
The Hob System for Verifying
Generalized Data Structure Consistency

Properties

Patrick Lam, Viktor Kuncak, Karen Zee,
Martin Rinard

MIT CSAIL
Massachusetts Institute of Technology

Cambridge, MA 02139

Context
Software System

Composed of modules, with:
• Encapsulated data

structures
• Exported procedures
• Code

Goal

Verify System Data Structure Consistency
• Within each module

(e.next.prev = e)
• Across multiple modules

(no object in both
 list and array)

1

Challenge 1: Scalability

2

Challenge 2: Diversity

Solution: Modular Analysis

Outline

• Running Example

• Specifying Program Properties

• Linking Implementations and Specifications

• Establishing Local Program Properties

• Establishing Global Program Properties

• Experience

• Related Work & Conclusion

Process Scheduler Example

ins(p)

rem(p)

Idle Process Module Running Process Module

add(p)

del()
empty()

doubly-linked list array

Consistency Properties

ins(p)

rem(p)

Idle Process Module Running Process Module

add(p)

del()
empty()

No process is simultaneously idle and running

p.next.prev = p,

p.prev.next = p,

no cycles

elements indexed properly

no duplicates

8

7

Idle Process Module Implementation

impl module idle {

reference root : Process;

format Process { next : Process; prev : Process; }

Format statements declare object fields.

next

prev

next next next

prev prev prev

3

On Formats

next

prev

next next next

prev prev prev

keykey key key key
5 2 4 18 9

Idle Process Module Implementation

impl module idle {
reference root : Process;
format Process { next : Process; prev : Process; }

proc add(p : Process) {
 if (root == null) {
 root = p; p.prev = null; p.next = null;
 } else {
 p.next = root; root.prev = p; p.prev = null; root = p;
 }
}

proc del() returns p : Process; { … }
proc empty() returns b : bool; { … }

}

3

Outline

• Running Example

• Specifying Program Properties

• Linking Implementations and Specifications

• Establishing Local Program Properties

• Establishing Global Program Properties

• Experience

• Related Work & Conclusion

What Do We Want to Verify?

On entry to and exit from add(p) and del()

• ∀ p in root.next*: p.next.prev = p

• ∀ p in root.next*: p.prev.next = p

• acyclic root.next*

Whenever calling add(p), p∉root.next*

Calls to del() return some p such that

• p∈root.next* before call

• p∉root.next* after call

No process simultaneously running and idle

invariants

usage
constraints

global
conditions

7

8

7

Detailed analysis, works with model of heap:

p.next = root;

root.prev = p;

Should be able to use assume/guarantee
reasoning to verify consistency conditions

Apply Shape Analysis

rootp rootp

rootp rootp

rootp rootp

Detailed analysis, works with model of heap:

p.next = root;

root.prev = p;

Should be able to use assume/guarantee
reasoning to verify consistency conditions

Apply Shape Analysis

rootp rootp

rootp rootp

rootp rootp

Detailed analysis, works with model of heap:

p.next = root;

root.prev = p;

Should be able to use assume/guarantee
reasoning to verify consistency conditions

Apply Shape Analysis

rootp rootp

rootp rootp

rootp rootp

Two Problems

Preconditions outside module
Whenever calling add(p), p∉root.next*

Infeasible to use shape analysis for entire program

Properties involving multiple modules
No process simultaneously running and idle

Array and list analyses must exchange information

But use dramatically different abstractions

The Solution: A Layered Abstraction

linked list impl array impl

set specification language

abstractionabstraction

4

Module Components

Implementation
• Encapsulated data structures
• Procedure implementations

Interface - requires, ensures, modifies clauses for
each exported procedure

Abstraction
• Which analysis to apply to the implementation
• Internal data structure consistency properties
• Connection between

• Encapsulated data structures in module
• Shared interoperation abstraction

4

5

3

Let’s see what it is like to
develop a module using this
approach!

Interface
spec module idle {
 …

4

Interface
spec module idle {

specvar Idle : Process set;

 …

Modules export abstract sets of objects, which:

• are simply a specification mechanism

• do not exist when program runs

• characterize how objects participate in
module’s encapsulated data structures

• used to define module’s interface

4

Interface
spec module idle {

specvar Idle : Process set;

proc add(p : Process)

requires (p ∉ Idle) ∧ p ≠ null modifies Idle

ensures Idle’ = Idle ∪ {p};

Each exported procedure has requires, modifies,
and ensures clauses

Use (quantified) boolean algebra of sets

4

Boolean Algebra of Sets

SE ::= ∅, p, p', S, S’, S1 ∩ S2, S1 ∪ S2, S1 – S2

B ::= SE1 = SE2, SE1 ⊆ SE2,

p ∈ SE, p ∉ SE, p = null, p ≠ null,

|SE| = k, |SE| ≥ k, |SE| ≤ k,

∀S.B, ∃S.B,

B1 ∧ B2, B1 ∨ B2, ¬B,

 b, b’

Satisfiability, Entailment Decidable (Skolem 1919)

Interface
spec module idle {

specvar Idle : Process set;

proc add(p : Process)

requires (p ∉ Idle) ∧ p ≠ null modifies Idle

ensures Idle’ = Idle ∪ {p};

proc del() returns p : Process

requires |Idle| ≥ 1 modifies Idle

ensures Idle’ = Idle – {p} ∧ p ∈ Idle ∧ p ≠ null;

• Can also have cardinality constraints on sets

4

Interface
spec module idle {

specvar Idle : Process set;
proc add(p : Process)

requires (p ∉ Idle) ∧ p ≠ null modifies Idle

ensures Idle’ = Idle ∪ {p};

proc del() returns p : Process

requires |Idle| ≥ 1 modifies Idle

ensures Idle’ = Idle – {p} ∧ p ∈ Idle ∧ p ≠ null;

proc empty() returns b : bool

ensures b ⇔ |Idle| = 0;

}

4

Benefits of a Set Spec Language (1)

Capture important data structure aspects

Can capture interface requirements

Benefits of a Set Spec Language (2)

Membership in orthogonal sets supports

• Useful polymorphism

• Separation of concerns

Provide productive perspective on program

• Sets characterize changing object roles

• Set membership changes reflect role
changes

Benefits of a Set Spec Language (3)

Promote verified connection between

design (object model) and implementation

Outline

• Running Example

• Specifying Program Properties

• Linking Implementations and Specifications

• Establishing Local Program Properties

• Establishing Global Program Properties

• Experience

• Related Work & Conclusion

Connection Between Sets (Interface) and
Data Structures (Implementation)

abst module idle { analysis PALE;

• analysis PALE statement tells system to use the
PALE analysis plugin to analyze idle module

• In general, can use whatever analysis you want

• System comes with several

• PALE is a shape analysis from Denmark
(Anders Moeller and Michael Schwartzbach)

• Also have array and field analysis plugins

• Or you can even implement your own

65

Connection Between Sets (Interface) and
Data Structures (Implementation)

abst module idle { analysis PALE;

Idle = { p : Process | root<next*>p};

• This definition states that the Idle set contains all
of the objects in root.next*

• Precise syntax of definition depends on plugin

• Abstraction modules use values in data structure
to define meaning of exported abstract sets

Connection Between Sets (Interface) and
Data Structures (Implementation)

abst module idle { analysis PALE;

Idle = { p : Process | root<next*>p};

invariant type L = {

data next : L;

• PALE analysis works with data structures that
have a backbone and routing pointers

• data next : L says that the backbone consists
of the next references of the objects

next next

Connection Between Sets (Interface) and
Data Structures (Implementation)

abst module idle { analysis PALE;

Idle = { p : Process | root<next*>p};

invariant type L = {

data next : L;

pointer prev : L [this^L.next = {prev}];

• prev is a routing pointer in the data structure

• prev is the inverse of next

• So p.next.prev = p.prev.next = p

next next

prev prev

Connection Between Sets (Interface) and
Data Structures (Implementation)

abst module idle { analysis PALE;

Idle = { p : Process | root<next*>p};

invariant type L = {

data next : L;

pointer prev : L [this^L.next = {prev}];

};

invariant data root : L;

}

• root is the root of a data structure of L’s

next next

prev prev

root

6

5

Outline

• Running Example

• Specifying Program Properties

• Linking Implementations and Specifications

• Establishing Local Program Properties

PALE, Flag, Theorem Proving Plugins

• Establishing Global Program Properties

• Experience

• Related Work & Conclusion

What Happens Next?

implementation

 abstract set

abstraction
function

acyclic root.next*

proc add()

concrete state

acyclic root.next*

interface

proc add()
requires p not in S
modifies S
ensures S’ = S ∪ {p}

What Happens Next?

implementation

proc add()

translated interface
proc add()

requires p not in root<next*>
ensures root<next*>’ = root<next*> ∪ {p} ∧ frame

analysis plugin

acyclic root.next*

invariant

other set specifications
module Scheduler {
 proc suspend() requires s in S;
 proc resume() …
}

6 7

8

Plugins in Hob

• Shape Analysis Plugin

Invokes PALE shape analysis tool to assign set
membership according to heap structure.

• Flag Analysis Plugin

Manipulates boolean algebra formulas only; more
scalable than shape analysis.

• Theorem Proving Plugin
Invokes Isabelle interactive theorem prover to

establish arbitrary statements about program
execution.

6

Some modules are really simple

Coordination Modules

• Coordinate actions of other modules
• Maintain references to objects
• Pass objects as parameters to other

modules
• Get references back as return values

• No encapsulated data structures
• No abstraction functions
• Just interfaces and implementations

Example: Scheduler module coordinates Idle and
Running process modules

6

Example Coordination Code
p1 = new Process();

p2 = new Process();

p3 = new Process();

add(p1);

add(p2);

add(p3);

x = del();

y = del();

What Does Set Analysis Know?
p1 = new Process();

p2 = new Process();

p3 = new Process();

add(p1);

add(p2);

add(p3);

x = del();

y = del();

Known Facts

• p1 ≠ p2

• p1 ≠ p3

• p2 ≠ p3

• x ≠ y

• |Idle|=1

Flag Plugin

• Extension of Set Analysis plugin

• Set membership given by values of primitive fields

• Example sets:
Idle = { x : Process | x.status = 1 }
Running = { x : Process | x.status = 2 }

• Also works for boolean flags

• Analysis

• Same abstract set machinery as Set Analysis plugin

• Also update sets when flags change
 x.status = 2:

Idle’ = Idle – x

Running’ = Running ∪ x

6

Analyzing Coordination Modules

Hob's Flag Analysis plugin manipulates set
specifications to ensure needed preconditions
and to guarantee postconditions

More details in VMCAI '05,

Lam, Kuncak and Rinard. “Verifying Set
Interfaces based on Object Field Values”.

Some data structure invariants
are even more complicated!

Priority Queue Implemented as an Array

• Complete binary tree up to last row

• Implementing tree in array

• parent(i) = i/2

• left(i) = 2i

• right(i) = 2i + 1

c

s

Applying Theorem Proving

abst module SuspendedQueue {
 use plugin “vcgen”;
 InQueue = { x : Process | exists j. 1 ≤ j & j ≤ s & x = c[j] };

 invariant “0 ≤ s”;
 invariant “forall i. (forall j.
 ((1 ≤ i) & (i ≤ s) & (1 ≤ j) & (j ≤ s) & (c[i] = c[j])) => i = j”

}

impl module SuspendedQueue {

 format Process { priority : int };
 var c: Process[];
 var s: int;

 proc insert(p: Process; priority: int) { ... }

 …

}

spec module SuspendedQueue {

 specvar InQueue : Process set;

proc insert(p: Process; priority: int)

 requires not (p in InQueue)

 modifies InQueue

 ensures InQueue’ = InQueue + p;

 …

}

6

Abstracting Arrays as Sets

Theorem Proving Plugin accepts arbitrary
Isabelle formulas as set definitions:

InQueue = { x : Process | exists j. 1 ≤ j & j ≤ s & x = c[j] };

We generate proof obligations from the
implementation code.

How well does this work?

• insert example

• Generates 11 sequents

• Of these:

• Isabelle discharges 5 automatically

• We proved 6 manually
• Shortest proof: 1 line (introducing an

arithmetic lemma)
• Longest proof: 38 lines
• Average proof length: 14.2 lines

For more on Theorem Proving...

... see our SVV 2004 paper,

Zee, Lam, Kuncak and Rinard. “Combining
Theorem Proving with Static Analysis for
Data Structure Consistency”.

Outline

• Running Example

• Specifying Program Properties

• Linking Implementations and Specifications

• Establishing Local Program Properties

• Establishing Global Program Properties

• Experience

• Related Work & Conclusion

Moving to More General Properties

So far, we've discussed intra-module properties:

• linked list consistency properties

• array data structure properties

These properties serve to establish set abstractions.

Can we productively use the set abstraction?

8

Using and Improving Hob’s Spec
Language

Hob uses sets to state cross-module properties:

• set disjointness properties

• more general relations between set contents

Hob also includes scopes and defaults, which allow
developers to write better (more concise) module
specifications.

9 10

Cross-Module Properties

Stated using common specification abstraction, e.g.:

Running ∩ Idle = ∅

Such invariants cross-cut multiple modules and hold
at many different program points.

In principle, could manually conjoin these invariants to
all appropriate points.

9

• Hierarchy of modules

• Standard approach:

• Weave into preconditions

 through program

• Weave into call sites where

 they are needed

Result is that specifications aggregate, moving up
the hierarchy

Specification Aggregation

Process
Manager

Scheduler

Resource
Manager

Standard Usage Scenario

Leaf Modules Encapsulate Data Structures

Modules
Coordinate

Data
Structure

Operations

Even more aggregation!

Example Scope
scope S {

 invariant Running ∩ Idle = ∅;
modules scheduler, idle, running;

export scheduler;

}

• Property holds except within modules in scope

• Sets of invariant included in modules in scope

• Outside scope

• Use invariants to prove other properties

• Invoke procedures in exported modules only

9

Scopes in Example
Scheduler Module

empty()
ins(p)

rem(p)

Idle Process Module Running Process Module

add(p)

del()

suspend(p)
resume(p)

• Running ∩ Idle = ∅ may be violated anywhere within
Scheduler, Idle Process, or Running Process modules

• Scheduler must coordinate operations on Idle Process
and Running Process Modules

• Otherwise property may become violated outside scope

• Concept of internal and exported modules in a scope

Scopes and Analysis

System conjoins property to preconditions and
postconditions of exported modules

Analysis verifies procedures preserve property

Scheduler Module

empty()
ins(p)

rem(p)

add(p)

del()

suspend(p)
resume(p) Running ∩ Idle = ∅

Why Scope Invariants Work

Hob verifies scope invariants:

• in program’s initial state, and

• whenever exiting the scope.

Truth or falsity of the invariant never changes
outside the scope.

Hob may therefore assume that the invariant
holds upon entry to the scope.

Guards

Consider an array-based data structure.

Must allocate the array before calling data
structure operations!

specvar Init : bool;
proc init() ensures Init';
proc add(p) requires Init ... ;

c

s

10

Guards

Consider an array-based data structure.

Must allocate the array before calling data
structure operations!

specvar Init : bool;
proc init() ensures Init';
proc add(p) requires Init ... ;

c

s

explicit initialization constraint

Applying Defaults

proc init()

ensures Init';
proc add(p)
 requires Init & p != null
 ensures …;
proc del(p)
 requires Init & …
 ensures ….;

default I : Init;

proc init()

 suspends I

 ensures Init';

proc add(p)

 requires p != null

 ensures … ;

proc del(p)

 requires …

 ensures …;

Hob automatically conjoins defaults to
appropriate ensures and requires clauses:

Applying Defaults Appropriately

Developers may specify a pointcut for the default:

default padRead(q) :

pre(all(scope C)) =

 (card(q) = 1) & (q in M.Reading)

10

Default Pointcut Language

P ::= P1 – P2 | P1 & P2 | P1|P2 | not P

 | pre S | post S | prepost S

S ::= S1 – S2 | S1 & S2 | S1|S2 | not S

| proc pn(tn1, …, tnk) returns tnr

| exports (module ms) | exports (scope ss)

| local (model ms) | local (scope ss)

| all (module ms) | all (scope ss)

| all

Defaults Improve Specifications

• Convert errors of omission (i.e. missing
clauses) into errors of commission.

• Allow developers to write more concise
specifications focussing on locally important
properties.

For more on Scopes and Defaults

See our AOSD '05 article:

Lam, Kuncak, and Rinard. “Cross-Cutting
Techniques in Program Specification and
Analysis.”

Outline

• Running Example

• Specifying Program Properties

• Linking Implementations and Specifications

• Establishing Local Program Properties

• Establishing Global Program Properties

• Experience

• Related Work & Conclusion

Hob Framework & Benchmarks

• Implemented Hob System components:
• Interpreter
• Analysis framework
• Pluggable analyses

• Set/flag analysis
• PALE analysis interface
• Array analysis (VCs discharged via Isabelle)

• Modules and programs
• Data structures
• Minesweeper, Water

11

Data Structures

• Lists (doubly and singly linked)

• List-based data structures

(stacks, sets, queues, priority queues)

• Array data structure (set)

Minesweeper

Minesweeper
• 750 lines of code, 236 lines of specification
• Full graphical interface (model/view/controller)
• Data structure consistency properties

• Lists, arrays of board cells are consistent
• No duplicates; pointer consistency properties

• Board cell state correlations
• All cells are exposed or hidden
• No exposed cell has a mine unless game over

• Correlations between state and actions
• Cells initialized before game starts
• Can’t reveal entire board until game over
• Iterators used correctly

Water
• Time step computation, simulates liquid water

• Computation consists of sequence of steps

• Predict, correct, boundary box enforcement

• Inter and intra molecular force calculations

• 2000 lines of code, 500 lines of specification

• Typestate properties

• Simulation parameters properly initialized

• Atoms are in correct states for each step

• Molecules are in correct states for each step

• State correlations – simulation, atoms, molecules

Set Abstraction Worked Great

Captured data structure participation in a powerful,
intuitive way

• Individual data structure consistency

• Correlations between data structures

Powerful interface specification language

• Procedure call sequencing requirements

• Object use requirements

• Connections between state and actions

Able to deploy multiple analyses productively

(the first time anyone has been able to do this)

Framework Made Everything Better

Better design
• Sets helped us conceptualize design
• Enabled us to identify and verify high-level

properties
Better implementation

• Better structure
• Easier to understand
• Fewer errors

Guaranteed correspondence between
implementation and (aspects of) design

Outline

• Running Example

• Specifying Program Properties

• Linking Implementations and Specifications

• Establishing Local Program Properties

• Establishing Global Program Properties

• Experience

• Related Work & Conclusion

Related Work
Shape analyses

• Moeller, Schwartzbach PLDI 2001
• Ghiya, Hendren POPL 1996

Typestate
• Strom, Yellin IEEE TOSEM 1986
• DeLine, Fahndrich ECOOP 2004, PLDI

2001
Theorem provers

• Isabelle, Athena, HOL, PVS, ACL2
Program specification

• Eiffel, JML, Spec#
Verifiers – Program Verifier, Stanford Pascal

Verifier, Larch, ESC/Modula-3/Java, Boogie

Primary Contribution

Hob framework for modular program analysis:

• Abstract set specification language

• Scope invariants; defaults and guards

Enables multiple (very precise and unscalable)
analyses to interoperate

Verifies data structure consistency properties

First system to combine high-level properties
from markedly different analyses

12

http://cag.csail.mit.edu/~plam/hob

Outcalls

• So far, all calls enter and exit scopes from top

• What about outcalls from scope?

Scope

Invariant Issue
• Invariant may be violated inside scope

• If callee uses invariant (transitively), must
reestablish invariant before call

• If callee does not use invariant (transitively),
should be able to call with invariant violated

• Our approximation: restore invariant before
reentrant outcalls

Scope

Potential policy variants

• Could have outcalls without invariant
restoration when appropriate

• A procedure can declare invariants it uses

• If so, can only call procedures that use at
most these invariants

• If an outcalled procedure does not use
invariant, do not need to restore it

