COMP 302 Summer 2006: Lecture Schedule

Patrick Lam

June 9, 2006

Week 1	Lecture 1	May 2	Basic SML, Functions, Tuples/Records		
	Lecture 2	May 4	Recursion, Lists	HW1 out	
Week 2	Lecture 3	May 9	Concrete data types, Induction		
			Formal syntax, Typing rules		
	Lecture 4	May 11	Substitution, Operational semantics	HW2 out, HW1 due	
Week 3	Lecture 5	May 16	Operational reasoning		
	Higher-order functions		Higher-order functions		
	Lecture 6	Lecture 6 May 18 Higher-order functions			
			Midterm review	HW3 out, HW2 due	
Week 4	Lecture 7 May 23 References, Midterm 1				
	Lecture 8	May 25	Continuations, References		
Week 5	Lecture 9	May 30	Mutable data structures, microML,		
			interpreter, Environment model	HW3 due	
	Lecture 10	Jun 1	Closures & Objects, Exceptions	HW4 out	
Week 6	Lecture 11				
	Lecture 12				
Week 7	Lecture 13	Jun 13	Subtyping, Midterm 2		
	Lecture 14	Jun 15	Polymorphism, Polymorphic Type Inference	HW5 out, HW4 due	
Week 8	Lecture 15	Jun 20	Modules, The Object-Oriented Paradigm		
	Lecture 16	Jun 22	OO Paradigm, Java inheritance		
			and subtyping, Type rules for "Java"		
Week 9	Lecture 17	Jun 27	C++, Java, JavaScript, Ada		
	Lecture 18	Jun 29	Scheme, Python, Final Review	HW 5 due	

General information about the course

My version of the course webpage is located at,

http://comp302.csail.mit.edu

This page contains assignments (and hints for the assignments), lecture notes and examples, resources on SML and links to interesting articles on programming languages. You will need either Acrobat Reader or Ghostview to read the PDF and PS documents on the page; if you don't already have them, Google will tell you where to find them.

SML should be running on the department's lab machines. If you are an emacs user, the SML-mode under emacs environment is an excellent programming environment. Because SML/NJ is free software, you may download your own version of it for your personal computer. Check the "Resources" tab on the web page for instructions on obtaining SML.

Course staff & Office Hours

Patrick Lam	plam@cs.mcgill.ca	McConnell 231	TWJ 2:00-3:00
Ximeng Sun	xsun16@cs.mcgill.ca	McConnell 202	M 12:00-2:00
Matthew Drescher	mdresc@cs.mcgill.ca	Trottier 3106-7	W 5:00-7:00

Method of evaluation

There will be five assignments (30 %), two midterms (20 %) and a final examination (60%). The assignments will be a mix of programming and theoretical exercises.

The midterms and final examination will be open book and open notes.

Course text

Professor Robert Harper at Carnegie Mellon University has given us permission to use his draft notes, *Introduction to SML*, as our course text. The notes are available from the course website.

Obligatory statement on Academic Integrity

McGill values academic integrity. Therefore all students must understand the meaning and consequences of cheating, plagiarism and other academic offences under the Code of Student Conduct and Disciplinary Procedures. See www.mcgill.ca/integrity for more information.