Hot Takes on Machine Learning
for Program Analysis

- (Dlrectors Cut UBC)

Patrlck Lam
UnlverS|ty of Waterloo

»w;?%"’ =

s July 20, 2023

A NS Lttt

Introduction

My student said:

Deep Learning is one of the ("best") ways to
do program analysis.

What's ML good at? Bad at?

Here are some potential application areas:

Classification
Inference
Generative Al

[
o
[
e Analysis / Deduction

Classification

Weka about to steal my lunch

Classification

FSE 08: Bodden, Lam & Hendren. “Finding Programming
Errors Earlier by Evaluating Runtime Monitors Ahead-of-Time”.

ML task:
filter out likely false-positive Potential Points of Failure.

C
| ABORTED = 0

| | DELEGATE = 0

| | | NO_CONTEXT = 0: TRUE_POSITIVE (11.0/1.0)
| | | NO_CONTEXT = 1: FALSE_POSITIVE (4.0/1.0)
| | DELEGATE = 1: FALSE_POSITIVE (10.0)

| ABORTED = 1: FALSE_POSITIVE (30.0)

CALL = 1: FALSE_POSITIVE (406.0/1.0)

More Classification

MSR 14: Hanam, Tan, Holmes, and Lam.
“Finding Patterns in Static Analysis Alerts”.

|ldea: rank importance of FindBugs alerts
by extracting a feature vector & using ML.

Source Code

y

Abstract
Syntax Tree

& e,

Pointer
Call Graph Analysis

TN

SA
Warnings

> Slicer

\

Warning
Statement
Slices

Classification via Deep Learning

ICSE 23: Steenhoek, Rahman, Jiles, and Le. “An Empirical Study of Deep
Learning Models for Vulnerability Detection.”

Classification question:
does this code have a vulnerability or not?

This work studies the behaviour of 9 deep
learning models on 2 datasets.
Claim: DL outperforms static analysis.

Regression?

Instead of labels (classification), output numerical values within a range.

Not as amenable to PL/SE applications?

Inference

Code Representations for Improved Program Analysis

submitted to ICSE 24, by Shirzad and Lam:

Introduction

The power of our code representations

(func (type @) (param i32) (resul
(local i32 ... i32)
global.get 0@

local.set 1

i32) (func (type @) (param i32) (r
(local i32 ... i32)
global.get 0@
local.set 1

return) return)

Method name Precise return
prediction type recovery

How We Compute Our Code Representations

method name prediction, Motivating Example

C program ---> Path vector precise return type recovery
Code Embedding Path Sequence
Paths Set [0, 0, 0.8898107, pldlp2dl..p3352d2

'.'.i.f,loop,if,f64Adiv": 1005, . 0. 60188985] 50
"if loop,if,f64.eq": 1006,
"if loop,if,f64.floor": 1007,
"if loop, if,f64.ge": 1008,
U Query

E L 5 YR

Source program Wasm AST paths Path vector

5 || Path #3352

= ||Path #1
W || Path #2

Another Application: JSNice—deobfuscating JavaScript

POPL 15. Raychev, Vechev & Krause. “Predicting Program Properties from “Big
Code”.”

JS WILM STATISTICAL RENAMING, TYPE INFERENCE AND DEOBFUSCATION ABOUT
ENTER JAVASCRIPT o | « CLICK "NICIFY JAVASCRIPT"

1 // Put your JavaScript here that you want to rename, deobfuscate,
2 // or infer types for:
function chunkData(e, t) {

var.a= [13 WELCOME TO UPDATED JSNICE (MARCH 2018)
var r = e.length;
var i = 03
f Kt L Al i W g
ozi’f(fiu tr(-,I.)+{) 1 What's new in JSNice?

3 h(e.substri i, i £)):;

) 21225{(9 subs I"fng(T'; 1+1)) 3 « Support for ECMASCRIPT 6.
n.push(e.substring(i, r)); « Built-in packers detector.
« Possibility to transpile not yet supported code.

return n;

 Increased prediction accuracy.

16 // You can also use some ES6 features. « Ability to provide direct feedback on JSNice predictions.
17 const get = (a,b) => a.getElementById(b);

Infers likely identifier names and types via machine learning.

Other applications of (broadly) inference

e Test generation
e Program repair
e Program synthesis

(Typically not machine learning techniques).

Test Generation

Dan, Lam, Hoefler, and Vechev. OOPSLA 16. Modeling and Analysis of Remote

Memory Access Programming.

X =1 Y = 0

PO: P1l:

a =X put (x¥, Y)
Y = get (X0)
flush (0)
b = Y

Expected outputs: {(a, b) € {(0,0), (1,2)}.

Program Repair & Synthesis

Per Armando Solar-Lezema:

e Program Synthesis corresponds to a class of techniques that are able to
generate a program from a collection of artifacts that establish semantic and
syntactic requirements for the generated code.

Usually, search for a suitable program.

in: [1,2,3,4,5,6,7,8]
out: [8,7,6,5,4,3,2,1]

[https://people.csail.mit.edu/asolar/SynthesisCourse/Lecturel.htm]

Generative Al

Inference ++7?

@he) GitHub
p Copillot

@ ChatGPT

Is generated code any good?

#1: Let’s verify using tests!

MSR 22. Nguyen & Nadi. “An empirical evaluation of GitHub copilot's code
suggestions.”

Asked Copilot to generate code for LeetCode problems,

checked it with LeetCode test cases.
Java 57% pass, JavaScript 27% pass.

Is generated code any good?

#2 Let’s use formal verification!

HATRA 22. Wong, Kothig, and Lam. “Exploring the Verifiability of Code Generated

by GitHub Copilot.”
Attempt to formally verify Copilot generated code; 4/6 success.

But, when we don’t succeed, who’s the problem?

Is generated code any good?

#3 Let’'s generate code interactively!

Kani Rust Verifier Blog. “Writing Code with ChatGPT? Improve it with Kani.”
Use model checking plus iterative applications to ChatGPT until it gets it right.

https://model-checking.github.io/kani-verifier-blog/2023/05/01/writing-code-with-chatgpt-improve-it-with-kani.html

Deductive Reasoning

Statistical approaches and reasoning... !? ? 9

| can't really imagine how to do e.g.
pointer analysis with statistical
approaches.

Pointer analysis

int * p, * q;
Question: do *p and *q possibly alias? That is,

*p = 5;
*q = 2;

What is *p going to contain?

Pointer analysis

int * p, * q;

Question: do *p and *q possibly alias? That is,

*p
*q
What is

=5;
=2;

*p going to contain?

CFL-Reachability

"abc
02 029 5

%\ .
ner ln ew & \Qz@ t h L S7
. &
e 129 Ny Tentr}’so

iewem%o 7 (228 <Y 04
)

\
Me storeka“/e entryzg
store(elems) 5
04 o> 4 = thiss entryzs
p entryss
0aq,
p12 Q% l125 new 055
eXityo ti l entry,;
% .
r) — >
20 . %/ I’17s,tore(list)t|”ﬂS17
exitaq @,,> 0
8 entryy; 27
S : . new
31 Toad(f) strss thisq; client,s
entryzo entrys

—— entry and exit edges .
——> load and store edges tig load(list) th1519
—> new and assign edges

Fig. 2. Illustration of CFL-reachability

Xu, Rountev & Sridharan. ECOOP 09. Scaling CFL-Reachability-Based Points-To Analysis Using
Context-Sensitive Must-Not-Alias Analvsis.

Pointer analysis

int * p, * q;
Question: do *p and *q possibly alias? That is,

5;
2;

*p
*q

What is *p going to contain?

Do you want reasoning,
or do you want reckons?

@ ChatGPT

What does ChatGPT think? [part 1]

patricklam.ca/chatgpt-hot-takes
[prompt engineering by Lucas Wojciechowski]

> Give me 10 hot takes on how machine learning will affect programming
language / software engineering in the next 10 years

Developers will need to have a strong understanding of statistics
and data analysis in order to effectively incorporate machine
learning into their applications.

Natural language processing (NLP) and speech recognition will
become more prevalent, leading to the development of new
programming languages and tools that support these technologies.

What does ChatGPT think? [part 2]

patricklam.ca/chatgpt-hot-takes
[prompt engineering by Lucas Wojciechowski]

> Give me 10 hot takes on how machine learning will affect programming
language / software engineering in the next 10 years

As machine learning becomes more widespread, developers will need
to prioritize the ethical implications of their work, such as data
privacy, bias, and accountability.

Developers will increasingly rely on machine learning to automate
software testing and debugging, reducing the time and effort
required to find and fix bugs.

@ ChatGPT

Hotter takes [part 1] patricklam.ca/chatgpt-hot-takes

> Can you make the takes more controversial?

Machine learning will eventually make traditional programming
languages obsolete, as machines become better at creating software

than humans.

As machine learning becomes more advanced, developers will need to
focus on building systems that are transparent and explainable, in
order to ensure that they can be trusted by users.

@ ChatGPT

Hotter takes [part 2] patricklam.ca/chatgpt-hot-takes

> Can you make the takes more controversial?

Machine learning will eventually lead to the development of
conscious machines, creating a new era in which machines and
humans coexist as equals.

As machine learning becomes more prevalent, it will lead to the
creation of new types of software applications that are designed
to manipulate and exploit human emotions.

@ ChatGPT

Hottest takes [part 1] patricklam.ca/chatgpt-hot-takes

> Can you make the takes even more controversial?

The rise of machine learning will lead to the creation of new
types of software applications that are desighed to replace human
workers, leading to widespread job displacement and social unrest.

The development of advanced machine learning algorithms will
eventually lead to the creation of true artificial intelligence,
capable of independent thought and decision making.

@ ChatGPT

Hottest takes [part 2] patricklam.ca/chatgpt-hot-takes

> Can you make the takes even more controversial?

The increasing use of machine learning in software development
will lead to a new era of digital imperialism, with the most
advanced machine learning algorithms being used to dominate and
control global markets.

Eventually, the rise of machine learning will lead to a new era of
technological singularity, in which machines become more
intelligent than humans and take over the world.

Patrick’'s Hot Takes
Ai’tn o
e Machine Learning is a super useful tool!
(when applicable)
e Machine Learning won't make our fields obsolete.
("More research still required...”)

Part of the trick: using domain knowledge to
drive ML.

Y

Why we’re not about to become obsolete:
a report from Computational Linguistics

&

e.g. Google Translate:
isn’t it all statistical?

Computational Linguistics: not just statistics

Blackbox NLP workshop, EMNLP 2022. Muthupari, Halder, Sayeed, and Marton. “Where's the Learning in
Representation Learning for Compositional Semantics and the Case of Thematic Fit”.

Question: understand why sometimes random
word embeddings work as well as pretrained
embeddings.

Tools: Need experimental efforts In
linguistic representations; manipulate
the model architecture.

Patrick’'s Hot Takes: Generative Al

> Give me 10 hot takes on how machine learning will affect programming
language / software engineering in the next 10 years

e ‘“Generated code can be good actually;” but,
e “I wouldn’t trust generated code further
than I can throw it.”

'«./ Vs

"c

v

Al is Good At

What Generative

|
i
|
|

ol ol e o il o e s

What Generative Al is bad at: novelty

Other things generative Al is bad at

ldentifying the problem
Hallucinations / Objective truth
Respecting IP

Ensuring security

Identifying the problem &k e

A

choosing a tool is the easy part...

PV S ~ v ., . s Al
i 3 ;

Objective Truth

What is the highest
waterfall in
New Zealand?

Ensuring Security

L OCK
PICKING

useful tool
won’'t make us all obsolete

