
to deploy a simple loop invariant inference algorithm, which we previously described
in Section B8l This algorithm worked fairly well in our experience and it contributed
to our verification of the minesweeper and web server examples.

Of course, since our specifications are partial and set-based, they do not always

133

capture all important design decisions. For instance, one property that we would have
liked to state and verify for the web server was that the content length, as stated in
the response header, always corresponds to the number of bytes that we send to
the client. However, this property is inexpressible in Hob’s specification language:
we chose to omit integers from the specification language to limit the complexity of
the required decision procedure and to enable the use of pre-existing tools to decide
formulas expressed in the Boolean algebra of sets.

Implementation language design. To evaluate the Hob approach, we had to
develop programs for the Hob implementation language and write specifications for
them. In our experience, it was inconvenient to port programs to the Hob imple-
mentation language, due to its lack of modern programming language features such
as dynamic dispatch. In retrospect, we might have chosen to include more features
in the programming language, which would have made it slightly more difficult to
implement the Hob system, but much easier to write programs for it. Because one of
the primary bottlenecks in our research was the availability of benchmarks, it seems
that trading increased system development complexity for decreased benchmark de-
velopment complexity would have been advantageous.

Consistency properties for leaf and coordination modules. Our experience
illustrated that it was possible to verify consistency properties for leaf modules (which
do not make any calls to other modules) using modular static analysis techniques.
The analysis of the linked list using the PALE plugin showed that it is possible to
use static analysis to verify properties that go beyond what is possible to verify using
testing, since it would be difficult to construct a test case which exposes the problem.

Reasoning about coordination modules that use higher-level set specifications sug-
gests that it is possible to use Hob’s set specifications to build more scalable and more
automated static analyses which verify design properties. We found that it was pos-
sible to verify typestate properties for systems, as we did in the water example. Such
properties ensure that the proper operations occur in the correct order, both at a
global level and at a per-object level. The minesweeper and web server examples
furthermore demonstrated that it was possible to verify properties which related data
structures (using their set specifications). In our experience, we found that these
properties successfully expressed design-level information about the programs that
we were verifying.

User relevance. We were surprised to find that Hob’s set specifications are well-
suited for expressing outward-looking user-level constraints on the program’s be-
haviour. Generally, static analysis techniques operate by reading source code and
creating models of the program’s concrete data structures. It is possible to use these
models to constrain permissible program states. However, in general, constraining
concrete program states may or may not affect the program’s observable behaviour:
it is quite difficult to relate the state of a program’s internal data structures and a
set of desired program outputs.

134

Hob’s set specifications, however, allowed us to express the following user-visible
constraints in both the minesweeper and web server benchmarks:

e In the web server benchmark, set specifications ensure that response headers
are always for the current request and are never stale.

e In the minesweeper benchmark, set specifications ensure that the mined cells
are never exposed unless the game is over.

Hob’s developer-provided set definitions enable static analyses to verify properties
that directly affect user-relevant concerns (in our above example, contents of the re-
sponse header and the set of mined cells) by translating them into constraints on the
concrete program state (the state of the linked list or array). The abstraction func-
tions that make up Hob set definitions therefore make it possible for our Hob analysis
system to statically verify properties that directly affect the program’s output. Hob’s
ability to state and verify properties that are directly relevant to users of the software
makes Hob’s verification approach especially compelling to developers and valuable
to their end users.

135

136

Chapter 8

Related Work

The Hob specification language enables developers to succinctly express design prop-
erties. One of our primary goals in designing Hob was to make design information
relevant, accessible and understandable. The Hob specification language therefore
allows developers to specify a selected subset of critical design properties. We be-
lieve that our specification language hits a “sweet spot” between expressiveness and
verifiability; it is targetted particularly towards expressing data structure properties.
We contrast Hob’s streamlined specification language to more powerful specification
languages such as Z and VDM, which allow developers to specify (but not automati-
cally verify) arbitrary properties of systems, as well as design notations such as UML,
which are specialized for design properties (again, without verification support).

Hob relies on static analysis to automatically verify that systems conform to their
design properties. We discuss related work on static analysis techniques, including
typestate systems, shape analysis, model checking and abstract interpretation. Hob’s
primary contribution in this area is in integrating different analysis techniques by
using the program’s module structure and using the combined power of these analysis
techniques to verify data structure consistency properties; we compare Hob to related
research that combines decision procedures.

8.1 Specification Languages

Program specifications enable modular verification by enabling the verification of
program parts—modules—against their interfaces. Most related work in the area of
specification languages proposes complete methodologies for better software devel-
opment. Hob, on the other hand, uses a specification language to enable program
verification. Because the design of the specification language influences the types of
properties that an associated verification system can ensure, we next survey related
work on specifications for software systems.

Specification methodologies typically cover the part of a project’s lifecycle between
the project’s design phase and its implementation and delivery to customers. Some
of these methodologies (for instance, Z) provide a general notation which develop-
ers may use to express program properties, but still expect developers to carry out

137

proofs by hand. Most of these methodologies include some tool support in the form
of verification condition generators and proof assistants. However, unlike Hob, these
methodologies do not leverage current static analysis technologies, such as shape anal-
ysis, to automatically verify program properties. In the absence of automatic support
for verifying conformance to specifications, design drift—the phenomenon whereby
design information becomes outdated and therefore fails to reflect the current capa-
bilities of a software system—inevitably becomes a problem, especially considering
that software maintenance typically continues long after the software has been ini-
tially delivered to customers.

Origins of specification languages. Parnas was one of the earliest advocates for
module specifications in [80]. Many of the ideas proposed in this work have become
commonly accepted, at least in principle. The basic proposal is that specifications
should enable the developers of a module and the client of that module to communi-
cate effectively. Specifications should hide implementation details but expose usage
constraints and guarantees. Parnas acknowledges that specifications can easily be
erroneous. Since specifications generally cannot be executed, Parnas suggests that
developers should carry out manual symbolic testing of specifications: they should
invent a number of predicates which ought to be consequences of their specifications
and verify that these predicates do hold.

The original proposal for specifications [80] does not propose a specific specification
languaget]. Hob’s set-based specifications are especially appropriate for data structure
consistency properties. However, many other specification notations exist, and we
next discuss some of these notations. We start with notations that are intended to
model systems in general, such as the Z notation, and continue with wide-spectrum
specification languages and object models. We then explore specification languages
that are more specifically targetted towards programs rather than systems, like the
Larch and JML specification notations. Like the Larch and JML approaches, the Hob
approach embeds specification information directly into the program source code. Hob
goes beyond previous approaches: one of Hob’s major contributions is in verifying
that implementations actually conform to their specifications.

The Z specification language. The Z notation [94, R9| allows system designers
and implementers to express properties of their systems. Z was primarily designed as
a notation for writing specifications and for manually proving statements about these
specifications; it is particularly convenient for writing short proofs about equivalences
between Z specifications.

Z is based on first-order predicate logic and typed set theory. Z specifications are
therefore undecidable in general; that is, no algorithm can check (in general) that
Z specifications are logically consistent, and the developer cannot compute (in all
cases) whether a given statement is implied by a system’s specifications. A number
of tools exist to typecheck, model check and animate (i.e. execute on small examples)

!Parnas states, in a footnote, that the specification language that he uses in his paper should not
be considered in any way to be a model specification language, due to its shortcomings.

138

Z specifications. These tools can increase a developer’s confidence that his system’s
specifications are meaningful, but cannot provide any guarantees to that effect. The
power of the Z notation enables it to completely specify system properties, so that—in
principle—any system could be specified completely, even down to the implementation
level.

Z specifications have been used to design large industrial systems. One report
is 6], which describes the experience of some practitioners at IBM in specifying
the CICS transaction processing system. Even without any automatic verification
of the specifications or the resulting implementations, they reported that the use
of formal specifications led to implementations with fewer errors in general, and to
earlier detection.

Because Z and Hob have different design goals—Z enables developers to state
properties of systems while Hob enables developers to verify data structure consis-
tency properties—Z7 and Hob differ in terms of specification language expressiveness.
Hob requires developers to specify more specialized properties than Z; Hob’s prop-
erties are either global or local data structure consistency properties. Global data
structure consistency properties state relationships between sets (defined in terms
of abstraction functions), while local consistency properties primarily ensure that
set implementations maintain the proper invariants. Developers benefit from using
Hob specifications because their implementations can be verified against properties
specified for the Hob system; this is not true for properties specified in terms of Z
designs.

We are aware of one proof assistant for Z specifications, ProofPower, which uses
an implementation of higher-order logic (HOL) as its backend and embeds Z into
HOL. However, to our knowledge, there are no analogues to the Hob system which
can automatically prove that implementations—especially implementations with heap
data structures—conform to their Z specifications.

Wide-spectrum specification languages. The wide-spectrum specification lan-
guage approach attempts to help developers ensure that implementations match their
specifications by providing a family of syntactically related languages to both spec-
ify and implement systems [49, B4, 22, 2]. Previous work on automatically proving
that implementations conform to their specifications has been sparse, and we are not
aware of any such research in the context of wide-spectrum specification languages.

Often, developers find deficiencies in specifications while implementing them.
When correcting these deficiencies, developers must take care to explicitly update
both the original specification and its implementation. In practice, implementations
and specifications tend to end up diverging—or drifting—in the absence of tools that
automatically verify that an implementation conforms to its specification. We call
this phenomenon design drift.

The Hob approach does not use a wide-spectrum specification language; we in-
stead provide separate specification and implementation languages, and automatically
verify the conformance of an implementation to its specification using the provided
abstraction functions. Hob therefore guarantees that a program’s implementation

139

continues to conform to its design throughout its maintenance phase, preventing de-
sign drift.

Perhaps the most-used wide-spectrum specification approach is the Vienna De-
velopment Method [9]; its successor VDM++ [34] extends VDM with support for
object-oriented analysis and design. VDM is quite expressive; it enables developers to
write specifications for systems using numbers, sets, maps, sequences, and functions.
In fact, it is so expressive that the type-checking problem for VDM is undecidable, be-
cause types may depend on conditional VDM expressions. VDM has been extensively
used in industry; published examples include models of railway interlock systems, nu-
clear safety systems, and telephone exchanges [62]. The primary tool supporting the
VDM is the VDM+-+ Toolbox [2T], which includes some support for type checking,
an interpreter for executable VDM specifications, an verification condition generator
for VDM models which generates conditions that ensure that these models are free
of run-time errors, a test facility, and an automatic code generator. Other wide-
spectrum languages include RAISE [22], which adds support for modular reasoning
and concurrency, and the B-method [2], which uses abstract machines to represent the
actions of the system. These specification languages generally require manual proofs
of refinements between different levels of specifications and implementations. The
Hob approach, on the other hand, automatically verifies that implementations con-
form to their specifications. Hob’s approach helps prevent design drift by informing
developers immediately when implementations and specifications diverge; it is there-
fore possible to impose development processes that require developers to immediately
correct either the implementation or the specification in case of divergence.

Larch. The Larch project [#4] explored the expressive potential of specification lan-
guages. In the Larch approach, specifications had two parts: an auxiliary specification
and a trait. Traits enable developers to state properties of the mathematical objects
that appear in Larch specifications. Using these traits, developers would be able to
use appropriate notations for the specification task at hand. Hob, on the other hand
(like VDM and Z) takes a strong position on the types of specifications that users may
write; we chose set specifications for Hob because we believe that sets are particularly
apt for stating data structure consistency properties. Furthermore, Hob specifications
are designed primarily to enable verification.

Hob does support extensibility in the following sense: it allows developers to
provide user-definable abstraction functions which relate concrete states to abstract
states as implemented in analysis plugins; if Hob’s set of analysis plugins is insufficient,
then developers may write their own analysis plugins. By fixing the specification lan-
guage to the boolean algebra of sets, we simplify the task of analysis plugins; after all,
plugins must consume and produce conditions expressed in the common specification
language, and an overly-complicated specification language would impose an excessive
burden on writers of analysis plugins. We believe that the choice of a set specification
language is a reasonable compromise between expressiveness and tractability in this
regard.

We next highlight the differences between Larch and Hob by briefly discussing

140

the specification of a bounded stack in Larch. Basically, the Larch specification does
not abstract away the ordering of the elements in the stack, while Hob represents
the contents of the stack as an (unordered) set. When using the Larch specifica-
tion, the developer must refer to a stack state by writing a sequence of operations,
e.g. push(push(push(empty, S), 2), 3), consistent with a world-view based on
algebraic specifications of abstract data types. The Hob approach instead allows de-
velopers to state set-based properties of the stack’s contents. This enables developers
to state, for instance, that the stack’s contents are disjoint from some other data
structure’s contents.

One limitation of the algebraic specification methodology is that it is difficult to
state global program properties using algebraic specifications. Because the Hob spec-
ification language supports global data structures and has set-based specifications,
it can easily state global program properties, which will appear as relations between
sets.

In general, the Larch system does not have many tools for reasoning about im-
plementations, since it was designed to explore issues associated with specification
languages. One implementation-oriented tool is LCLint [29], which performs a lim-
ited set of static checks for generic memory-safety properties, guided by some Larch
program properties. LCLint verifies that programs never violate abstraction barriers;
that they always specify and use all global variables; that modifies clauses are accu-
rate (with some limitations and some unsoundness); that uses occur after definitions;
and that macros are properly used.

Note in particular that LCLint does not perform any checks based on requires
or ensures clauses. Contrast this to Hob—one of the key goals of the Hob system
is to verify that each procedure’s ensures clause always holds upon exit from that
procedure, as long as the requires clause holds upon entry.

Java Modelling Language. The Java Modelling Language enables developers to
specify properties for Java programs. JML applies many of the ideas from the Larch
project to object-oriented Java programs. JML specifications are typically embedded
as comments within Java programs. The specification language mostly contains Java
expressions, plus a few extra keywords.

Unlike Larch, Hob is designed to allow designers and developers to express and
verify design-level information about a bounded (at compile time) collection of named
abstract sets of objects. Hob’s specification language is the boolean algebra over sets
and boolean variables. Unlike JML specifications, which support implementation-
level constructs such as strings, integers, or floating-point values, Hob’s set-based
specification language is focussed on a particular set of properties that we believe is
important and relevant to a system’s design.

We find our approach productive in that it focusses the attention of the design-
ers and developers on some important core aspects of the design and facilitates the
effective verification of those aspects. In particular, the Hob approach discourages
developers from writing specifications that simply reiterate the implementation using
specification-level constructs, because we chose to omit the needed constructs from

141

the Hob specification language.

8.1.1 Expressing design information

The specification languages we have discussed so far are primarily targetted towards
expressing general system properties. We next discuss notations that were targetted
specifically for expressing design properties, including some that address the issue of
design drift by extracting models directly from source code. We believe that such
approaches are most likely to succeed in addressing the design drift problem.

Object Models. Object-oriented analysis and design rely on a suite of techniques
for specifying (typically software-based) systems. The central technique is object
modelling. An object model graphically describes the design of a system with boxes
for the different classes in a software system and arrows for the relationships between
these classes. The most popular methodology for object-oriented design is the Unified
Modelling Language [83]. When following the UML methodology, a developer creates
a set of design artifacts which describe the system being designed and implemented.
These artifacts are intended to be descriptive, not prescriptive; nothing guarantees
that a system conforms to its design. It is the sole responsibility of the developer to
ensure that the artifacts produced at each stage remain consistent with each other,
without even the notational help provided by wide-spectrum specification languages.
The UML approach typically does not include formal verification.

There is rich tool support for object models; some tools, including TogetherJ and
Rational Rose, help the developer ensure that the implementation is consistent with
the object model by automatically generating a skeleton of the implementation from
the object model. Nevertheless, such approaches are still affected by the design drift
problem: unless the model is generated from the source, the source and model will
diverge in the course of development. We have previously developed the token anno-
tation system, which embeds object modelling metadata into Java source code and
can later automatically extract this metadata to generate the model [61]. We believe
that such an approach will facilitate the difficult task of keeping design information
up-to-date.

Traditional object models do not include constraints on system behaviours; object
models are instead intended for specifying the system architecture, 7.e. the connec-
tions between different system components. The Object Constraint Language [79]
and the Alloy system [3] provide two ways of specifying system behaviours on top of
object models. Alloy also includes tools for visualizing and automatically checking
consistency properties of these object models, using bounded model checking. These
tools, however, do not verify that implementations of the object models conform to
the original models.

Because the Hob approach attempts to verify data structure consistency prop-
erties, its focus is quite different from that of object modelling languages. The key
features relevant to an object modelling language are the expressive power and the
ease-of-use of that language. The Alloy language was also designed to facilitate in-
ternal consistency checks for specifications. The Hob specification language supports

142

more than just object models and internal consistency checks; we designed it in con-
cert with the Hob implementation language and the abstraction languages to enable
the static verification of data structure consistency properties.

Design conformance. Reflexion models [74] support the concept of design confor-
mance: they enable developers to developers propose a model of a software system
and then compare properties of the actual system to the model. The idea is to use
an algorithm to extract a model from the source code; their tool then presents the
difference between the proposed model and the extracted model to the developer. Re-
flexion models may, in principle, use many different kinds of models. In their paper,
Murphy et al. propose the following model extraction algorithm: group a number
of files together as a module (using wildcards) and use procedure calls to define the
inter-module interaction structure. Other model extraction algorithms would also be
possible. Like Hob, reflexion models attack the problem of design drift, by identifying
differences between the intended design and the actual implementation. While such
an approach is quite useful, Hob can encode many design properties that would be
difficult to express in terms of graphical reflexion models. Because Hob expresses
properties of the program state, it can state (for example) that two sets are always
disjoint.

The Pattern-Lint tool [85] uses dynamic analysis and shallow static analysis tech-
niques to verify whether or not software systems conform to desired architectural con-
straints. The novelty in Pattern-Lint appears to stem from how it decides whether or
not systems conform to their designs: Pattern-Lint collects evidence for and against a
design property to decide whether or not the implementation conforms to that design
properties. Pattern-Lint only uses very simple static analysis techniques: it appears
to only inspect method calls and shared global variable accesses.

8.2 Analysis Technologies and Verification Systems

The Hob system verifies set-based specifications by combining various static analysis
and theorem proving technologies. We next discuss a number of related approaches
to static program verification. A number of these approaches are static analysis ap-
proaches; these include typestate systems, shape analysis, and abstract interpretation.
We also describe some research which uses model checking. The typical application
of model checking verifies that module interfaces are used appropriately (but, unlike
Hob, does not verify that the modules are properly implemented). Finally, we discuss
theorem proving technology; in our context, theorem provers help construct proofs
that indicate that implementations have desired properties.

In general, each of the research projects below presents a single approach to veri-
fying a single class of program properties; there is no effort to integrate results from
different analysis approaches. For instance, ESC/Java uses the Simplify theorem
prover to discharge all of its verification conditions. We believe that by applying spe-
cialized tools—working together—to specialized classes of data structure consistency

143

properties, the Hob system enables the verification of more sophisticated properties
on larger programs than previous research.

Typestate systems. Typestate systems track the conceptual states that each ob-
ject goes through during its lifetime in the computation [91, 23, B2, BT, 28]. They
generalize standard type systems in that the typestate of an object may change during
the computation. Aliasing (or more generally, any kind of sharing) is the key problem
for typestate systems—if the program uses one reference to change the typestate of
an object, the typestate system must ensure that either the declared typestate of the
other references is updated to reflect the new typestate or that the new typestate is
compatible with the old declared typestate at the other references.

Most typestate systems avoid this problem altogether by eliminating the possi-
bility of aliasing [9T]. Generalizations support monotonic typestate changes (which
ensure that the new typestate remains compatible with all existing aliases) [32] and
enable the developer to temporarily prevent the program from using a set of potential
aliases, change the typestate of an object with aliases only in that set, then restore
the typestate and reenable the use of the aliases [30]. It is also possible to support
object-oriented constructs such as inheritance [24]. Fink et al. propose the integration
of pointer analysis techniques with typestate property verification for Java programs
in [33]. Their technique scales due to the use of a series of abstractions: the simpler
abstractions quickly rule out many potential problems and leave more sophisticated
properties to more expensive analyses. The role system [564] also integrates pointer
analysis techniques with typestate verification. In the role system, however, the de-
clared typestate of each object characterizes all of the references to the object, which
enables the typestate system to check that the new typestate is compatible with all
remaining aliases after a nonmonotonic typestate change.

In our approach, the typestate of each object is determined by its membership in
abstract sets as determined by the values of its encapsulated fields and its participa-
tion in encapsulated data structures. Our generalizations of typestate include mul-
tiple orthogonal typestates (corresponding to multiple sets), and, most importantly,
the ability to verify actual properties associated with the typestate abstraction, as
opposed to taking for granted the correctness of interface specifications.

Bierhoff and Aldrich describe a dynamic analysis system for verifying typestate
properties in Java programs that correctly handles typestates in the context of sub-
classing [8]. Like Hob, [8] also supports multiple orthogonal typestates. While a
dynamic analysis can prevent programs from executing undesirable actions, typically
by terminating a program when it attempts to execute such actions, the advantage
of our static approach is that it provides stronger guarantees that programs never vi-
olate typestate constraints on any possible execution before actually executing these
programs.

Shape analysis. The goal of shape analysis is to verify that programs preserve con-
sistency properties of (potentially-recursive) linked data structures. In [67], Luckham
and Suzuki describe an early attempt to verify properties of linked data structures.

144

They explicitly incorporate reachability and acyclicity into the first-order Stanford
Pascal Verifier logic. Their tool deduces that the appropriate shape constraints hold,
making use of user guidance throughout the theorem proving process. However, they
do not have any notion of shape abstractions as in modern shape analysis, so that
the desired program properties are expressed as assertions in Pascal-like expressions
augmented with the reachability predicate; it is therefore difficult to modularize their
approach.

Since then, researchers have developed many shape analyses and the field remains
one of the most active areas in program analysis today [41}, [7T), 54]. In general, shape
analyses focus on extracting and verifying detailed consistency properties of individual
data structures.

We explicitly mention TVLA, the Three-Valued Logic Analysis engine [84]. TVLA
has some similarity to Hob in that it is not a single analysis, but rather a framework
which allows researchers to specify specific abstractions of the heap. The TVLA tool
embeds the operational semantics of a particular implementation language and pro-
duces abstract interpreters for this language using the specified abstraction. The Hob
framework gives developers more flexibility to develop analysis plugins—Hob plug-
ins do not necessarily have to use abstract interpretation, as shown by our theorem
proving plugin. We also designed Hob so that it would be able to verify higher-level
domain-specific properties, in addition to low-level properties of the concrete heap.

Because shape analyses are very precise, the detail of the properties these analyses
must track have limited their scalability. One of our primary research goals is to
enable the application of these sophisticated analyses in a modular fashion, with each
analysis operating on only that part of the program relevant for the properties that
it is designed to verify.

Model Checking Approaches. Model checking is a lightweight approach to pro-
gram verification that attempts to detect violations of certain specification properties
in systems by setting up an abstract model of the program and exhaustively test-
ing the program in that abstract model. Bultan et al. describe one application of
model checking to modular verification in [7]. Their research focusses on detecting
synchronization errors in concurrent programs: they find instances where programs
improperly order synchronization operations. Such a model-checking approach can
effectively use the information provided in terms of module interfaces, as long as the
interfaces have only finite amounts of state (which the model checker can exhaustively
explore); this is similar to verifying programs with typestate-like specifications.

Note that, like ESC/Java, Bultan’s model-checking approach only verifies the
use of the interfaces, and not the underlying implementations of these interfaces.
The model checking approach is not, in isolation, well-suited to verifying Hob-style
properties of unbounded data structures in the concrete heap, because it is difficult
to exhaustively explore an unbounded data structure. Techniques such as symbolic
model checking could help, but have not yet been applied to heap data structures.

145

Abstract interpretation. The ASTREE static analyzer [9] has successfully veri-
fied millions of lines of automatically generated C code for the absence of run-time
errors. Like Hob, ASTREE combines a number of different static analyses to statically
verify program properties; ASTREE uses abstract interpretation over a number of spe-
cialized abstract domains. However, the goals of ASTREE differ substantially from
our goals. We emphasize two points in particular. First, ASTREE’s input language
is a subset of C which does not include dynamic memory allocation; we specifically
designed Hob to support the inclusion of shape analyses, which reason about the rela-
tionships between different dynamically allocated objects. Second, ASTREE verifies
that programs never encounter run-time errors such as out-of-bounds array accesses
and arithmetic overflows; the set of properties of interest is built into the ASTREE
analyzer itself. The Hob system, on the other hand, verifies developer-provided data
structure consistency properties. These properties enable the developer to express
domain-specific program properties which capture the program’s design information.

Stanford Pascal Verifier. The Stanford Pascal Verifier [40, 66] was an early pro-
gram verification effort. It was surprisingly powerful for its time. Like Hob, the
Stanford Verifier attempted to prove that a procedure’s postconditions held upon
exit if its preconditions held upon entry. However, a key difference between Hob and
the Stanford Verifier is that the Stanford Verifier exclusively uses theorem proving
to establish program properties, compared to Hob’s notion of analysis plugins. In
a retrospective evaluation of the Stanford Verifier [68]|, Luckham writes (in 1981)
that “... theorem proving still represents a major bottleneck in verification systems.”
We believe that, even though theorem proving technology has improved since 1981,
the use of static analysis techniques—as in the Hob system—greatly facilitates the
verification of many important program properties.

Another key difference between the Stanford Verifier and Hob is in the expected
scope of the preconditions and postconditions. The Stanford Verifier ambitiously
attempted to prove partial correctness for procedures, rather than our more limited
data structure consistency properties. Unfortunately, proving correctness for realistic
programs was beyond the capability of both the computer hardware and the theorem
proving technology of the time. Note that, due to its design goals, the Stanford
Verifier accepts preconditions and postconditions directly stated its underlying logic
(which Luckham describes as being “cumbersome”). Unlike Hob, it does not use a set
specification language or abstraction functions. Therefore, even though the Stanford
Verifier can reason about heap reachability using custom reach primitives added on
top of its first-order logic [67], heap data structures are quite difficult to reason about
in practice, due to the lack of abstraction functions. It is much easier to express
properties of sets using their names.

ESC/Java and ESC/Java2. ESC/Java [36] (and its successor ESC/Java2) are
program checking tools which aim to identify common errors in programs with the help
of program specifications expressed in a subset of the Java Modelling Language [12].
ESC/Java and ESC/Java2 currently use the Simplify theorem prover to verify pro-

146

gram properties; their design is reminiscent of the Stanford Pascal Verifier’s design,
updated to use more modern specification languages and theorem provers. The de-
signers of ESC/Java have explicitly stated that, like ASTREE, it was designed to
statically identify potential run-time errors, e.g. null-pointer exceptions. ESC/Java
additionally attempts to establish, at least partially, that preconditions hold at call
sites. The Hob system was principally designed to verify program-specific properties,
which include preconditions and postconditions, but also global data structure con-
sistency properties. Hob’s support for abstraction functions and scopes make data
structure consistency properties much easier to express.

The ESC/Java2 tool [26] [I8] extends the original ESC/Java work by supporting
current versions of Java and verifying more JML constructs. In particular, ESC/Java2
(as well as ESC/Modula-3 [26]) allows the use of heap abstractions via its support for
model fields. Model fields use developer-provided representations. These represen-
tations are similar in spirit to the set definitions which appear in Hob’s abstraction
modules. However, not all model fields are annotated with representations; for in-
stance, the library annotations provided with ESC/Java2 for the LinkedList class
do not discuss the actual concrete contents of the LinkedList as a set of objects in
the heap. The first-order logic used by the underlying Simplify theorem prover |25]
does not support transitive closure; effective first-order approximations of transitive
closure are still active areas of research |76, 65, b6]. ESC/Java2 has therefore not been
used to verify the concrete data structure consistency properties that Hob verifies for
linked lists, essentially because its logic is not powerful enough. Cok explains how
ESC/Java2 handles model fields in [I7]; essentially, it treats them as method calls
and includes the postconditions of the model fields’ representations.

On the other hand, the Hob system enables the developer to use—and verify—
implementations which use arbitrary set definitions, as long as an appropriate analysis
plugin exists. This enables, for instance, the shape analysis and Isabelle plugins to
use logics which go far beyond the expressiveness of the set specification language.
The logic used for inter-analysis communication is still the first-order set-based spec-
ification language, and we require that each a analysis plugin be capable of reasoning
about the first-order set specification language.

Spec”. The Spec” programming system [5] adds ESC/Java2-like features to C7,
including the ability to specify method contracts, frame conditions and class contracts.
These contracts may be verified either at run-time or statically. Static verification
relies on the Boogie verifier, which uses a theorem prover to discharge its verification
conditions.

We discuss two key differences between our approach and the proposed Boogie
approach. First, Boogie envisions the use of a single general-purpose theorem prover
to discharge the generated verification conditions. Hob, on the other hand, is designed
to support a diverse range of potentially narrow, specialized analyses; as we’ve seen,
this range includes shape analyses, typestate analyses and interactive theorem provers.
Hob’s goal of supporting specialized analyses is reflected in Hob’s format construct
and in its abstract set specification language, both of which are designed to support a

147

strong separation between different analyses (such a separation is necessary, of course,
if multiple analyses are to cooperate to successfully analyze a single program). This
approach minimizes the amount of expertise required to work within the Hob system
and maximizes the ability of developers with specialized skills to contribute to Hob.
We believe that enabling as many developers to contribute as possible will lead to a
richer, more powerful analysis system.

Second, Boogie is designed to verify object invariants, with an object ownership
mechanism supporting the hierarchical specification and verification of invariants that
involve hierarchies of linked objects. This mechanism eliminates a form of specifi-
cation aggregation for computations that traverse a hierarchy of owned objects—if
the procedure call hierarchy matches the ownership hierarchy, each procedure need
only state consistency requirements for the object that it directly accesses, not all of
the child objects that that object owns. This hierarchical specification approach is
reminiscent of hierarchical access specifications in Jade [82] and hierarchical locking
mechanisms in databases [87].

Hob, on the other hand, is designed to support computations organized around a
flat set of data structures. The constructs that eliminate specification aggregation cut
across the procedure call hierarchy rather than working within it. This adoption of
cross-cutting organizational approaches reflects the maturation of computer science as
a discipline—over time, the overwhelming dominance of hierarchical approaches will
fade as the effectiveness of using other approaches in addition to hierarchies becomes
obvious.

Other theorem provers. We use the Isabelle/HOL interactive theorem prover |81,
78| to discharge the verification conditions generated by our theorem proving anal-
ysis plugin. Other interactive theorem provers include Athena [4], which separates
computations from deductions in the context of proof presentations and searches;
HOL-Light [45], which has an especially small set of base axioms; and CVC Lite [6],
which is quite adept at automatically proving theorems about programs with arrays
due to its support for integer arithmetic. Users of the ACL2 [50] theorem-proving
system have applied theorem-proving techniques as well as term-rewriting techniques
to verify properties of large-scale systems, among them software systems [[(2]. With
some engineering work, any of these theorem provers ought to be embeddable into
the Hob system as an analysis plugin.

Typical applications of static analysis. Many systems that use static analysis
to improve software quality, such as FindBugs [47|, search for violations of generic
properties that all programs written in a particular programming language must sat-
isfy. Other systems, such as Synergy [43], verify usage properties for system calls
(such as locking primitives). While such properties are somewhat domain-dependent,
in that they only apply to programs that belong to a certain domain (e.g. device
drivers), these properties still do not discuss anything specific about the programs
themselves. The specification languages that we have discussed could enable the ver-
ification of design-level properties. However, to our knowledge, other specification

148

languages have not been used for verifying such properties. Note that the level of
detail in most other specification languages makes it difficult to identify which prop-
erties are design properties in a potentially unwieldy specification. We believe the
Hob approach is the first approach that gives developers the power to both state
and verify truly domain-specific properties which can express aspects of a software
system’s design.

8.3 Combining Static Analyses

Our research aims to enable the application of multiple analyses that check arbitrarily
complicated properties within a single program. This contrasts with most existing
approaches, which attempt to develop a single new analysis algorithm or technique.
Our system supports the loose integration of analyses where each analysis applies to
one procedure or module. The set specification language is key to this integration,
as it serves as a lingua francae between analysis plugins. Hob’s design decisions were
taken, in part, to facilitate the incorporation of external tools.

Most other verification systems combine analyses by using a single analysis engine
(usually a theorem prover) and combine the decision procedures for different prop-
erties using Nelson-Oppen techniques [75] and their generalizations (e.g. [96, O7]).
Theorem provers based on these principles include Simplify [25], Verifun [35], and
CVC [92]. In [13], Chang and Leino explore an approach that proposes a tighter
combination of a particular domain (uninterpreted function symbols) with an arbi-
trary base domain. Their approach would enable the application of static analysis
techniques which could reason about the program state using a number of different
abstract domains.

Briefly, our approach works well for combining analyses at granularities above
the procedure level, while the Nelson-Oppen approach is targeted towards combining
analyses below the procedure level. Note also that the two techniques are not mutu-
ally exclusive: the Nelson-Oppen technique of combining abstract domains could be
incorporated into a Hob analysis plugin. An important design goal of our Hob system
was to enable developers to communicate data structure consistency properties to the
backend static analysis engines for verification.

Compositional Reasoning Our research has only considered safety properties in
the context of sequential programs. In [I], Lamport and Abadi describe a general
Composition Principle which examines the circumstances under which it is safe to
compose specifications. In the case of Hob-style data structure consistency proper-
ties for sequential programs, the Composition Principle basically states that when
sequentially composing two procedures, the composition of the procedures requires
the precondition of the first procedure and ensures the postcondition of the second
procedure, as long as the postcondition of the first procedure implies the precondi-
tion of the second procedure. We expect to extend the Hob system to support more
general types of software systems in the future, including concurrent and reactive
systems, and we expect to use the full Composition Principle for such systems.

149

150

Chapter 9

Conclusion

This dissertation has been motivated by the problem of verifying that implementa-
tions satisfy stated design properties. In this dissertation, I have presented the Hob
system, which can verify that implementations conform to design properties expressed
in the form of global data structure consistency properties. Developers may use Hob’s
set specification language (which contains the boolean algebra of sets) to state de-
sign properties and a standard imperative language for implementations. Hob’s set
specification language also contains the scopes and defaults mechanisms, which en-
able developers to omit redundant clauses from specifications and therefore to write
shorter specifications.

Because implementations and specifications act on different representations of
the program state—concrete heap states for implementations versus abstract sets
for specifications—the Hob system uses developer-provided abstraction functions to
relate implementation and specification states. Abstraction functions mediate be-
tween concrete states and abstract states by giving definitions for abstract sets in
terms of concrete states. Static analysis techniques use these abstraction functions
to verify that implementations correspond to their set-based specification; many pre-
cise analyses exist and are capable of verifying some quite sophisticated classes of
implementations.

I[ssues associated with using precise static analyses include scalability limitations
and the diversity of important data structure properties, some of which will inevitably
elude any single analysis. A key element of the Hob approach is in its use of modular
analysis to address these issues: developers may divide the program into modules and
verify each procedure belonging to these modules separately, choosing an appropriate
analysis technique for each module. To enable modular analysis, Hob modules encap-
sulate fields (not objects) and data structure implementations; the analysis relies on
specifications based on membership in abstract sets; and developers may use sets to
express (and enable the verification of) properties that involve multiple data struc-
tures in multiple modules analyzed by different analyses. The techniques described in
this dissertation will enable the productive application of a variety of precise analyses
to verify important software design properties.

This dissertation has described how the Hob framework integrates the flags, Bohne
and theorem proving analysis plugins. The flags plugin enables developers to reason

151

about modules that manipulate sets defined by integer and boolean flag values, as
well as modules that coordinate the actions of client modules. The Bohne plugin
supports reasoning about linked heap structures by summarizing them in terms of
monadic second-order logic. Finally, the theorem proving plugin allows developers
to state arbitrarily complicated program properties and to verify them (by directing
theorem provers towards proofs of these properties). The Hob system enables devel-
opers to combine implementation modules which are analyzed using the flags, Bohne
and theorem proving modules. Furthermore, the use of a common set specification
language enables developers to verify global consistency properties which depend on
results obtained by any plugin in the Hob framework.

Finally, this dissertation has evaluated the feasibility of the Hob approach by
applying it to a number of benchmarks, including minesweeper, a web server, and
a MIDI file player. I found that the Hob approach was suitable for capturing cer-
tain kinds of design information. In particular, the use of set specifications enabled
developers to state and verify outward-looking properties. These properties could
constrain a program’s behaviour and guarantee that it does not misbehave in certain
user-visible ways.

9.1 Future Work

I next outline several possible research directions.

Verified data structure library. The Hob system enables the development of
a standard library of verified data structures. To date, we have implemented and
verified a number of useful data structures, including linked-list and array-based set
implementations. I believe that it should be possible to implement all of the data
structures in common usage and to verify data structure consistency properties for
these data structures. Because Hob’s set specification language only supports a target-
ted class of specification properties, it would not be possible to specify all properties
of interest. However, set specifications should be expressive enough to state many
useful properties.

A library of verified data structures would be useful in itself, as a toolbox for
developers to use, but would also contribute to our understanding of an analysis
system’s power. Such a library can shed light on which properties a system can verify
as well as which properties the system can communicate to the developer.

Specification and implementation inference. Developers using the Hob sys-
tem must currently state both specifications and implementations; in some sense,
the specifications and implementations redundantly state some of the same informa-
tion. While this redundancy can help to identify errors in both specifications and
implementations, the overall research goal of ensuring that implementations conform
to their designs does not depend on this redundancy. Note that a specification in-
ference approach would be no worse than the current state of the art in terms of
finding program errors, since specifications are currently either nonexistent or—at

152

best—unchecked. Even though inferred specifications would not immediately find
any errors, they would be helpful for identifying design drift: developers could be
notified when their implementations change and no longer match previously-inferred
specifications.

In principle, it would be possible for analysis plugins to synthesize specifications—
or at least initial drafts of specifications—from some classes of implementations, to
be polished by the developer later on. The flag analysis plugin would be particularly
suitable for inferring specification.

Conversely, it should also be possible to synthesize implementations from specifi-
cations, at least for a certain (limited) class of implementations. To synthesize im-
plementations, it would be necessary to deduce the sequence of method calls required
to implement a given set of postconditions, a search problem. Such a synthesizer
would enable a style of programming which could turn out to be similar to the SETL
programming language [27].

Novel specification mechanisms. A related area for future investigation is im-
proved specification languages. Our specification language notions of scopes and de-
faults arose from an examination of how existing specification language mechanisms
could be improved. A general problem with specifications is that developers some-
times write nonsensical specifications which make program properties either vacuously
true or unsatisfiable. I believe that the exploration of further specification constructs
can yield techniques which would make it easier to create meaningful program speci-
fications.

Handling concurrent programs. Concurrency has become a ubiquitous feature
of modern programming environments. It would be productive to explore the issues
involved in combining concurrency and the global data structures supported by the
Hob system. A major obstacle to developing reliable concurrent programs is the
possibility that multiple threads may update the same data structure at the same
time. Modular analysis of concurrent programs is particularly difficult because a key
assumption in our current modular analysis technique is violated: side effects from
concurrent threads may occur at any time in a procedure’s execution. In the con-
current setting, it is no longer sufficient to assume the precondition of a procedure
and prove the postcondition. One possible solution is to augment the Hob system to
support programs in which the developer may choose to implement data structures
using either private per-thread instances (which are not subject to changes by concur-
rent threads) or using atomic transactions to control updates to data which is shared
between threads. The current Hob approach ought to be easily adaptable to private
data structures. However, novel specification and verification techniques would be
needed for transaction-based shared data structures. For example, the current Hob
scope invariant mechanism relies on the fact that only one thread is accessing the
modules that are working together to maintain the invariant. At the very least, there
must be some specification mechanism allowing developers to identify the parts of the
state that must be accessed under a transaction context.

153

This research would enable developers to verify higher-level data structure con-
sistency properties for concurrent systems, including relationships between local and
shared data structures. These properties could go beyond the current state of the art
for the analysis of concurrent systems, which verify basic properties such as freedom
from data races and typestate properties.

Integrating dynamic analysis results. Approaches based on dynamic analysis
and testing have proven to be effective for both discovering and enforcing program
properties. For instance, Nimmer and Ernst have investigated the dynamic detection
of program invariants, as implemented in the Daikon tool, and the static verification
of these invariants, using the ESC/Java system; this work is described in [[[7]. While
the Hob system currently uses static analysis approaches exclusively, future work
could productively investigate the possible contributions of dynamic analysis in the
context of the Hob approach. One approach, which is being currently explored by
Zee [98], uses information from program executions to guide loop invariant inference. I
believe that because Hob’s set specifications focus on high-level relationships between
different parts of the program rather than low-level concrete heap properties, the
inference of Hob-style set specifications could enable the automatic inference of design
information.

9.2 Implications

Until now, developers have been unable to rely on design information to guide them
in the course of software development and maintenance: such information is often
outdated and inaccurate. Because the Hob system can automatically verify whether
or not an implementation matches its design, it enables developers to ensure that a
program’s design information remains valid throughout the program’s lifecycle. In
particular, automatic verification enables developers, or their managers, to include
program verification in development processes in the same way that unit testing has
been incorporated into current development processes.

It has historically been difficult to enforce the use of specifications in software
projects. Besides Hob, a number of other recent proposals have also proposed the use
of specification information in conjunction with static or dynamic program analysis
for verifying this specification information; examples include Bierhoff and Aldrich’s
dynamic typestate [8] and the Spec” programming system [5]. I believe that con-
temporary approaches to the use of specifications will enjoy greater success than past
exhortations advocating the importance of specifications. These past exhortations
may have been ignored because past approaches failed deliver any concrete benefits
from the use of specifications. Because the Hob approach enables developers to verify
implementations against specifications, specifications can remain up-to-date, and de-
velopers can confidently use these specifications when maintaining software. Further-
more, successful verification (of both low-level data structure consistency properties
and global properties that relate different data structures) will augment developers’
confidence in the overall quality of their software.

154

The heap aliasing problem has always been an issue for static analyses; all static
analyses must somehow finitize the heap to soundly handle the aliasing problem.
Hob’s set-based specifications enable developers to state constraints on the heap, in-
cluding aliasing constraints, and to finitize the heap using a fixed number of sets.
Note that Hob’s set specification language obviates the need to discuss pointer-based
relationships between heap objects at the level of global specifications, hiding the
complexities inherent in the underlying concrete state and replacing them with rela-
tionships between abstract sets. My experience with set-based specifications suggests
that they are a useful abstraction of the heap and that their use ought to ease the
development of future static analysis techniques.

Hob’s set-based specifications also point out a new approach for researchers to
use in making static analysis results accessible to developers. Even though modern
static analyses are capable of verifying extremely detailed program properties, these
analyses are not useful unless developers can provide program properties to the anal-
yses in the required form. When using the Hob system, a program analysis expert
can provide necessary abstraction functions during a module’s initial design. Subse-
quently, developers can apply static analyses to a module’s implementation without
the assistance of the expert, even as the module evolves, as long as the fundamen-
tal representation invariants remain unchanged. Of course, the Hob approach also
enables developers to benefit from static analysis in the sense that Hob enables de-
velopers to invoke verified procedures, knowing that these procedures satisfy their
contracts.

Formal verification of large software systems has long been a goal of the program
verification community. I believe that an approach like Hob’s modular pluggable
analysis approach is most likely to succeed in verifying such systems. There has been
a constant tension between analysis power and scalability: more-powerful analyses
have historically scaled poorly, yet they are needed to verify important properties of
programs. A successful solution to the program verification problem must be able to
harness powerful analysis techniques (to obtain needed analysis results) but may only
apply them to limited parts of the program (for scalability reasons). Modular analysis
enables the productive use of different analyses, of varying power, to potentially verify
properties of significantly-sized programs.

155

156

Bibliography

1]

2]

3]

4]

15]

[6]

7]

18]

Martin Abadi and Leslie Lamport. Composing specifications. Transactions on
Programming Languages and Systems, 15(1):73-132, 1993.

Jean-Raymond Abrial, Matthew K. O. Lee, Dave Neilson, P. N. Scharbach, and
Ib Sgrensen. The B-method. In Proceedings of the th International Symposium
of VDM FEurope on Formal Software Development-Volume 2, pages 398-405.
Springer-Verlag, 1991.

The Alloy Modelling Language and Analyzer. Papers and tool available at:
http://alloy.mit.edu. Software Design Group, Computer Science and Artifi-
cial Intelligence Laboratory, MIT, Cambridge, MA.

Konstantine Arkoudas, Karen Zee, Viktor Kuncak, and Martin Rinard. Verifying
a file system implementation. In Sizth International Conference on Formal En-
gineering Methods (ICFEM’0/), volume 3308 of LNCS, Seattle, Nov 8-12, 2004
2004.

Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec# program-
ming system: An overview. In CASSIS 2004: International Workshop on Con-
struction and Analysis of Safe, Secure and Interoperable Smart devices, March

2004.

Clark Barrett and Sergey Berezin. CVC Lite: A new implementation of the
cooperating validity checker. In Rajeev Alur and Doron A. Peled, editors, Pro-
ceedings of the 16" International Conference on Computer Aided Verification
(CAV °04), volume 3114 of Lecture Notes in Computer Science, pages 515-518.
Springer-Verlag, July 2004. Boston, Massachusetts.

Aysu Betin-Can, Tevfik Bultan, Mikael Lindvall, Benjamin Lux, and Stefan
Topp. Application of design for verification with concurrency controllers to air
traffic control software. In Proceedings of the 20th IEEE International Confer-
ence on Automated Software Engineering (ASE 2005), pages 14-23, Long Beach,
California, November 2005.

Kevin Bierhoff and Jonathan Aldrich. Lightweight object specification with type-
states. In Harald C. Gall, editor, Proceedings of ESEC-FSE 05, pages 217-226,
September 2005.

157

19]

[10]

1]

12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

20]

Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérome Feret, Laurent
Mauborgne, Antoine Miné, David Monniaux, and Xavier Rival. A Static Ana-
lyzer for Large Safety-Critical Software. In ACM PLDI, San Diego, California,
June 2003. ACM.

W. Blume and R. Eigenmann. Performance analysis of parallelizing compilers
on the Perfect Benchmarks programs. IEEE Transactions on Parallel and Dis-
tributed Systems, 3(6):643-656, November 1992.

Chandrasekhar Boyapati, Barbara Liskov, and Liuba Shrira. Ownership types
for object encapsulation. In Proc. 30th ACM POPL, 2003.

Lilian Burdy, Yoonsik Cheon, David Cok, Michael D. Ernst, Joe Kiniry, Gary T.
Leavens, K. Rustan M. Leino, and Erik Poll. An overview of JML tools and

applications. Technical Report NII-R0309, Computing Science Institute, Univ.
of Nijmegen, March 2003.

Bor-Yuh Evan Chang and K. Rustan M. Leino. Abstract interpretation with
alien expressions and heap structures. In VMCAI’05, January 2005.

David R. Cheriton and Michael E. Wolf. Extensions for multi-module records in
conventional programming languages. In Proceedings of the 14th ACM SIGACT-
SIGPLAN symposium on Principles of programming languages, pages 296-306.
ACM Press, 1987.

David G. Clarke, John M. Potter, and James Noble. Ownership types for flexible
alias protection. In Proc. 13th Annual ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications, 1998.

Lori Clarke and Debra Richardson. Symbolic evaluation methods for pro-
gram analysis. In Program Flow Analysis: Theory and Applications, chapter 9.
Prentice-Hall, Inc., 1981.

David R. Cok. Reasoning with specifications containing method calls and model
fields. Journal of Object Technology, 4(8):77-103, September—October 2005.

David R. Cok and Joseph R. Kiniry. ESC/Java2: Uniting ESC/Java and JML:
Progress and issues in building and using ESC/Java2 and a report on a case
study involving the use of ESC/Java2 to verify portions of an Internet voting tally
system. In CASSIS: Construction and Analysis of Safe, Secure and Interoperable
Smart devices, 2004.

P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In Conference Record of the Fifth Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages
84-97, Tucson, Arizona, 1978. ACM Press, New York, NY.

Patrick Cousot and Radhia Cousot. Systematic design of program analysis frame-
works. In Proc. 6th ACM POPL, pages 269-282, 1979.

158

21]

[22]

23]

24]

25]

26]

27]

28]

29]

[30]

[31]

32]

33]

[34]

CSK, editor. VDM++ Toolbox User Manual. VDMTools, 2005.

Bent Dandanell. Rigorous development using RAISE. In Proceedings of the
conference on Software for citical systems, pages 29-43. ACM Press, 1991.

Robert DeLine and Manuel Fahndrich. Enforcing high-level protocols in low-level
software. In Proc. ACM PLDI, 2001.

Robert DeLine and Manuel Fahndrich. Typestates for objects. In Proc. 18th
ECOOP, June 2004.

David Detlefs, Greg Nelson, and James B. Saxe. Simplify: A theorem prover for
program checking. Technical Report HPL-2003-148, HP Laboratories Palo Alto,
2003.

David L. Detlefs, K. Rustan M. Leino, Greg Nelson, and James B. Saxe. Ex-
tended static checking. Technical Report 159, COMPAQ Systems Research Cen-
ter, 1998.

Robert K. Dewar. The SETL programming language.
http://birch.eecs.lehigh.edu/~bacon /setlprog.ps.gz.

S. Drossopoulou, F. Damiani, M. Dezani-Ciancaglini, and P. Giannini. Fickle:
Dynamic object re-classification. In Proc. 15th ECOOP, LNCS 2072, pages 130—
149. Springer, 2001.

David Evans. Static detection of dynamic memory errors. In Proc. ACM PLDI,
1996.

Manuel Fahndrich and Robert DeLine. Adoption and focus: Practical linear
types for imperative programming. In Proc. ACM PLDI, 2002.

Manuel Fahndrich and K. Rustan M. Leino. Declaring and checking non-null
types in an object-oriented language. In Proceedings of the 18th ACM SIGPLAN
conference on Object-oriented programing, systems, languages, and applications,
pages 302-312. ACM Press, 2003.

Manuel Fahndrich and K. Rustan M. Leino. Heap monotonic typestates. In Inter-
national Workshop on Aliasing, Confinement and Ownership in object-oriented
programming (IWACO), 2003.

Stephen Fink, Eran Yahav, Nurit Dor, G. Ramalingam, and Emmanual Geay.
Effective typestate verification in the presence of aliasing. In Proc. International
Symposium on Software Testing and Analysis, 2006.

John Fitzgerald, Peter Gorm Larsen, Paul Mukherjee, Nico Plat, and Marcel
Verhoef. Validated Designs for Object-oriented Systems. Springer, New York,
2005.

159

135]

[36]

37]

138

[39]

[40]

[41]

42

143

|44]

[45]

|46]

147]

Cormac Flanagan, Rajeev Joshi, Xinming Ou, and James B. Saxe. Theorem
proving using lazy proof explication. In CAV, pages 355-367, 2003.

Cormac Flanagan, K. Rustan M. Leino, Mark Lilibridge, Greg Nelson, James B.
Saxe, and Raymie Stata. Extended Static Checking for Java. In Proc. ACM
PLDI, 2002.

Cormac Flanagan and James B. Saxe. Avoiding exponential explosion: Gener-
ating compact verification conditions. In Proc. 28th ACM POPL, 2001.

Pascal Fradet and Daniel Le Métayer. Shape types. In Proc. 24th ACM POPL,
1997.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-
terns: Elements of Reusable Object-Oriented Software. Addison-Wesley, Reading,
Mass., 1994.

Steve M. German. Automating proofs of the absence of common runtime errors.
In POPL ’78: Proceedings of the 5th ACM SIGPLAN-SIGACT symposium on
Principles of Programming Languages, pages 105-118, 1978.

Rakesh Ghiya and Laurie Hendren. Is it a tree, a DAG, or a cyclic graph? In
Proc. 23rd ACM POPL, 1996.

M. J. C. Gordon and T. F. Melham. Introduction to HOL, a theorem proving
environment for higher-order logic. Cambridge University Press, Cambridge,
England, 1993.

Bhargav S. Gulavani, Thomas A. Henzinger, Yamini Kannan, Aditya V. Nori,
and Sriram K. Rajamani. Synergy: A new algorithm for property checking. In
Proceedings of the 14th Annual Symposium on Foundations of Software Engi-
neering, Portland, Oregon, November 2006.

John Guttag and James Horning. Larch: Languages and Tools for Formal Spec-
ification. Springer-Verlag, 1993.

John Harrison. HOL Light: A tutorial introduction. In Mandayam Srivas and
Albert Camilleri, editors, Proceedings of the First International Conference on
Formal Methods in Computer-Aided Design (FMCAD’96), volume 1166 of LNCS,
pages 265-269. Springer-Verlag, 1996.

lain Houston and Steve King. CICS project report: Experiences and results
from the use of Z in IBM. In S. Prehn and W. J. Toetenel, editors, Proceedings
of VDM’91, volume 551 of Lecture Notes in Computer Science, pages 588-596.
Springer Verlag, 1991.

David Hovemeyer and Willian Pugh. Finding bugs is easy. In ACM SIGPLAN
Notices, volume 39, pages 92-106, December 2004.

160

48]

[49]

[50]

[51]

52

53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

62]

B. Jeannet, A. Loginov, T. Reps, and M. Sagiv. A relational approach to inter-
procedural shape analysis. In 11th SAS, 2004.

Cliff B. Jones. Systematic Software Development using VDM. Prentice Hall
International (UK) Ltd., 1986.

Matt Kaufmann, Panagiotis Manolios, and J Strother Moore, editors. Computer-
Aided Reasoning: ACL2 Case Studies. Kluwer Academic Publishers, 2000.

Nils Klarlund and Anders Mgller. MONA Version 1.4 User Manual. BRICS
Notes Series NS-01-1, Department of Computer Science, University of Aarhus,
January 2001.

Nils Klarlund, Anders Mgller, and Michael I. Schwartzbach. MONA implemen-
tation secrets. In Proc. 5th International Conference on Implementation and
Application of Automata. LNCS, 2000.

Dexter Kozen. Complexity of boolean algebras. Theoretical Computer Science,
10:221-247, 1980.

Viktor Kuncak, Patrick Lam, and Martin Rinard. Role analysis. In Proc. 29th
POPL, 2002.

Viktor Kuncak, Hai Huu Nguyen, and Martin Rinard. An algorithm for decid-
ing BAPA: Boolean Algebra with Presburger Arithmetic. In 20th International
Conference on Automated Deduction, CADE-20, Tallinn, Estonia, July 2005.

Shuvendu K. Lahiri and Shaz Qadeer. Verifying properties of well-founded linked
lists. In POPL06, 2006.

Patrick Lam. A general framework for the flow analysis of concurrent programs.
Master’s thesis, McGill University, 2000.

Patrick Lam, Viktor Kuncak, and Martin Rinard. Generalized typestate checking
using set interfaces and pluggable analyses. SIGPLAN Notices, 39:46-55, March
2004.

Patrick Lam, Viktor Kuncak, and Martin Rinard. Generalized typestate checking
for data structure consistency. In 6th International Conference on Verification,
Model Checking and Abstract Interpretation, 2005.

Patrick Lam, Viktor Kuncak, and Martin Rinard. Hob: A tool for verifying data
structure consistency. In 14th International Conference on Compiler Construc-
tion (tool demo), April 2005.

Patrick Lam and Martin Rinard. A type system and analysis for the automatic
extraction and enforcement of design information. In Proc. 17th ECOOP, 2003.

Peter Gorm Larsen and John Fitzgerald. VDM information: Examples reposi-
tory, November 2000.

161

63]
[64]

[65]

|66]

167]

68]

[69]

[70]

[71]

[72]

73]

[74]

[75]

K. Rustan M. Leino. Efficient weakest preconditions. KRML114a, 2003.

Daniel Leivant. Higher order logic. In D. M. Gabbay, C. J. Hogger, and J. A.
Robinson, editors, Handbook of Logic in Artificial Intelligence and Logic Pro-
gramming, Volume 2: Deduction Methodologies, pages 229-321. Clarendon Press,
Oxford, 1994.

T. Lev-Ami, N. Immerman, T. Reps, M. Sagiv, S. Srivastava, and G. Yorsh.
Simulating reachability using first-order logic with applications to verification of
linked data structures. In CADE-20, 2005.

David C. Luckham, Steven M. German, Friedrich W. von Henke, Richard A.
Karp, P. W. Milne, Derek C. Oppen, Wolfgang Polak, and William L. Scherlis.
Stanford Pascal Verifier user manual. Technical Report CS-TR-79-731, Stanford
University, 1979.

David C. Luckham and Norihisa Suzuki. Verification of array, record and pointer

operations in Pascal. Transactions on Programming Languages and Systems,
1(2):226-244, October 1979.

David C. Luckham and F.W. von Henke. Program verification at Stanford.
Software Engineering Notes, 6(3):25-27, July 1981.

Roman Manevich, G. Ramalingam, John Field, Deepak Goyal, and Mooly Sagiv.
Compactly representing first-order structures for static analysis. In Proc. 9th
International Static Analysis Symposium, pages 196-212, 2002.

Roman Manevich, Mooly Sagiv, G. Ramalingam, and John Field. Partially dis-
junctive heap abstraction. In Roberto Giacobazzi, editor, Proceedings of the 11th
International Symposium, SAS 2004, volume 3148 of Lecture Notes in Computer
Science, pages 265-279. Springer, August 2004.

Anders Moller and Michael I. Schwartzbach. The Pointer Assertion Logic Engine.
In Programming Language Design and Implementation, 2001.

J Strother Moore. Proving theorems about Java and the JVM with ACL2. In
Models, Algebras and Logic of Engineering Software, pages 227-290. 10S Press,
2003.

Olaf Miiller, Tobias Nipkow, David von Oheimb, and Oskar Slotosch. HOLCF
= HOL + LCF. Journal of Functional Programming, 9:191-223, 1999.

Gail C. Murphy, David Notkin, and Kevin Sullivan. Software reflexion models:
Bridging the gap between source and high-level models. In Gail E. Kaiser, editor,
Proceedings of the 3rd ACM SIGSOFT symposium on Foundations of software
engineering, pages 1828, 1995.

Greg Nelson. Techniques for program verification. Technical report, XEROX
Palo Alto Research Center, 1981.

162

[76]

7]

78]

79]
80]

81

82

[83]

[84]

185]

[86]

187]

88

[89]
[90]

Greg Nelson. Verifying reachability invariants of linked structures. In POPL,
1983.

Jeremy W. Nimmer and Michael D. Ernst. Static verification of dynamically
detected program invariants: Integrating Daikon and ESC/Java. In Proceedings
of RV°01, First Workshop on Runtime Verification, Paris, France, July 23, 2001.

Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL: A
Proof Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer-Verlag,
2002.

Object Management Group (OMG). OCL 2.0 specification, 2005.

D. L. Parnas. A technique for software module specification with examples.
Communications of the ACM, 15(5):330-336, May 1972.

Lawrence C. Paulson. Isabelle: A Generic Theorem Prover. Number 828 in
LNCS. Springer-Verlag, 1994.

Martin C. Rinard. The Design, Implementation and FEvaluation of Jade, a
Portable, Implicitly Parallel Programming Language. PhD thesis, Stanford Uni-
versity, 1994.

James Rumbaugh, Ivar Jacobson, and Grady Booch. The Unified Modelling
Language Reference Manual. Addison-Wesley, Reading, Mass., 1999.

Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Parametric shape analysis
via 3-valued logic. ACM TOPLAS, 24(3):217-298, 2002.

Mohlalefi Sefika, Aamod Sane, and Roy H. Campbell. Monitoring compliance of
a software system with its high-level design models. In ICSE’96, pages 387-396,
1996.

Micha Sharir and Amir Pnueli. Two approaches to interprocedural data flow

analysis problems. In Program Flow Analysis: Theory and Applications. Prentice-
Hall, Inc., 1981.

Abraham Silberschatz and Zvi Kedem. Consistency in hierarchical database
systems. Journal of the ACM, 27(1):72-80, January 1980.

Thoralf Skolem. Untersuchungen iiber die Axiome des Klassenkalkiils and iiber
“Produktations- und Summationsprobleme”, welche gewisse Klassen von Aus-
sagen betreffen. Skrifter utgit av Vidnskapsselskapet i Kristiania, 1. klasse, no.
3, Oslo, 1919.

J. M. Spivey. The Z Notation: A Reference Manual. Prentice-Hall, Inc., 1992.

Robert E. Strom and Daniel M. Yellin. Extending typestate checking using
conditional liveness analysis. IEEE Transactions on Software Engineering, May
1993.

163

[91] Robert E. Strom and Shaula Yemini. Typestate: A programming language con-
cept for enhancing software reliability. IEEE TSE, January 1986.

[92] A. Stump, C. Barrett, and D. Dill. CVC: a Cooperating Validity Checker. In
14th International Conference on Computer-Aided Verification, 2002.

[93] Thomas Wies, Viktor Kuncak, Patrick Lam, Andreas Podelski, and Martin Ri-
nard. Field constraint analysis. In Proc. 7th International Conference on Veri-
fication, Model Checking and Abstract Interpretation, 2006.

[94] Jim Woodcock and Jim Davies. Using Z. Prentice-Hall, Inc., 1996.

[95] Eran Yahav and Ganesan Ramalingam. Verifying safety properties using sepa-
ration and heterogeneous abstractions. In Proc. ACM PLDI, 2004.

[96] Calogero G. Zarba. The Combination Problem in Automated Reasoning. PhD
thesis, Stanford University, 2004.

[97] Calogero G. Zarba. A quantifier elimination algorithm for a fragment of set
theory involving the cardinality operator. In 18th International Workshop on
Unification, 2004.

[98] Karen Zee. Personal communication, 2006.

[99] Karen Zee, Patrick Lam, Viktor Kuncak, and Martin Rinard. Combining theo-
rem proving with static analysis for data structure consistency. In International
Workshop on Software Verification and Validation (SVV 2004), Seattle, Novem-
ber 2004.

164

	Introduction
	Scalability and Diversity
	Approach Based on Abstract Set Specifications
	Two novel specification-level constructs

	Verifying Program Properties
	Rationale
	Results
	Limitations
	Contributions
	Structure

	Hob Implementation Language
	Example: Doubly-Linked List Implementation
	Explicit module definitions
	Static module instantiation
	Type and variable declarations
	Procedures
	Executing Hob programs

	Implementation Language Grammar
	Operational Semantics
	Discussion
	Implications of encapsulating fields
	Implications of static instantiation

	Hob Specification Language
	Example: Doubly-Linked List Specification
	Specification module definitions and instantiations
	Specification variable definitions
	Procedure definitions

	Example: Global Properties (Scopes)
	A global invariant
	Specifying global invariants
	Verifying global invariants
	Specification aggregation

	Example: Global Properties (Defaults)
	Specification Language Grammar
	Core specification language
	Scopes
	Defaults

	Discussion
	Scopes and specification aggregation
	Advantages and disadvantages of defaults
	Implications of using a set specification language
	Comparison: Static analysis and testing

	Hob Abstraction Languages
	Analysis Approach
	Specifying Hob abstraction functions
	Common abstraction module grammar

	Flags Abstraction Module Language
	Example: Flag abstraction module
	Loop invariant inference
	Using the flag analysis plugin

	Bohne Abstraction Module Language
	Example: Bohne abstraction module
	Using the Bohne analysis plugin

	Theorem Proving Abstraction Module Language
	Example: Theorem proving abstraction module
	Using the theorem proving analysis plugin
	Expressive power of the theorem proving plugin

	How Abstraction Modules Enable Checking of Global Properties

	Ensuring Consistency Properties
	Analysis Plugin Responsibilities
	Developing New Analysis Plugins
	Hob Analysis Driver

	Flags Analysis Plugin
	Flags Analysis Example
	Flags Analysis Algorithm
	Incorporation
	Transition Relations
	Verifying Implication of Dataflow Facts
	Loop Invariant Inference
	Boolean Algebra Formula Transformations
	Evaluating Formula Optimization Impact

	Experience
	Data Structure Implementations
	Tree data structure
	Stack data structure

	Water
	HTTP Server
	Minesweeper
	Implications of Modular Analysis
	Summary and Reflections

	Related Work
	Specification Languages
	Expressing design information

	Analysis Technologies and Verification Systems
	Combining Static Analyses

	Conclusion
	Future Work
	Implications

