
Are Ownership Types Reaching the World Yet?

Patrick Lam
University of Waterloo

@uWaterlooSE
https://patricklam.ca

July 2016

1 / 36

Wrigstad & Clarke, IWACO ’11:
“Is the World Ready for Ownership Types?
Is Ownership Types Ready for the World?”

2 / 36

Outline

1 Goals of Ownership Types
2 Ownership Types in the World:

Rust
Other Languages

3 / 36

Why Ownership Types?

Let’s motivate with a linked list.

next next next next

Clearly, next field should be private:

class Node {
private :

i n t data ;
Node ∗ next ;

} ;

4 / 36

Are we good?

i.e. protected against external changes?

class Node {
private :

i n t data ;
Node ∗ next ;

} ;

We like to think so.
Java: absolutely.
C/C++: yes, with caveats;

good enough for most.

5 / 36

OK, so why Ownership Types?

class C {
private :

s td : : vector<int> i tems ;
}

If we expose the items vector,
then the recipient can change it via an alias!

6 / 36

Problem: Uncontrolled aliasing is
hard to deal with.

Solution: Restrict aliasing!

7 / 36

Goals of Ownership Types

“Bugs due to unintentional aliases are
notoriously difficult to track down.”

“Dealing with aliasing. . .
a key research issue for OOP.”

Why? “shared mutable state” & “stable object identity”.

— from “Ownership Types: A Survey”, Clarke et al.

8 / 36

What Ownership Types Do

Enable developers to enforce aliasing constraints between
components.

root driver

car

engine

x

(Credit: “Flexible Alias Protection” by Clarke, Potter and Noble)

9 / 36

Guarantees Provided by Ownership Types

Topological Organization:
structure heap into separate sub-heaps,
each of which has unity of purpose.

Encapsulation:
prevent non-local changes to shared state,
by controlling sharing & making access permissions visible.

10 / 36

Applications of Ownership Types

visualization & understanding
memory management
concurrency control
verification
security

11 / 36

Ownership Types in the World: Rust

Rust manual, 2016:

“This is the first of three sections presenting Rust’s ownership
system. This is one of Rust’s most distinct and compelling
features. . .

12 / 36

By Salisapants (Own work) [CC BY-SA 4.0], via Wikimedia Commons

“The United States and Great Britain are two
countries separated by a common language.”

— apocryphally, George Bernard Shaw

By Luis2492 - Own work, GFDL, https://commons.wikimedia.org/w/index.php?curid=3947321

13 / 36

Applications

Clarke, Potter & Noble,
“Ownership Types for Flexible Alias
Protection.”

Representation containment;
owners-as-dominators.

root driver

car

engine

x

Rust:

Memory safety
and management

Concurrency control

14 / 36

Rust’s Safety Guarantees

No dangling pointers, via ownership types.
no resource leaks
no use-after-free
no reads of uninitialized values

No violation of declared lock policies.
(consequence of single-ownership)

No null pointer dereferences.

No buffer overruns.

15 / 36

Key Rust techniques

single ownership of resources

borrowing

immutable objects

Guarantees verified at compile time.

16 / 36

Example: Rust Enforces Single Ownership

fn main () {
l e t s = vec ! [1 , 2 , 3] ;
l e t r = s ;
/ / s no longer owns the vec
p r i n t l n ! (” s [0] i s {} ” , s [0]) ;

}

The compiler refuses to compile this:
move . rs : 4 : 2 6 : 4:27 e r r o r : use of moved value : ‘ s ‘ [E0382]
move . rs :4 p r i n t l n ! (” s [0] i s {} ” , s [0]) ;

17 / 36

Borrowing read-only references

fn borrowing (b : &Vec<i32 >) {
p r i n t l n ! (” b [0] i s {} ” , b [0]) ;

}

fn main () {
l e t s = vec ! [1 , 2 , 3] ;
borrowing (&s) ;

}

Multiple active read-only references can exist.

While borrowed references alive, can’t do writes.

18 / 36

Borrowing mutable references

fn borrowing mutably (b : &mut Vec<i32 >)
{ b [0] = 2 ; }

fn main () {
l e t mut s = vec ! [1 , 2 , 3] ;
{

l e t t = &mut s ;
borrowing mutably (t) ;

}
p r i n t l n ! (” s [0] i s {} ” , s [0]) ;

}

A unique borrowed read-write reference can exist.

That reference has exclusive access to resource.

19 / 36

Implications of Single-Ownership System

Heap is a tree—no cross-references.

We get:
topological organization (heap is structured!)
encapsulation (no non-local changes!)

Resource management:
free when single owner goes out of scope.

Can implement a singly-linked list.

20 / 36

Limitations of Single-Ownership System

Can’t express this:

root driver

car

engine

x

21 / 36

Beyond Limitations

Two main options:

RefCell (uniqueness checks at runtime).

Unsafe raw pointers.

22 / 36

Rust’s Applications of Ownership Types

visualization & understanding
memory management
concurrency control
verification
security

23 / 36

What Rust doesn’t do

allow declaration of explicit owners / contexts;

support/enforce software architecture constraints;

allow multiple ownership.

24 / 36

Safe Rust and single/multiple ownership

Rust enforces single ownership of resources;
ownership can be borrowed (but must be returned).

Whenever multiple references exist,
no writes can occur.

25 / 36

How does Rust do:
By Salisapants (Own work) [CC BY-SA 4.0], via Wikimedia Commons

topological organization?
not necessarily organized, but no uncontrolled writes.
no way to specify the organization.

encapsulation?
yes, single-ownership,

plus immutable-by-default & marked mutable refs

By Luis2492 - Own work, GFDL, https://commons.wikimedia.org/w/index.php?curid=3947321

26 / 36

Ownership Types in the World: C++

C++11 includes features similar to Rust’s.
RAII
unique ptr
shared ptr

Unlike in Rust, smart pointers must be explicitly used.

27 / 36

C++: Immutability

Ownership types help deal with shared mutable state.

Prevention?
C++ provides const keyword.

Jon Eyolfson and I have studied const in C++ programs.

“C++ const and Immutability: An Empirical Study of
Writes-Through-const”

ECOOP, Wednesday, 13:45.

28 / 36

C++: Resource Allocation Is Initialization (RAII)

Rust’s resource management
is a generalization of RAII from C++.

void f i l e o p e r a t i o n () {
std : : ofstream f i l e (‘ ‘ example ’ ’) ;
f i l e << ‘ ‘ h i ’ ’ << std : : endl ;
/ / no e x p l i c i t c lose needed

}

When “file” goes out of scope, destructor closes.

29 / 36

Problems with RAII

RAII can’t figure out when to free here:

using namespace std ;
void s t r i n g o p e r a t i o n c o p y () {

s t r i n g ∗ s t r 1 = new s t r i n g (‘ ‘ ! ’ ’) ;
s t r i n g ∗ s t r 2 = s t r 1 ;
cout << s t r 1 << endl ; / / (not al lowed i n Rust)
cout << s t r 2 << endl ;

}

Reason: not clear who is the string’s owner.

==27738== 32 bytes i n 1 blocks are d e f i n i t e l y l o s t i n loss record 1 of 2
==27738== at 0x4C2A23F : opera tor new(unsigned long) (vg rep lace ma l loc . c :334)
==27738== by 0x400F02 : s t r i n g o p e r a t i o n c o p y () (examples . cpp : 7)
==27738== by 0x4011C8 : main (examples . cpp :29)

30 / 36

C++ RAII workaround 1: unique ptr

using namespace std ;
void s t r i n g o p e r a t i o n u n i q () {

auto s t r 1 = make unique<s t r i n g > (‘ ‘ ! ’ ’) ;
auto s t r 2 = move(s t r 1) ;
cout << ∗ s t r 1 ; / / (s e g f a u l t : n u l l p t r dere f)
cout << ∗ s t r 2 ;

}

C++ implements move semantics (destructive reads)
by nulling on copy.

Similar to Rust’s unique pointers, but fewer safety guarantees.

You can borrow in C++ (raw pointers);
but C++ has no borrow checker.

31 / 36

C++ RAII workaround 2: shared ptr

using namespace std ;
void s t r i n g o p e r a t i o n s h a r e d () {

auto s t r 1 = make shared<s t r i n g > (‘ ‘ ! ’ ’) ;
auto s t r 2 = s t r 1 ;
s td : : cout << ∗ s t r 1 << endl ;
s td : : cout << ∗ s t r 2 << endl ;
/ / dea l loca ted when re fcoun t = 0

}

C++ allows (easily)
multiple mutable copies of shared object.
(subject to usual refcount limitations on cycles)
(weak ptrs for cycles)

32 / 36

C++ Summary

Ownership types for:
visualization & understanding

memory management
(dynamic enforcement w/null derefs, fails fast)

concurrency control
verification
security

33 / 36

Other Languages: Scala

immutability preferred (“val”)

if you need shared mutable state, use actors:
encapsulated shared mutable state
send/receive immutable messages

Reduces need for ownership types
by discouraging mutability.

34 / 36

Other Languages

Go:
Has shared mutable state.
Encourages conventions for ownership.

Goroutines & event loops: similar to actors.

Dart:
No shared mutable state.
Encapsulates threads in “isolates”.

Swift, Clojure:
Values immutable, refs may change.

[swift] read/write queues
[clojure] all changes in a transaction or async

35 / 36

Conclusion

My take on practical ownership types in 2016:
Rust = usable simple compile-time ownership.
C++ = support for run-time ownership.
Other languages = alternatives to shared mutable state.

In summary:
X resource management applications
× software architecture applications

36 / 36

